Araştırma Makalesi
BibTex RIS Kaynak Göster

Development of a novel electrochemical method for the quantitative analysis of vandetanib in the presence of anionic surfactant utilizing a bare carbon paste electrode

Yıl 2024, Cilt: 28 Sayı: 4, 1010 - 1021, 28.06.2025

Öz

In this investigation, a novel electrochemical approach employing a bare carbon paste electrode (CPE) has been devised for the sensitive and expeditious quantification of the tyrosine kinase inhibitor vandetanib (VAN). VAN, a pivotal anti-tumor agent employed in various cancer types, notably medullary thyroid cancer, manifested an irreversible oxidation peak at approximately +1.17 V (vs. Ag/AgCl, 3 M NaCl) in 0.1 M HNO3, elucidated through cyclic voltammetry. The electrode reaction was determined to proceed via controlled adsorption. The study meticulously examined the influence of anionic surfactant sodium dodecyl sulfate (SDS), instrumental parameters, pH fluctuations, and the composition of the supporting electrolyte on the oxidation peak of VAN. Remarkably, the sensitivity of stripping voltammetric measurements markedly augmented upon the inclusion of 9 × 10−4 M SDS. Employing optimized parameters for SW-AdSV (square-wave adsorptive stripping voltammetry), the bare CPE demonstrated exceptional linearity within the dynamic ranges of 1.05×10−7 – 1.6×10−5 M for VAN. The limit of detection and limit of quantification were established at 2.7×10−8 and 9.0×10−8 M for VAN, respectively. Furthermore, the developed electrochemical methodology was effectively applied for the detection of VAN in spiked model serum samples.

