Araştırma Makalesi
BibTex RIS Kaynak Göster

Machine learning based QSAR model for therapeutically active candidate drugs with thiazolidinedione (TZD) scaffold

Yıl 2024, Cilt: 28 Sayı: 4, 1135 - 1151, 28.06.2025

Öz

Diabetes is a multifactorial metabolic disorder occurs due to uncontrolled persistent hyperglycaemia. The α-glucosidase enzyme plays an important role in management of diabetes. The α-glucosidase enzyme gets secreted by the brush border cells of small intestine which helps in converting maltose into glucose and thereby inhibiting the enzyme will help in lowering blood glucose level. In the present study, 100 compounds were selected having activity against α-glucosidase enzyme and they were used to build a machine learning based quantitative structure activity relationship model (QSAR). All the compounds were having thiazolidinedione (TZD) as the common nucleus. The molecules selected were divided into training and testing datasets of 80:20 ratio for various model development. The important molecular descriptors which will affect the target were chosen using recursive feature elimination (RFE) algorithm. The predictive models were created using machine learning regression techniques including Support Vector Regression (SVR), Random Forest Regression (RFR), Decision Tree Regression (DTR) and Gradient Boosting Regression (GBR). A comparison-based analysis was done between the various machine learning algorithms. The GBR and RFR gave the best R2 value of 0.9992 and 0.9514 for the training dataset and 0.9414 and 0.8760 for the testing dataset respectively, followed by SVR and DTR. Thus, it concludes that the four-machine learning algorithm generates a highly predictive model for the unique compounds and a superior prediction capability for building a QSAR model for α- glucosidase enzyme inhibitors.