Kaynakça

  • [1] La Salvia A, Espinosa-Olarte P, Riesco-Martinez MDC, Anton-Pascual B, Garcia-Carbonero R. Targeted cancer therapy: what’s new in the field of neuroendocrine neoplasms?. Cancers. 2021; 13(7): 1701. https://doi.org/10.3390/cancers13071701.
  • [2] Shyam Sunder S, Sharma UC, Pokharel S. Adverse effects of tyrosine kinase inhibitors in cancer therapy: pathophysiology, mechanisms and clinical management. Signal Transduct Target Ther. 2023; 8(1): 262. https://doi.org/10.1038/s41392-023-01469-6
  • [3] Anand U, Dey A, Chandel AKS, Sanyal R, Mishra A, Pandey DK, Pérez de la Lastra JM. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023; 10(4): 1367–1401. https://doi.org/10.1016/j.gendis.2022.02.007.
  • [4] Thornton K, Kim G, Maher VE, Chattopadhyay S, Tang S, Moon YJ, Pazdur R. Vandetanib for the treatment of symptomatic or progressive medullary thyroid cancer in patients with unresectable locally advanced or metastatic disease: US Food and Drug Administration drug approval summary. Clin Cancer Res. 2012; 18(14): 3722-3730. https://doi.org/10.1158/1078-0432.CCR-12-0411
  • [5] Durante C, Paciaroni A, Plasmati K, Trulli F, Filetti S. Vandetanib: opening a new treatment practice in advanced medullary thyroid carcinoma. Endocrine. 2013; 44: 334-342. https://doi.org/10.1007/s12020-013-9943-9
  • [6] Trimboli P, Castellana M, Virili C, Giorgino F, Giovanella L. Efficacy of vandetanib in treating locally advanced or metastatic medullary thyroid carcinoma according to RECIST criteria: a systematic review and meta-analysis. Front Endocrinol. 2018; 9: 224. https://doi.org/10.3389/fendo.2018.00224
  • [7] Tsang VH, Robinson BG, Learoyd DL. The safety of vandetanib for the treatment of thyroid cancer. Expert Opin Drug Saf. 2016; 15(8): 1107-1113. https://doi.org/10.1080/14740338.2016.1201060
  • [8] Dall’Acqua S, Vedaldi D, Salvador A. Isolation and structure elucidation of the main UV-A photoproducts of vandetanib. J Pharm Biomed Anal. 2013; 84: 196-200. https://doi.org/10.1016/j.jpba.2013.05.049
  • [9] Maluleka MM, Mokoena TP, Mampa RM. Synthesis, crystal, and Hirschfeld surface, DFT and molecular docking studies of 6-(3 chloro-4-fluorophenyl)-4-ethoxy-2-(4-methoxyphenyl) quinazoline derivative. J Mol Struct. 2022; 1255: 132439. https://doi.org/10.1016/j.molstruc.2022.132439
  • [10] Lin H, Cui D, Cao Z, Bu Q, Xu Y, Zhao Y. Validation of a high-performance liquid chromatographic ultraviolet detection method for the quantification of vandetanib in rat plasma and its application to pharmacokinetic studies. J Cancer Res Cell Ther. 2014; 10(1): 84-88. https://doi.org/10.4103/0973-1482.131393
  • [11] Alanazi MM, Obaidullah AJ, Attwa MW. A Novel Green Micellar HPLC-UV method for the estimation of vandetanib in pure form, human urine, human plasma and human liver microsomes matrices with application to metabolic stability evaluation. Molecules. 2022; 27(24): 9038. https://doi.org/10.3390/molecules27249038
  • [12] Darwish HW, Bakheit AH, Al-Shakliah NS, Darwish, IA. Development of novel response surface methodology-assisted micellar enhanced synchronous spectrofluorimetric method for determination of vandetanib in tablets, human plasma and urine. Spectrochim Acta A Mol Biomol Spectrosc. 2019; 213: 272-280. https://doi.org/10.1016/j.saa.2019.01.056
  • [13] Attwa MW, Kadi AA, Darwish HW, Amer SM, Al-Shakliah NS. Identification and characterization of in vivo, in vitro and reactive metabolites of vandetanib using LC–ESI–MS/MS. Chem Cent J. 2018; 12: 1-16. https://doi.org/10.1186/s13065-018-0467-5
  • [14] Merienne C, Rousset M, Ducint D, Castaing N, Titier K, Molimard M, Bouchet S. High throughput routine determination of 17 tyrosine kinase inhibitors by LC–MS/MS. J Pharm Biomed Anal. 2018; 150: 112-120. https://doi.org/10.1016/j.jpba.2017.11.060
  • [15] Bai F, Johnson J, Wang F, Yang L, Broniscer A, Stewart CF. Determination of vandetanib in human plasma and cerebrospinal fluid by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). J Chromatogr B. 2011; 879(25): 2561-2566. https://doi.org/10.1016/j.jchromb.2011.07.012
  • [16] Salode VL, Game MD, Salode GV, Gadge SS. Development of validated stability indicating method for estimation of Vandetanib and characterization of its degradants by LC-ESI-MS. Indian J Pharm Educ Res. 2022; 56(1): 232-239.
  • [17] Khandare B, Dudhe PB, Upasani S, Dhoke M. Spectrophotometric determination of vandetanib in bulk by area under curve and first order derivative methods. nt J Pharmtech Res. 2019; 12: 103-110. https://doi.org/10.20902/IJPTR.2019.120202
  • [18] Dall’Acqua S, Vedaldi D, Salvador A. Isolation and structure elucidation of the main UV-A photoproducts of vandetanib. J Pharm Biomed Anal. 2013; 84: 196-200. https://doi.org/10.1016/j.jpba.2013.05.049