Kaynakça

  • [1] Zimmet PZ, Magliano DJ, Herman WH, Shaw JE. Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol. 2014;2(1): 56-64. https://doi.org/10.1016/s2213-8587(13)70112-8.
  • [2] Fettach S, Thari FZ, Hafidi Z, Tachallait H, Karrouchi K, El Achouri M, Cherrah Y, Sefrioui H, Bougrin K, Abbes Faouzi ME. Synthesis, α-glucosidase and α-amylase inhibitory activities, acute toxicity and molecular docking studies of thiazolidine-2,4-diones derivatives. J Biomol Struct Dyn. 2022;40(18): 8340-8351. https://doi.org/10.1080/07391102.2021.1911854.
  • [3] Gaba S, Singh G, Monga V. Design, synthesis, and characterization of new thiazolidinedione derivatives as potent _ampersandsignalpha;-glucosidase inhibitors. Pharmaspire. 2021 Oct;13: 182-193. https://www.isfcppharmaspire.com/article_html.php?did=13767&issueno=0.
  • [4] Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine (Baltimore). 2010;38(11): 602-606. https://doi.org/10.1016/j.mpmed.2010.08.007.
  • [5] Reichard P, Pihl M. Mortality and treatment side-effects during long-term ıntensified conventional ınsulin treatment in the Stockholm diabetes ıntervention study. Diabetes. 1994;43(2): 313-317. https://doi.org/10.2337/diab.43.2.313.
  • [6] Hussain F, Khan Z, Jan MS, Ahmad S, Ahmad A, Rashid U, Ullah F, Ayaz M, Sadiq A. Synthesis, in-vitro α-glucosidase inhibition, antioxidant, in-vivo antidiabetic and molecular docking studies of pyrrolidine-2,5-dione and thiazolidine-2,4-dione derivatives. Bioorg Chem. 2019;91:103128. https://doi.org/10.1016/j.bioorg.2019.103128.
  • [7] Zinman B, Gerich J, Buse JB, Lewin A, Schwartz S, Raskin P, Hale PM, Zdravkovic M, Blonde L. Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met+TZD). Diabetes Care. 2009;32(7): 1224-1230. https://doi.org/10.2337/dc08-2124.
  • [8] Schwartz A V., Chen H, Ambrosius WT, Sood A, Josse RG, Bonds DE, Schnall AM, Vittinghoff E, Bauer DC, Banerji MA, Cohen RM, Hamilton BP, Isakova T, Sellmeyer DE, Simmons DL, Shibli-Rahhal A, Williamson JD, Margolis KL. Effects of TZD Use and Discontinuation on Fracture Rates in ACCORD Bone Study. J Clin Endocrinol Metab. 2015;100(11): 4059-4066. https://doi.org/10.1210/jc.2015-1215.
  • [9] Chhajed SS, Shinde PE, Kshirsagar SJ, Sangshetti J, Gupta PP, Parab M, Dasgupta D. De-novo design and synthesis of conformationally restricted thiazolidine-2,4-dione analogues: highly selective PPAR-γ agonist in search of anti-diabetic agent. Struct Chem. 2020;31(4): 1375-1385. https://doi.org/10.1007/s11224-020-01500-4.
  • [10] Tropsha A. Best practices for QSAR model development, validation, and exploitation. Mol Inform. 2010;29(6-7): 476-488. https://doi.org/10.1002/minf.201000061.
  • [11] Tropsha A, Golbraikh A. (2007). Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr. Pharm. Des. 2007;13(34): 3494-3504. https://doi.org/10.2174/138161207782794257
  • [12] Shoichet BK. Virtual screening of chemical libraries. Nature. 2004;432(7019): 862-865. https://doi.org/10.1038/nature03197.
  • [13] Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin I I, Cronin M, Dearden J, Gramatica P, Martin YC, Todeschini R, Consonni V, Kuz'min VE, Cramer R, Benigni R, Yang C, Rathman J, Terfloth L, Gasteiger J, Richard A, Tropsha A. QSAR modeling: Where have you been? Where are you going to? J Med Chem. 2014;57(12): 4977-5010. https://doi.org/10.1021/jm4004285.
  • [14] Weaver S, Gleeson MP. The importance of the domain of applicability in QSAR modeling. J Mol Graph Model. 2008;26(8): 1315-1326. https://doi.org/10.1016/j.jmgm.2008.01.002.
  • [15] Wang Z, Chen J, Hong H. Developing QSAR models with defined applicability domains on PPARγ binding affinity using large data sets and machine learning algorithms. Environ Sci Technol. 2021;55(10): 6857-6866. https://doi.org/10.1021/acs.est.0c07040.
  • [16] Saxena A, Mathur N, Pathak P, Tiwari P, Mathur SK. Machine learning model based on ınsulin resistance metagenes underpins genetic basis of type 2 diabetes. Biomolecules. 2023;13(3): 432. https://doi.org/10.3390/biom13030432.
  • [17] Lee S, Zhou J, Wong WT, Liu T, Wu WKK, Kei Wong IC, Zhang Q, Tse G. Glycemic and lipid variability for predicting complications and mortality in diabetes mellitus using machine learning. BMC Endocr Disord. 2021;21(1): 94. https://doi.org/10.1186/s12902-021-00751-4.
  • [18] Kim JY, Han JM, Yun B, Yee J, Gwak HS. Machine learning-based prediction of risk factors for abnormal glycemic control in diabetic cancer patients receiving nutrition support: a case–control study. Hormones. 2023;22(4): 637-645. https://doi.org/10.1007/s42000-023-00492-0.
  • [19] Chen S, Phuc PT, Nguyen P, Burton W, Lin SJ, Lin WC, Lu CY, Hsu MH, Cheng CT, Hsu JC. A novel prediction model of the risk of pancreatic cancer among diabetes patients using multiple clinical data and machine learning. Cancer Med. 2023;12(19): 19987-19999. https://doi.org/10.1002/cam4.6547.
  • [20] Yang L, Gabriel N, Hernandez I, Winterstein AG, Guo J. Using machine learning to identify diabetes patients with canagliflozin prescriptions at high‐risk of lower extremity amputation using real‐world data. Pharmacoepidemiol Drug Saf. 2021;30(5): 644-651. https://doi.org/10.1002/pds.5206.
  • [21] Yang L, Gabriel N, Hernandez I, Guo S. PDG82 machine learning to ıdentify diabetes patients with canagliflozin prescriptions at high-risk of lower extremity amputation using real-word DATA. Value Heal. 2020;23: S532. https://doi.org/10.1016/j.jval.2020.08.765.
  • [22] Yang L, Gabriel N, Hernandez I, Vouri SM, Kimmel SE, Bian J, Guo J. Identifying patients at risk of acute kidney injury among medicare beneficiaries with type 2 diabetes initiating SGLT2 inhibitors:A machine learning approach. Front Pharmacol. 2022;13: 834743. https://doi.org/10.3389/fphar.2022.834743.
  • [23] Ma J, Theiler J, Perkins S. Accurate on-line support vector regression. Neural Comput. 2003;15(11): 2683-2703. https://doi.org/10.1162/089976603322385117.
  • [24] Natekin A, Knoll A. Gradient boosting machines, a tutorial. Front Neurorobot. 2013;7: 21. https://doi.org/10.3389/fnbot.2013.00021.
  • [25] Rodriguez-Galiano V, Sanchez-Castillo M, Chica-Olmo M, Chica-Rivas M. Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol Rev. 2015;71: 804-818. https://doi.org/10.1016/j.oregeorev.2015.01.001.
  • [26] Rathore SS, Kumar S. A Decision Tree regression based approach for the number of software faults prediction. ACM SIGSOFT Softw Eng Notes. 2016;41(1): 1-6. https://doi.org/10.1145/2853073.2853083.
  • [27] Bisong E. Google Colaboratory. In: Building Machine Learning and Deep Learning Models on Google Cloud Platform. Apress; 2019: 59-64. https://doi.org/10.1007/978-1-4842-4470-8_7.
  • [28] Kumar P, Duhan M, Sindhu J, Kadyan K, Saini S, Panihar N. Thiazolidine‐4‐one clubbed pyrazoles hybrids: Potent α‐amylase and α‐glucosidase inhibitors with NLO properties. J Heterocycl Chem. 2020;57(4): 1573-1587. https://doi.org/10.1002/jhet.3882.
  • [29] Khan SA, Ali M, Latif A, Ahmad M, Khan A, Al-Harrasi A. Mercaptobenzimidazole-based 1,3-thaizolidin-4-ones as antidiabetic agents: Synthesis, ın vitro α-glucosidase ınhibition activity, and molecular docking studies. ACS Omega. 2022;7(32): 28041-28051. https://doi.org/10.1021/acsomega.2c01969.
  • [30] Patil VM, Tilekar KN, Upadhyay NM, Ramaa CS. Synthesis, ın‐vitro evaluation and molecular docking study of n‐substituted thiazolidinediones as α‐glucosidase ınhibitors. ChemistrySelect. 2022;7(1). https://doi.org/10.1002/slct.202103848.
  • [31] Gummidi L, Kerru N, Ebenezer O, Awolade P, Sanni O, Islam MS, Singh P. Multicomponent reaction for the synthesis of new 1,3,4-thiadiazole-thiazolidine-4-one molecular hybrids as promising antidiabetic agents through α-glucosidase and α-amylase inhibition. Bioorg Chem. 2021;115: 105210. https://doi.org/10.1016/j.bioorg.2021.105210.
  • [32] Chinthala Y, Kumar Domatti A, Sarfaraz A, Pratap Singh S, Kumar Arigari N, Gupta N, K V N Satya S, Kotesh Kumar J, Khan F, Tiwari AK, Paramjit G. Synthesis, biological evaluation and molecular modeling studies of some novel thiazolidinediones with triazole ring. Eur J Med Chem. 2013;70: 308-314. https://doi.org/10.1016/j.ejmech.2013.10.005.
  • [33] Bhutani R, Pathak DP, Kapoor G, Husain A, Iqbal MA. Novel hybrids of benzothiazole-1,3,4-oxadiazole-4-thiazolidinone: Synthesis, in silico ADME study, molecular docking and in vivo anti-diabetic assessment. Bioorg Chem. 2019;83: 6-19. https://doi.org/10.1016/j.bioorg.2018.10.025.
  • [34] Khan T, Lawrence AJ, Azad I, Raza S, Joshi S, Khan AR. Computational drug designing and prediction of ımportant parameters using in silico methods- A review. Curr Comput Aided Drug Des. 2019;15(5): 384-397. https://doi.org/10.2174/1573399815666190326120006.
  • [35] Consonni V, Todeschini R. Molecular Descriptors. In: Molecular Descriptors for Chemoinformatics; 2010: 29-102. https://doi.org/10.1007/978-1-4020-9783-6_3.
  • [36] Mauri A, Consonni V, Todeschini R. Molecular Descriptors. In: Handbook of Computational Chemistry. Springer International Publishing; 2017: 2065-2093. https://dx.doi.org/10.1007/978-3-319-27282-5_51.
  • [37] Yap CW. PaDEL‐descriptor: An open source software to calculate molecular descriptors and fingerprints. J Comput Chem. 2011;32(7): 1466-1474. https://doi.org/10.1002/jcc.21707.
  • [38] Randić M. Generalized molecular descriptors. J Math Chem. 1991;7(1): 155-168. https://doi.org/10.1007/BF01200821
  • [39] Yan K, Zhang D. Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sensors Actuators B Chem. 2015;212: 353-363. https://doi.org/10.1016/j.snb.2015.02.025.
  • [40] Rajput A, Thakur A, Mukhopadhyay A, Kamboj S, Rastogi A, Gautam S, Jassal H, Kumar M. Prediction of repurposed drugs for Coronaviruses using artificial intelligence and machine learning. Comput Struct Biotechnol J. 2021;19: 3133-3148. https://doi.org/10.1016/j.csbj.2021.05.037.
  • [41] Panahi M, Sadhasivam N, Pourghasemi HR, Rezaie F, Lee S. Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR). J Hydrol. 2020;588: 125033. https://doi.org/10.1016/j.jhydrol.2020.125033.
  • [42] Zhang F, O’Donnell LJ. Support vector regression. In: Machine Learning. Elsevier; 2020: 123-140. https://doi.org/10.1016/B978-0-12-815739-8.00007-9.
  • [43] Smith PF, Ganesh S, Liu P. A comparison of random forest regression and multiple linear regression for prediction in neuroscience. J Neurosci Methods. 2013;220(1): 85-91. https://doi.org/10.1016/j.jneumeth.2013.08.024.
  • [44] Tso GKF, Yau KKW. Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks. Energy. 2007;32(9): 1761-1768. https://doi.org/10.1016/j.energy.2006.11.010.
  • [45] Rakhra M, Soniya P, Tanwar D, Singh P, Bordoloi D, Agarwal P, Takkar S, Jairath K, Verma N. Crop price prediction using random forest and decision tree regression:-A review. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.03.261.
  • [46] Hepp T, Schmid M, Gefeller O, Waldmann E, Mayr A. Approaches to regularized regression – A comparison between gradient boosting and the Lasso. Methods Inf Med. 2016;55(05): 422-430. http://dx.doi.org/10.3414/me16-01-0033.
  • [47] Kausar S, Falcao AO. An automated framework for QSAR model building. J Cheminform. 2018;10(1): 1. https://doi.org/10.1186/s13321-017-0256-5.
  • [48] Nyirandayisabye R, Li H, Dong Q, Hakuzweyezu T, Nkinahamira F. Automatic pavement damage predictions using various machine learning algorithms: Evaluation and comparison. Results Eng. 2022;16: 100657. https://doi.org/10.1016/j.rineng.2022.100657.