  • [19] Abdelhameed AS, Hassan ES, Attwa MW, Al-Shakliah NS, Alanazi AM, AlRabiah H. Simple and efficient spectroscopic-based univariate sequential methods for simultaneous quantitative analysis of vandetanib, dasatinib, and sorafenib in pharmaceutical preparations and biological fluids. Spectrochim Acta A Mol Biomol Spectrosc. 2021; 260: 119987. https://doi.org/10.1016/j.saa.2021.119987
  • [20] Aydin I, Akgun H, Talay Pınar P. Analytical determination of the oxazolidinone antibiotic linezolid at a pencil graphite and carbon paste electrodes. ChemistrySelect. 2019; 4(34): 9966-9971. https://doi.org/10.1002/slct.201902269
  • [21] Göktaş D, Talay Pınar P. First report for the electrochemical determination and proposed mechanism of poly (ADP ribose) polymerase inhibitor and new smart anticancer drug olaparib. Monatsh Chem. 2023; 154(6): 577-584. https://doi.org/10.1007/s00706-023-03069-0
  • [22] Monnappa AB, Manjunatha JG, Bhatt AS. Design of a sensitive and selective voltammetric sensor based on a cationic surfactant-modified carbon paste electrode for the determination of alloxan. ACS Omega. 2020; 5(36): 23481-23490. https://doi.org/10.1021/acsomega.0c03517
  • [23] Vural K, Karakaya S, Dilgin DG, Gökçel Hİ. Dilgin Y. Voltammetric determination of Molnupiravir used in treatment of the COVID-19 at magnetite nanoparticle modified carbon paste electrode. Microchem J. 2023; 184: 108195. https://doi.org/10.1016/j.microc.2022.108195
  • [24] Turunc E, Gumus I, Arslan H. Redox active Co (II) complex modified carbon paste electrode for the determination of dopamine. Mater Chem Phys. 2020; 243: 122597. https://doi.org/10.1016/j.matchemphys.2019.122597
  • [25] Aydoğmuş Z, Aslan SS, Yildiz G, Senocak A. Differential pulse voltammetric determination of anticancer drug regorafenib at a carbon paste electrode: electrochemical study and density functional theory computations. J Anal Chem. 2020; 75: 691-700. https://doi.org/10.1134/S1061934820050032
  • [26] Housaindokht MR, Janati-Fard F, Ashraf N. Recent advances in applications of surfactant‐based voltammetric sensors. J Surfactants Deterg. 2021; 24(6): 873-895. https://doi.org/10.1002/jsde.12541
  • [27] Talay Pınar P. Electrooxidation and low-tech determination of pantoprazole on a disposable pencil graphite electrode by the use of cationic surfactant. Acta Chim Slov. 2020; 67(1): 212-220. https://doi.org/10.17344/acsi.2019.5367
  • [28] Ziyatdinova G, Yakupova E, Davletshin R. Voltammetric determination of hesperidin on the electrode modified with SnO2 nanoparticles and surfactants. Electroanalysis. 2021; 33(12): 2417-2427. https://doi.org/10.1002/elan.202100405
  • [29] Sener CE, Dogan Topal B, Ozkan SA. Effect of monomer structure of anionic surfactant on voltammetric signals of an anticancer drug: rapid, simple, and sensitive electroanalysis of nilotinib in biological samples. Anal Bioanal Chem. 2020; 412: 8073-8081. https://doi.org/10.1007/s00216-020-02934-9
  • [30] Tigari G, Manjunatha JG. A surfactant enhanced novel pencil graphite and carbon nanotube composite paste material as an effective electrochemical sensor for determination of riboflavin. J Sci Adv Mater Devices. 2020; 5(1): 56-64. https://doi.org/10.1016/j.jsamd.2019.11.001.
  • [31] Altunkaynak Y, Önal G, Levent A. Application of boron-doped diamond electrode for rapid and sensitive voltammetric detection of vildagliptin in anionic surfactant medium. Monats Chem. 2023; 154(2): 181-190. https://doi.org/10.1007/s00706-022-03020-9
  • [32] Önal G, Altunkaynak Y, Levent A. Application of BiFE for electrochemical properties and determination of loratadine by cathodic stripping voltammetry in the cationic surfactant medium. J Iran Chem Soci. 2021; 18(12): 3465-3475. https://doi.org/10.1007/s13738-021-02286-w
  • [33] Altunkaynak Y, Önal G, Levent A. Electrochemical evaluation of the desloratadine at bismuth film electrode in the presence of cationic surfactant: Highly sensitive determination in pharmaceuticals and human urine by Linear sweep-cathodic stripping voltammetry. Turk J Chem. 2021; 45(3): 775-787. https://doi.org/10.3906/kim-2101-42
  • [34] Laviron EJJ. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interfacial Electrochem. 1979; 101(1): 19-28. https://doi.org/10.1016/S0022-0728(79)80075-3
  • [35] Bakirhan NK, Tok TT, Ozkan SA. The redox mechanism investigation of non-small cell lung cancer drug: Erlotinib via theoretical and experimental techniques and its host–guest detection by β-Cyclodextrin nanoparticles modified glassy carbon electrode. Sens Actuators B. 2019; 278: 172-180. https://doi.org/10.1016/j.snb.2018.09.090.
Yıl 2024, Cilt: 28 Sayı: 4, 1010 - 1021, 28.06.2025