  • [49] Probst P, Wright MN, Boulesteix A. Hyperparameters and tuning strategies for random forest. WIREs Data Min Knowl Discov. 2019;9(3):e1301. https://doi.org/10.1002/widm.1301.
  • [50] Schratz P, Muenchow J, Iturritxa E, Richter J, Brenning A. Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data. Ecol Modell. 2019;406: 109-120. https://doi.org/10.1016/j.ecolmodel.2019.06.002.
  • [51] Joy TT, Rana S, Gupta S, Venkatesh S. Hyperparameter tuning for big data using Bayesian optimisation. In: 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE; 2016: 2574-2579. https://doi.org/10.1109/ICPR.2016.7900023.
  • [52] Ito K, Nakano R. Optimizing Support Vector regression hyperparameters based on cross-validation. In: Proceedings of the International Joint Conference on Neural Networks, 2003. Vol 3. IEEE; : 2077-2082. https://doi.org/10.1109/IJCNN.2003.1223728.
  • [53] Laref R, Losson E, Sava A, Siadat M. On the optimization of the support vector machine regression hyperparameters setting for gas sensors array applications. Chemom Intell Lab Syst. 2019;184: 22-27. https://doi.org/10.1016/j.chemolab.2018.11.011.
  • [54] Aghaaminiha M, Mehrani R, Reza T, Sharma S. Comparison of machine learning methodologies for predicting kinetics of hydrothermal carbonization of selective biomass. Biomass Convers Biorefinery. 2023;13(11): 9855-9864. https://doi.org/10.1007/s13399-021-01858-3.
  • [55] Santos CE da S, Sampaio RC, Coelho L dos S, Bestard GA, Llanos CH. Multi-objective adaptive differential evolution for SVM/SVR hyperparameters selection. Pattern Recognit. 2021;110: 107649. https://doi.org/10.1016/j.patcog.2020.107649.
  • [56] Faris, H, Hassonah MA, Al-Zoubi AM, Mirjalili S, Aljarah I. A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture. Neural Computing and Applications. 2018;30: 2355-2369. https://doi.org/10.1007/s00521-016-2818-2.
  • [57] Hoque KE, Aljamaan H. Impact of hyperparameter tuning on machine learning models in stock price forecasting. IEEE Access. 2021;9: 163815-163830. https://doi.org/10.1109/ACCESS.2021.3134138.
  • [58] Bormans JP. Systematics of mean resonance spacing and average radiative width from random forest regression.
  • [59] Dhiyaussalam, Wibowo A, Nugroho FA, Sarwoko EA, Setiawan IMA. Classification of Headache Disorder Using Random Forest Algorithm. In: 2020 4th International Conference on Informatics and Computational Sciences (ICICoS). IEEE; 2020: 1-5. https://doi.org/10.1109/ICICoS51170.2020.9299105.
  • [60] Abebe M, Shin Y, Noh Y, Lee S, Lee I. Machine learning approaches for ship speed prediction towards energy efficient shipping. Appl Sci. 2020;10(7): 2325. https://doi.org/10.3390/app10072325.
  • [61] Qi C, Chen Q, Dong X, Zhang Q, Yaseen ZM. Pressure drops of fresh cemented paste backfills through coupled test loop experiments and machine learning techniques. Powder Technol. 2020;361: 748-758. https://doi.org/10.1016/j.powtec.2019.11.046.
  • [62] Hasanipanah M, Faradonbeh RS, Armaghani DJ, Amnieh HB, Khandelwal M. (2017). Development of a precise model for prediction of blast-induced flyrock using regression tree technique. Environmental Earth Sciences. 2017;76: 1-10. https://doi.org/10.1007/s12665-016-6335-5
  • [63] Kolan A, Moukthika D, Sreevani KSS, Jayasree H. Click-through rate prediction using decision tree. Proceedings of the Third International Conference on Computational Intelligence and Informatics Advances in Intelligent Systems and Computing 2020: 29-37. https://doi.org/10.1007/978-981-15-1480-7_3.
  • [64] Li M. Application of CART decision tree combined with PCA algorithm in intrusion detection. In: 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS). IEEE; 2017: 38-41. https://doi.org/10.1109/ICSESS.2017.8342859.
  • [65] Li G, Sun Y, Qi C. Machine learning-based constitutive models for cement-grouted coal specimens under shearing. Int J Min Sci Technol. 2021;31(5): 813-823. https://doi.org/10.1016/j.ijmst.2021.08.005.
  • [66] Charoen-Ung P, Mittrapiyanuruk P. Sugarcane Yield Grade Prediction using Random Forest and Gradient Boosting Tree Techniques. In: 2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE). IEEE; 2018: 1-6. https://doi.org/10.1109/JCSSE.2018.8457391.
  • [67] Dutta J, Kim YW, Dominic D. Comparison of Gradient Boosting and Extreme Boosting Ensemble Methods for Webpage Classification. In: 2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). IEEE; 2020: 77-82. https://doi.org/10.1109/ICRCICN50933.2020.9296176.
  • [68] Gao R, Liu Z. An ımproved AdaBoost algorithm for hyperparameter optimization. J Phys Conf Ser. 2020;1631(1): 012048. https://doi.org/10.1088/1742-6596/1631/1/012048.
  • [69] Di Bucchianico A. Coefficient of Determination (R2). In: Encyclopedia of Statistics in Quality and Reliability. Wiley; 2007. https://doi.org/10.1002/9780470061572.eqr173.
  • [70] Plonsky L, Ghanbar H. Multiple regression in L2 research: A methodological synthesis and guide to ınterpreting R2 values. Mod Lang J. 2018;102(4): 713-731. https://doi.org/10.1111/modl.12509.
  • [71] Chai T, Draxler RR. Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geosci Model Dev. 2014;7(3): 1247-1250. https://doi.org/10.5194/gmd-7-1247-2014.
  • [72] Willmott C, Matsuura K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res. 2005;30: 79-82. https://doi.org/10.3354/cr030079.
  • [73] Wang W, Lu Y. Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model. IOP Conf Ser Mater Sci Eng. 2018;324: 012049. https://doi.org/10.1088/1757-899X/324/1/012049.
Yıl 2024, Cilt: 28 Sayı: 4, 1135 - 1151, 28.06.2025

Öz

Kaynakça

  • [1] Zimmet PZ, Magliano DJ, Herman WH, Shaw JE. Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol. 2014;2(1): 56-64. https://doi.org/10.1016/s2213-8587(13)70112-8.
  • [2] Fettach S, Thari FZ, Hafidi Z, Tachallait H, Karrouchi K, El Achouri M, Cherrah Y, Sefrioui H, Bougrin K, Abbes Faouzi ME. Synthesis, α-glucosidase and α-amylase inhibitory activities, acute toxicity and molecular docking studies of thiazolidine-2,4-diones derivatives. J Biomol Struct Dyn. 2022;40(18): 8340-8351. https://doi.org/10.1080/07391102.2021.1911854.
  • [3] Gaba S, Singh G, Monga V. Design, synthesis, and characterization of new thiazolidinedione derivatives as potent _ampersandsignalpha;-glucosidase inhibitors. Pharmaspire. 2021 Oct;13: 182-193. https://www.isfcppharmaspire.com/article_html.php?did=13767&issueno=0.
  • [4] Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine (Baltimore). 2010;38(11): 602-606. https://doi.org/10.1016/j.mpmed.2010.08.007.
  • [5] Reichard P, Pihl M. Mortality and treatment side-effects during long-term ıntensified conventional ınsulin treatment in the Stockholm diabetes ıntervention study. Diabetes. 1994;43(2): 313-317. https://doi.org/10.2337/diab.43.2.313.
  • [6] Hussain F, Khan Z, Jan MS, Ahmad S, Ahmad A, Rashid U, Ullah F, Ayaz M, Sadiq A. Synthesis, in-vitro α-glucosidase inhibition, antioxidant, in-vivo antidiabetic and molecular docking studies of pyrrolidine-2,5-dione and thiazolidine-2,4-dione derivatives. Bioorg Chem. 2019;91:103128. https://doi.org/10.1016/j.bioorg.2019.103128.
  • [7] Zinman B, Gerich J, Buse JB, Lewin A, Schwartz S, Raskin P, Hale PM, Zdravkovic M, Blonde L. Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met+TZD). Diabetes Care. 2009;32(7): 1224-1230. https://doi.org/10.2337/dc08-2124.
  • [8] Schwartz A V., Chen H, Ambrosius WT, Sood A, Josse RG, Bonds DE, Schnall AM, Vittinghoff E, Bauer DC, Banerji MA, Cohen RM, Hamilton BP, Isakova T, Sellmeyer DE, Simmons DL, Shibli-Rahhal A, Williamson JD, Margolis KL. Effects of TZD Use and Discontinuation on Fracture Rates in ACCORD Bone Study. J Clin Endocrinol Metab. 2015;100(11): 4059-4066. https://doi.org/10.1210/jc.2015-1215.
  • [9] Chhajed SS, Shinde PE, Kshirsagar SJ, Sangshetti J, Gupta PP, Parab M, Dasgupta D. De-novo design and synthesis of conformationally restricted thiazolidine-2,4-dione analogues: highly selective PPAR-γ agonist in search of anti-diabetic agent. Struct Chem. 2020;31(4): 1375-1385. https://doi.org/10.1007/s11224-020-01500-4.
  • [10] Tropsha A. Best practices for QSAR model development, validation, and exploitation. Mol Inform. 2010;29(6-7): 476-488. https://doi.org/10.1002/minf.201000061.
  • [11] Tropsha A, Golbraikh A. (2007). Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr. Pharm. Des. 2007;13(34): 3494-3504. https://doi.org/10.2174/138161207782794257
  • [12] Shoichet BK. Virtual screening of chemical libraries. Nature. 2004;432(7019): 862-865. https://doi.org/10.1038/nature03197.
  • [13] Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin I I, Cronin M, Dearden J, Gramatica P, Martin YC, Todeschini R, Consonni V, Kuz'min VE, Cramer R, Benigni R, Yang C, Rathman J, Terfloth L, Gasteiger J, Richard A, Tropsha A. QSAR modeling: Where have you been? Where are you going to? J Med Chem. 2014;57(12): 4977-5010. https://doi.org/10.1021/jm4004285.
  • [14] Weaver S, Gleeson MP. The importance of the domain of applicability in QSAR modeling. J Mol Graph Model. 2008;26(8): 1315-1326. https://doi.org/10.1016/j.jmgm.2008.01.002.
  • [15] Wang Z, Chen J, Hong H. Developing QSAR models with defined applicability domains on PPARγ binding affinity using large data sets and machine learning algorithms. Environ Sci Technol. 2021;55(10): 6857-6866. https://doi.org/10.1021/acs.est.0c07040.
  • [16] Saxena A, Mathur N, Pathak P, Tiwari P, Mathur SK. Machine learning model based on ınsulin resistance metagenes underpins genetic basis of type 2 diabetes. Biomolecules. 2023;13(3): 432. https://doi.org/10.3390/biom13030432.
  • [17] Lee S, Zhou J, Wong WT, Liu T, Wu WKK, Kei Wong IC, Zhang Q, Tse G. Glycemic and lipid variability for predicting complications and mortality in diabetes mellitus using machine learning. BMC Endocr Disord. 2021;21(1): 94. https://doi.org/10.1186/s12902-021-00751-4.
  • [18] Kim JY, Han JM, Yun B, Yee J, Gwak HS. Machine learning-based prediction of risk factors for abnormal glycemic control in diabetic cancer patients receiving nutrition support: a case–control study. Hormones. 2023;22(4): 637-645. https://doi.org/10.1007/s42000-023-00492-0.
  • [19] Chen S, Phuc PT, Nguyen P, Burton W, Lin SJ, Lin WC, Lu CY, Hsu MH, Cheng CT, Hsu JC. A novel prediction model of the risk of pancreatic cancer among diabetes patients using multiple clinical data and machine learning. Cancer Med. 2023;12(19): 19987-19999. https://doi.org/10.1002/cam4.6547.
  • [20] Yang L, Gabriel N, Hernandez I, Winterstein AG, Guo J. Using machine learning to identify diabetes patients with canagliflozin prescriptions at high‐risk of lower extremity amputation using real‐world data. Pharmacoepidemiol Drug Saf. 2021;30(5): 644-651. https://doi.org/10.1002/pds.5206.
  • [21] Yang L, Gabriel N, Hernandez I, Guo S. PDG82 machine learning to ıdentify diabetes patients with canagliflozin prescriptions at high-risk of lower extremity amputation using real-word DATA. Value Heal. 2020;23: S532. https://doi.org/10.1016/j.jval.2020.08.765.
  • [22] Yang L, Gabriel N, Hernandez I, Vouri SM, Kimmel SE, Bian J, Guo J. Identifying patients at risk of acute kidney injury among medicare beneficiaries with type 2 diabetes initiating SGLT2 inhibitors:A machine learning approach. Front Pharmacol. 2022;13: 834743. https://doi.org/10.3389/fphar.2022.834743.