Öz

Kaynakça

  • [1] La Salvia A, Espinosa-Olarte P, Riesco-Martinez MDC, Anton-Pascual B, Garcia-Carbonero R. Targeted cancer therapy: what’s new in the field of neuroendocrine neoplasms?. Cancers. 2021; 13(7): 1701. https://doi.org/10.3390/cancers13071701.
  • [2] Shyam Sunder S, Sharma UC, Pokharel S. Adverse effects of tyrosine kinase inhibitors in cancer therapy: pathophysiology, mechanisms and clinical management. Signal Transduct Target Ther. 2023; 8(1): 262. https://doi.org/10.1038/s41392-023-01469-6
  • [3] Anand U, Dey A, Chandel AKS, Sanyal R, Mishra A, Pandey DK, Pérez de la Lastra JM. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023; 10(4): 1367–1401. https://doi.org/10.1016/j.gendis.2022.02.007.
  • [4] Thornton K, Kim G, Maher VE, Chattopadhyay S, Tang S, Moon YJ, Pazdur R. Vandetanib for the treatment of symptomatic or progressive medullary thyroid cancer in patients with unresectable locally advanced or metastatic disease: US Food and Drug Administration drug approval summary. Clin Cancer Res. 2012; 18(14): 3722-3730. https://doi.org/10.1158/1078-0432.CCR-12-0411
  • [5] Durante C, Paciaroni A, Plasmati K, Trulli F, Filetti S. Vandetanib: opening a new treatment practice in advanced medullary thyroid carcinoma. Endocrine. 2013; 44: 334-342. https://doi.org/10.1007/s12020-013-9943-9
  • [6] Trimboli P, Castellana M, Virili C, Giorgino F, Giovanella L. Efficacy of vandetanib in treating locally advanced or metastatic medullary thyroid carcinoma according to RECIST criteria: a systematic review and meta-analysis. Front Endocrinol. 2018; 9: 224. https://doi.org/10.3389/fendo.2018.00224
  • [7] Tsang VH, Robinson BG, Learoyd DL. The safety of vandetanib for the treatment of thyroid cancer. Expert Opin Drug Saf. 2016; 15(8): 1107-1113. https://doi.org/10.1080/14740338.2016.1201060
  • [8] Dall’Acqua S, Vedaldi D, Salvador A. Isolation and structure elucidation of the main UV-A photoproducts of vandetanib. J Pharm Biomed Anal. 2013; 84: 196-200. https://doi.org/10.1016/j.jpba.2013.05.049
  • [9] Maluleka MM, Mokoena TP, Mampa RM. Synthesis, crystal, and Hirschfeld surface, DFT and molecular docking studies of 6-(3 chloro-4-fluorophenyl)-4-ethoxy-2-(4-methoxyphenyl) quinazoline derivative. J Mol Struct. 2022; 1255: 132439. https://doi.org/10.1016/j.molstruc.2022.132439
  • [10] Lin H, Cui D, Cao Z, Bu Q, Xu Y, Zhao Y. Validation of a high-performance liquid chromatographic ultraviolet detection method for the quantification of vandetanib in rat plasma and its application to pharmacokinetic studies. J Cancer Res Cell Ther. 2014; 10(1): 84-88. https://doi.org/10.4103/0973-1482.131393
  • [11] Alanazi MM, Obaidullah AJ, Attwa MW. A Novel Green Micellar HPLC-UV method for the estimation of vandetanib in pure form, human urine, human plasma and human liver microsomes matrices with application to metabolic stability evaluation. Molecules. 2022; 27(24): 9038. https://doi.org/10.3390/molecules27249038
  • [12] Darwish HW, Bakheit AH, Al-Shakliah NS, Darwish, IA. Development of novel response surface methodology-assisted micellar enhanced synchronous spectrofluorimetric method for determination of vandetanib in tablets, human plasma and urine. Spectrochim Acta A Mol Biomol Spectrosc. 2019; 213: 272-280. https://doi.org/10.1016/j.saa.2019.01.056
  • [13] Attwa MW, Kadi AA, Darwish HW, Amer SM, Al-Shakliah NS. Identification and characterization of in vivo, in vitro and reactive metabolites of vandetanib using LC–ESI–MS/MS. Chem Cent J. 2018; 12: 1-16. https://doi.org/10.1186/s13065-018-0467-5
  • [14] Merienne C, Rousset M, Ducint D, Castaing N, Titier K, Molimard M, Bouchet S. High throughput routine determination of 17 tyrosine kinase inhibitors by LC–MS/MS. J Pharm Biomed Anal. 2018; 150: 112-120. https://doi.org/10.1016/j.jpba.2017.11.060
  • [15] Bai F, Johnson J, Wang F, Yang L, Broniscer A, Stewart CF. Determination of vandetanib in human plasma and cerebrospinal fluid by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). J Chromatogr B. 2011; 879(25): 2561-2566. https://doi.org/10.1016/j.jchromb.2011.07.012
  • [16] Salode VL, Game MD, Salode GV, Gadge SS. Development of validated stability indicating method for estimation of Vandetanib and characterization of its degradants by LC-ESI-MS. Indian J Pharm Educ Res. 2022; 56(1): 232-239.
  • [17] Khandare B, Dudhe PB, Upasani S, Dhoke M. Spectrophotometric determination of vandetanib in bulk by area under curve and first order derivative methods. nt J Pharmtech Res. 2019; 12: 103-110. https://doi.org/10.20902/IJPTR.2019.120202
  • [18] Dall’Acqua S, Vedaldi D, Salvador A. Isolation and structure elucidation of the main UV-A photoproducts of vandetanib. J Pharm Biomed Anal. 2013; 84: 196-200. https://doi.org/10.1016/j.jpba.2013.05.049