  • [23] Ma J, Theiler J, Perkins S. Accurate on-line support vector regression. Neural Comput. 2003;15(11): 2683-2703. https://doi.org/10.1162/089976603322385117.
  • [24] Natekin A, Knoll A. Gradient boosting machines, a tutorial. Front Neurorobot. 2013;7: 21. https://doi.org/10.3389/fnbot.2013.00021.
  • [25] Rodriguez-Galiano V, Sanchez-Castillo M, Chica-Olmo M, Chica-Rivas M. Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol Rev. 2015;71: 804-818. https://doi.org/10.1016/j.oregeorev.2015.01.001.
  • [26] Rathore SS, Kumar S. A Decision Tree regression based approach for the number of software faults prediction. ACM SIGSOFT Softw Eng Notes. 2016;41(1): 1-6. https://doi.org/10.1145/2853073.2853083.
  • [27] Bisong E. Google Colaboratory. In: Building Machine Learning and Deep Learning Models on Google Cloud Platform. Apress; 2019: 59-64. https://doi.org/10.1007/978-1-4842-4470-8_7.
  • [28] Kumar P, Duhan M, Sindhu J, Kadyan K, Saini S, Panihar N. Thiazolidine‐4‐one clubbed pyrazoles hybrids: Potent α‐amylase and α‐glucosidase inhibitors with NLO properties. J Heterocycl Chem. 2020;57(4): 1573-1587. https://doi.org/10.1002/jhet.3882.
  • [29] Khan SA, Ali M, Latif A, Ahmad M, Khan A, Al-Harrasi A. Mercaptobenzimidazole-based 1,3-thaizolidin-4-ones as antidiabetic agents: Synthesis, ın vitro α-glucosidase ınhibition activity, and molecular docking studies. ACS Omega. 2022;7(32): 28041-28051. https://doi.org/10.1021/acsomega.2c01969.
  • [30] Patil VM, Tilekar KN, Upadhyay NM, Ramaa CS. Synthesis, ın‐vitro evaluation and molecular docking study of n‐substituted thiazolidinediones as α‐glucosidase ınhibitors. ChemistrySelect. 2022;7(1). https://doi.org/10.1002/slct.202103848.
  • [31] Gummidi L, Kerru N, Ebenezer O, Awolade P, Sanni O, Islam MS, Singh P. Multicomponent reaction for the synthesis of new 1,3,4-thiadiazole-thiazolidine-4-one molecular hybrids as promising antidiabetic agents through α-glucosidase and α-amylase inhibition. Bioorg Chem. 2021;115: 105210. https://doi.org/10.1016/j.bioorg.2021.105210.
  • [32] Chinthala Y, Kumar Domatti A, Sarfaraz A, Pratap Singh S, Kumar Arigari N, Gupta N, K V N Satya S, Kotesh Kumar J, Khan F, Tiwari AK, Paramjit G. Synthesis, biological evaluation and molecular modeling studies of some novel thiazolidinediones with triazole ring. Eur J Med Chem. 2013;70: 308-314. https://doi.org/10.1016/j.ejmech.2013.10.005.
  • [33] Bhutani R, Pathak DP, Kapoor G, Husain A, Iqbal MA. Novel hybrids of benzothiazole-1,3,4-oxadiazole-4-thiazolidinone: Synthesis, in silico ADME study, molecular docking and in vivo anti-diabetic assessment. Bioorg Chem. 2019;83: 6-19. https://doi.org/10.1016/j.bioorg.2018.10.025.
  • [34] Khan T, Lawrence AJ, Azad I, Raza S, Joshi S, Khan AR. Computational drug designing and prediction of ımportant parameters using in silico methods- A review. Curr Comput Aided Drug Des. 2019;15(5): 384-397. https://doi.org/10.2174/1573399815666190326120006.
  • [35] Consonni V, Todeschini R. Molecular Descriptors. In: Molecular Descriptors for Chemoinformatics; 2010: 29-102. https://doi.org/10.1007/978-1-4020-9783-6_3.
  • [36] Mauri A, Consonni V, Todeschini R. Molecular Descriptors. In: Handbook of Computational Chemistry. Springer International Publishing; 2017: 2065-2093. https://dx.doi.org/10.1007/978-3-319-27282-5_51.
  • [37] Yap CW. PaDEL‐descriptor: An open source software to calculate molecular descriptors and fingerprints. J Comput Chem. 2011;32(7): 1466-1474. https://doi.org/10.1002/jcc.21707.
  • [38] Randić M. Generalized molecular descriptors. J Math Chem. 1991;7(1): 155-168. https://doi.org/10.1007/BF01200821
  • [39] Yan K, Zhang D. Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sensors Actuators B Chem. 2015;212: 353-363. https://doi.org/10.1016/j.snb.2015.02.025.
  • [40] Rajput A, Thakur A, Mukhopadhyay A, Kamboj S, Rastogi A, Gautam S, Jassal H, Kumar M. Prediction of repurposed drugs for Coronaviruses using artificial intelligence and machine learning. Comput Struct Biotechnol J. 2021;19: 3133-3148. https://doi.org/10.1016/j.csbj.2021.05.037.
  • [41] Panahi M, Sadhasivam N, Pourghasemi HR, Rezaie F, Lee S. Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR). J Hydrol. 2020;588: 125033. https://doi.org/10.1016/j.jhydrol.2020.125033.
  • [42] Zhang F, O’Donnell LJ. Support vector regression. In: Machine Learning. Elsevier; 2020: 123-140. https://doi.org/10.1016/B978-0-12-815739-8.00007-9.
  • [43] Smith PF, Ganesh S, Liu P. A comparison of random forest regression and multiple linear regression for prediction in neuroscience. J Neurosci Methods. 2013;220(1): 85-91. https://doi.org/10.1016/j.jneumeth.2013.08.024.
  • [44] Tso GKF, Yau KKW. Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks. Energy. 2007;32(9): 1761-1768. https://doi.org/10.1016/j.energy.2006.11.010.
  • [45] Rakhra M, Soniya P, Tanwar D, Singh P, Bordoloi D, Agarwal P, Takkar S, Jairath K, Verma N. Crop price prediction using random forest and decision tree regression:-A review. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.03.261.
  • [46] Hepp T, Schmid M, Gefeller O, Waldmann E, Mayr A. Approaches to regularized regression – A comparison between gradient boosting and the Lasso. Methods Inf Med. 2016;55(05): 422-430. http://dx.doi.org/10.3414/me16-01-0033.
  • [47] Kausar S, Falcao AO. An automated framework for QSAR model building. J Cheminform. 2018;10(1): 1. https://doi.org/10.1186/s13321-017-0256-5.
  • [48] Nyirandayisabye R, Li H, Dong Q, Hakuzweyezu T, Nkinahamira F. Automatic pavement damage predictions using various machine learning algorithms: Evaluation and comparison. Results Eng. 2022;16: 100657. https://doi.org/10.1016/j.rineng.2022.100657.