  • [19] Abdelhameed AS, Hassan ES, Attwa MW, Al-Shakliah NS, Alanazi AM, AlRabiah H. Simple and efficient spectroscopic-based univariate sequential methods for simultaneous quantitative analysis of vandetanib, dasatinib, and sorafenib in pharmaceutical preparations and biological fluids. Spectrochim Acta A Mol Biomol Spectrosc. 2021; 260: 119987. https://doi.org/10.1016/j.saa.2021.119987
  • [20] Aydin I, Akgun H, Talay Pınar P. Analytical determination of the oxazolidinone antibiotic linezolid at a pencil graphite and carbon paste electrodes. ChemistrySelect. 2019; 4(34): 9966-9971. https://doi.org/10.1002/slct.201902269
  • [21] Göktaş D, Talay Pınar P. First report for the electrochemical determination and proposed mechanism of poly (ADP ribose) polymerase inhibitor and new smart anticancer drug olaparib. Monatsh Chem. 2023; 154(6): 577-584. https://doi.org/10.1007/s00706-023-03069-0
  • [22] Monnappa AB, Manjunatha JG, Bhatt AS. Design of a sensitive and selective voltammetric sensor based on a cationic surfactant-modified carbon paste electrode for the determination of alloxan. ACS Omega. 2020; 5(36): 23481-23490. https://doi.org/10.1021/acsomega.0c03517
  • [23] Vural K, Karakaya S, Dilgin DG, Gökçel Hİ. Dilgin Y. Voltammetric determination of Molnupiravir used in treatment of the COVID-19 at magnetite nanoparticle modified carbon paste electrode. Microchem J. 2023; 184: 108195. https://doi.org/10.1016/j.microc.2022.108195
  • [24] Turunc E, Gumus I, Arslan H. Redox active Co (II) complex modified carbon paste electrode for the determination of dopamine. Mater Chem Phys. 2020; 243: 122597. https://doi.org/10.1016/j.matchemphys.2019.122597
  • [25] Aydoğmuş Z, Aslan SS, Yildiz G, Senocak A. Differential pulse voltammetric determination of anticancer drug regorafenib at a carbon paste electrode: electrochemical study and density functional theory computations. J Anal Chem. 2020; 75: 691-700. https://doi.org/10.1134/S1061934820050032
  • [26] Housaindokht MR, Janati-Fard F, Ashraf N. Recent advances in applications of surfactant‐based voltammetric sensors. J Surfactants Deterg. 2021; 24(6): 873-895. https://doi.org/10.1002/jsde.12541
  • [27] Talay Pınar P. Electrooxidation and low-tech determination of pantoprazole on a disposable pencil graphite electrode by the use of cationic surfactant. Acta Chim Slov. 2020; 67(1): 212-220. https://doi.org/10.17344/acsi.2019.5367
  • [28] Ziyatdinova G, Yakupova E, Davletshin R. Voltammetric determination of hesperidin on the electrode modified with SnO2 nanoparticles and surfactants. Electroanalysis. 2021; 33(12): 2417-2427. https://doi.org/10.1002/elan.202100405
  • [29] Sener CE, Dogan Topal B, Ozkan SA. Effect of monomer structure of anionic surfactant on voltammetric signals of an anticancer drug: rapid, simple, and sensitive electroanalysis of nilotinib in biological samples. Anal Bioanal Chem. 2020; 412: 8073-8081. https://doi.org/10.1007/s00216-020-02934-9
  • [30] Tigari G, Manjunatha JG. A surfactant enhanced novel pencil graphite and carbon nanotube composite paste material as an effective electrochemical sensor for determination of riboflavin. J Sci Adv Mater Devices. 2020; 5(1): 56-64. https://doi.org/10.1016/j.jsamd.2019.11.001.
  • [31] Altunkaynak Y, Önal G, Levent A. Application of boron-doped diamond electrode for rapid and sensitive voltammetric detection of vildagliptin in anionic surfactant medium. Monats Chem. 2023; 154(2): 181-190. https://doi.org/10.1007/s00706-022-03020-9
  • [32] Önal G, Altunkaynak Y, Levent A. Application of BiFE for electrochemical properties and determination of loratadine by cathodic stripping voltammetry in the cationic surfactant medium. J Iran Chem Soci. 2021; 18(12): 3465-3475. https://doi.org/10.1007/s13738-021-02286-w
  • [33] Altunkaynak Y, Önal G, Levent A. Electrochemical evaluation of the desloratadine at bismuth film electrode in the presence of cationic surfactant: Highly sensitive determination in pharmaceuticals and human urine by Linear sweep-cathodic stripping voltammetry. Turk J Chem. 2021; 45(3): 775-787. https://doi.org/10.3906/kim-2101-42
  • [34] Laviron EJJ. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interfacial Electrochem. 1979; 101(1): 19-28. https://doi.org/10.1016/S0022-0728(79)80075-3
  • [35] Bakirhan NK, Tok TT, Ozkan SA. The redox mechanism investigation of non-small cell lung cancer drug: Erlotinib via theoretical and experimental techniques and its host–guest detection by β-Cyclodextrin nanoparticles modified glassy carbon electrode. Sens Actuators B. 2019; 278: 172-180. https://doi.org/10.1016/j.snb.2018.09.090.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Farmasotik Kimya
Bölüm Articles
Yazarlar