  • [49] Probst P, Wright MN, Boulesteix A. Hyperparameters and tuning strategies for random forest. WIREs Data Min Knowl Discov. 2019;9(3):e1301. https://doi.org/10.1002/widm.1301.
  • [50] Schratz P, Muenchow J, Iturritxa E, Richter J, Brenning A. Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data. Ecol Modell. 2019;406: 109-120. https://doi.org/10.1016/j.ecolmodel.2019.06.002.
  • [51] Joy TT, Rana S, Gupta S, Venkatesh S. Hyperparameter tuning for big data using Bayesian optimisation. In: 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE; 2016: 2574-2579. https://doi.org/10.1109/ICPR.2016.7900023.
  • [52] Ito K, Nakano R. Optimizing Support Vector regression hyperparameters based on cross-validation. In: Proceedings of the International Joint Conference on Neural Networks, 2003. Vol 3. IEEE; : 2077-2082. https://doi.org/10.1109/IJCNN.2003.1223728.
  • [53] Laref R, Losson E, Sava A, Siadat M. On the optimization of the support vector machine regression hyperparameters setting for gas sensors array applications. Chemom Intell Lab Syst. 2019;184: 22-27. https://doi.org/10.1016/j.chemolab.2018.11.011.
  • [54] Aghaaminiha M, Mehrani R, Reza T, Sharma S. Comparison of machine learning methodologies for predicting kinetics of hydrothermal carbonization of selective biomass. Biomass Convers Biorefinery. 2023;13(11): 9855-9864. https://doi.org/10.1007/s13399-021-01858-3.
  • [55] Santos CE da S, Sampaio RC, Coelho L dos S, Bestard GA, Llanos CH. Multi-objective adaptive differential evolution for SVM/SVR hyperparameters selection. Pattern Recognit. 2021;110: 107649. https://doi.org/10.1016/j.patcog.2020.107649.
  • [56] Faris, H, Hassonah MA, Al-Zoubi AM, Mirjalili S, Aljarah I. A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture. Neural Computing and Applications. 2018;30: 2355-2369. https://doi.org/10.1007/s00521-016-2818-2.
  • [57] Hoque KE, Aljamaan H. Impact of hyperparameter tuning on machine learning models in stock price forecasting. IEEE Access. 2021;9: 163815-163830. https://doi.org/10.1109/ACCESS.2021.3134138.
  • [58] Bormans JP. Systematics of mean resonance spacing and average radiative width from random forest regression.
  • [59] Dhiyaussalam, Wibowo A, Nugroho FA, Sarwoko EA, Setiawan IMA. Classification of Headache Disorder Using Random Forest Algorithm. In: 2020 4th International Conference on Informatics and Computational Sciences (ICICoS). IEEE; 2020: 1-5. https://doi.org/10.1109/ICICoS51170.2020.9299105.
  • [60] Abebe M, Shin Y, Noh Y, Lee S, Lee I. Machine learning approaches for ship speed prediction towards energy efficient shipping. Appl Sci. 2020;10(7): 2325. https://doi.org/10.3390/app10072325.
  • [61] Qi C, Chen Q, Dong X, Zhang Q, Yaseen ZM. Pressure drops of fresh cemented paste backfills through coupled test loop experiments and machine learning techniques. Powder Technol. 2020;361: 748-758. https://doi.org/10.1016/j.powtec.2019.11.046.
  • [62] Hasanipanah M, Faradonbeh RS, Armaghani DJ, Amnieh HB, Khandelwal M. (2017). Development of a precise model for prediction of blast-induced flyrock using regression tree technique. Environmental Earth Sciences. 2017;76: 1-10. https://doi.org/10.1007/s12665-016-6335-5
  • [63] Kolan A, Moukthika D, Sreevani KSS, Jayasree H. Click-through rate prediction using decision tree. Proceedings of the Third International Conference on Computational Intelligence and Informatics Advances in Intelligent Systems and Computing 2020: 29-37. https://doi.org/10.1007/978-981-15-1480-7_3.
  • [64] Li M. Application of CART decision tree combined with PCA algorithm in intrusion detection. In: 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS). IEEE; 2017: 38-41. https://doi.org/10.1109/ICSESS.2017.8342859.
  • [65] Li G, Sun Y, Qi C. Machine learning-based constitutive models for cement-grouted coal specimens under shearing. Int J Min Sci Technol. 2021;31(5): 813-823. https://doi.org/10.1016/j.ijmst.2021.08.005.
  • [66] Charoen-Ung P, Mittrapiyanuruk P. Sugarcane Yield Grade Prediction using Random Forest and Gradient Boosting Tree Techniques. In: 2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE). IEEE; 2018: 1-6. https://doi.org/10.1109/JCSSE.2018.8457391.
  • [67] Dutta J, Kim YW, Dominic D. Comparison of Gradient Boosting and Extreme Boosting Ensemble Methods for Webpage Classification. In: 2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). IEEE; 2020: 77-82. https://doi.org/10.1109/ICRCICN50933.2020.9296176.
  • [68] Gao R, Liu Z. An ımproved AdaBoost algorithm for hyperparameter optimization. J Phys Conf Ser. 2020;1631(1): 012048. https://doi.org/10.1088/1742-6596/1631/1/012048.
  • [69] Di Bucchianico A. Coefficient of Determination (R2). In: Encyclopedia of Statistics in Quality and Reliability. Wiley; 2007. https://doi.org/10.1002/9780470061572.eqr173.
  • [70] Plonsky L, Ghanbar H. Multiple regression in L2 research: A methodological synthesis and guide to ınterpreting R2 values. Mod Lang J. 2018;102(4): 713-731. https://doi.org/10.1111/modl.12509.
  • [71] Chai T, Draxler RR. Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geosci Model Dev. 2014;7(3): 1247-1250. https://doi.org/10.5194/gmd-7-1247-2014.
  • [72] Willmott C, Matsuura K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res. 2005;30: 79-82. https://doi.org/10.3354/cr030079.
  • [73] Wang W, Lu Y. Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model. IOP Conf Ser Mater Sci Eng. 2018;324: 012049. https://doi.org/10.1088/1757-899X/324/1/012049.
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Farmasotik Kimya
Bölüm Articles
Yazarlar

Irina Ghosh 0000-0002-1138-7867

Komal Singh 0000-0002-2026-6987

Venkatesan Jayaprakash 0000-0002-9724-4153

Sudeepan Jayapalan 0000-0001-5078-3451

Yayımlanma Tarihi 28 Haziran 2025
Yayımlandığı Sayı Yıl 2024 Cilt: 28 Sayı: 4

Kaynak Göster

APA Ghosh, I., Singh, K., Jayaprakash, V., Jayapalan, S. (2025). Machine learning based QSAR model for therapeutically active candidate drugs with thiazolidinedione (TZD) scaffold. Journal of Research in Pharmacy, 28(4), 1135-1151.
AMA Ghosh I, Singh K, Jayaprakash V, Jayapalan S. Machine learning based QSAR model for therapeutically active candidate drugs with thiazolidinedione (TZD) scaffold. J. Res. Pharm. Temmuz 2025;28(4):1135-1151.
Chicago Ghosh, Irina, Komal Singh, Venkatesan Jayaprakash, ve Sudeepan Jayapalan. “Machine Learning Based QSAR Model for Therapeutically Active Candidate Drugs With Thiazolidinedione (TZD) Scaffold”. Journal of Research in Pharmacy 28, sy. 4 (Temmuz 2025): 1135-51.
EndNote Ghosh I, Singh K, Jayaprakash V, Jayapalan S (01 Temmuz 2025) Machine learning based QSAR model for therapeutically active candidate drugs with thiazolidinedione (TZD) scaffold. Journal of Research in Pharmacy 28 4 1135–1151.
IEEE I. Ghosh, K. Singh, V. Jayaprakash, ve S. Jayapalan, “Machine learning based QSAR model for therapeutically active candidate drugs with thiazolidinedione (TZD) scaffold”, J. Res. Pharm., c. 28, sy. 4, ss. 1135–1151, 2025.
ISNAD Ghosh, Irina vd. “Machine Learning Based QSAR Model for Therapeutically Active Candidate Drugs With Thiazolidinedione (TZD) Scaffold”. Journal of Research in Pharmacy 28/4 (Temmuz 2025), 1135-1151.
JAMA Ghosh I, Singh K, Jayaprakash V, Jayapalan S. Machine learning based QSAR model for therapeutically active candidate drugs with thiazolidinedione (TZD) scaffold. J. Res. Pharm. 2025;28:1135–1151.
MLA Ghosh, Irina vd. “Machine Learning Based QSAR Model for Therapeutically Active Candidate Drugs With Thiazolidinedione (TZD) Scaffold”. Journal of Research in Pharmacy, c. 28, sy. 4, 2025, ss. 1135-51.
Vancouver Ghosh I, Singh K, Jayaprakash V, Jayapalan S. Machine learning based QSAR model for therapeutically active candidate drugs with thiazolidinedione (TZD) scaffold. J. Res. Pharm. 2025;28(4):1135-51.