Pınar Talay Pınar 0000-0003-1027-1456

Cihat Mete 0009-0004-8852-2643

Zühre Şentürk 0000-0002-0356-9345

Yayımlanma Tarihi 28 Haziran 2025
Gönderilme Tarihi 5 Nisan 2024
Kabul Tarihi 18 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 28 Sayı: 4

Kaynak Göster

APA Talay Pınar, P., Mete, C., & Şentürk, Z. (2025). Development of a novel electrochemical method for the quantitative analysis of vandetanib in the presence of anionic surfactant utilizing a bare carbon paste electrode. Journal of Research in Pharmacy, 28(4), 1010-1021.
AMA Talay Pınar P, Mete C, Şentürk Z. Development of a novel electrochemical method for the quantitative analysis of vandetanib in the presence of anionic surfactant utilizing a bare carbon paste electrode. J. Res. Pharm. Temmuz 2025;28(4):1010-1021.
Chicago Talay Pınar, Pınar, Cihat Mete, ve Zühre Şentürk. “Development of a Novel Electrochemical Method for the Quantitative Analysis of Vandetanib in the Presence of Anionic Surfactant Utilizing a Bare Carbon Paste Electrode”. Journal of Research in Pharmacy 28, sy. 4 (Temmuz 2025): 1010-21.
EndNote Talay Pınar P, Mete C, Şentürk Z (01 Temmuz 2025) Development of a novel electrochemical method for the quantitative analysis of vandetanib in the presence of anionic surfactant utilizing a bare carbon paste electrode. Journal of Research in Pharmacy 28 4 1010–1021.
IEEE P. Talay Pınar, C. Mete, ve Z. Şentürk, “Development of a novel electrochemical method for the quantitative analysis of vandetanib in the presence of anionic surfactant utilizing a bare carbon paste electrode”, J. Res. Pharm., c. 28, sy. 4, ss. 1010–1021, 2025.
ISNAD Talay Pınar, Pınar vd. “Development of a Novel Electrochemical Method for the Quantitative Analysis of Vandetanib in the Presence of Anionic Surfactant Utilizing a Bare Carbon Paste Electrode”. Journal of Research in Pharmacy 28/4 (Temmuz 2025), 1010-1021.
JAMA Talay Pınar P, Mete C, Şentürk Z. Development of a novel electrochemical method for the quantitative analysis of vandetanib in the presence of anionic surfactant utilizing a bare carbon paste electrode. J. Res. Pharm. 2025;28:1010–1021.
MLA Talay Pınar, Pınar vd. “Development of a Novel Electrochemical Method for the Quantitative Analysis of Vandetanib in the Presence of Anionic Surfactant Utilizing a Bare Carbon Paste Electrode”. Journal of Research in Pharmacy, c. 28, sy. 4, 2025, ss. 1010-21.
Vancouver Talay Pınar P, Mete C, Şentürk Z. Development of a novel electrochemical method for the quantitative analysis of vandetanib in the presence of anionic surfactant utilizing a bare carbon paste electrode. J. Res. Pharm. 2025;28(4):1010-21.