Araştırma Makalesi
BibTex RIS Kaynak Göster

Boron nitride nanoparticles: Preparation, characterization, stability and evaluation of antibacterial activities

Yıl 2024, Cilt: 28 Sayı: 4, 1188 - 1199, 28.06.2025

Öz

In recent years, antibiotics have been the ideal drugs for treating infections caused by microorganisms due to their broad-spectrum effects. However, as a result of the unconscious and widespread use of antibiotics, an important disadvantage of current treatments is the emergence of resistant bacteria. With the development of nanotechnology, nano-sized materials, which have entered our lives, have started to be used frequently in health. Nano-sized materials may form lower resistance compared to conventional antibiotics. Boron nitride has outstanding optical and mechanical properties; It is one of the boron derivatives widely used in biomedical applications today. In this study, boron nitride nanoparticles were obtained by emulsification-solvent evaporation method, characterization (size, zeta potential, PDI, SEM, FTIR and XRD) studies were performed, stability was investigated, and potential antibacterial effect on nine different microorganisms was evaluated by minimum inhibitory concentration (MIC) and agar-well disc diffusion method. In our study, boron nitride nanoparticles were successfully prepared by an emulsification-solvent evaporation method, which is a top-down technique, easily, rapidly and in high yield. Surprisingly, our 466 nm boron nitride nanoparticles with high negative zeta potential (-38.4±0.90 mV) and highly homogeneous particle size distribution (0.144±0.01 PDI) influenced all nine different bacteria. Our negatively charged boron nitride nanoparticles showed a very high inhibitory effect, especially on Bacillus cereus, Escherichia coli and Staphylococcus aureus, even at very low doses (0.02±0.01, 0.80±0.23 and 0.05±0.03 µg/mL, respectively). This study was conducted to prepare nanoparticle formulations of water-insoluble Boron nitride, characterize them, stability and determine their therapeutic effectiveness on nine different bacteria. These findings may make boron nitride nanoparticles not only a reliable and effective antimicrobial agent in health and cosmetics but also an optimal alternative for food preservation.

Kaynakça

  • [1] Mukheem A, Shahabuddin S, Akbar N, Miskon A, Muhamad Sarih N, Sudesh K, Ahmed Khan N, Saidur R, Sridewi N. Boron nitride doped polyhydroxyalkanoate/chitosan nanocomposite for antibacterial and biological applications. Nanomaterials (Basel). 2019;9(4):645. https://doi.org/10.3390/nano9040645
  • [2] Hsu C-Y, Rheima AM, Kadhim MM, Nadhim AN, Hashim MS, Hashim FA, Talib AZ, Muhammed MZ, Sabri AZ, Hachim SK, Ali FK, Mahmoud ZH, Kianfar E. An overview of nanoparticles in drug delivery: Properties and applications. S Afr J Chem Eng. 2023; 46: 233-270. https://doi.org/10.1016/j.sajce.2023.08.009
  • [3] Azam A, Ahmed AS, Oves Mohammad, Khan MS, Habib SS, Memic A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomedicine. 2012; 6003-6009. https://doi.org/10.2147/IJN.S35347
  • [4] Padmanaban S, Minjong L, Yoon-Seok K, Suk SM. Photo-triggered antibacterial and anticancer activities of zinc oxide nanoparticles. J Mater Chem B. 2018; 6(30): 4852-4871. https://doi.org/10.1039/C8TB00948A
  • [5] Sayin Z, Ucan US, Sakmanoglu A. Antibacterial and antibiofilm effects of boron on different bacteria. Biol Trace Elem Res. 2016; 173: 241-246. https://doi.org/10.1007/s12011-016-0637-z
  • [6] Jedrzejczak-Silicka M, Trukawka M, Dudziak M, Piotrowska K, Mijowska E. Hexagonal boron nitride functionalized with Au nanoparticles—properties and potential biological applications. Nanomater. 2018; 8(8): 605.
  • [7] Li H, Wei Q, Yizhe S, Huashan X, Yuan F, Yuxiang L, Yadi L, Yan G, Fuxue C, Shini F. Biomimetic boron nitride nanoparticles for targeted drug delivery and enhanced antitumor activity. Pharm. 2023; 15(4): 1269. https://doi.org/10.3390/pharmaceutics15041269
  • [8] Xinxin F, Jingxuan C, Xiang Z, Wen-Di L, Haixiong G, Yong H. Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical applications. Adv Drug Deliv Rev. 2018; 132: 169-187. https://doi.org/10.1016/j.addr.2018.07.006
  • [9] Hak-Kim C, Lip KPC . Production methods for nanodrug particles using the bottom-up approach. Adv Drug Deliv Rev. 2011; 63(6): 406-416. https://doi.org/10.1016/j.addr.2011.03.011
  • [10] Gonzalez-Ortiz D, Salameh C, Bechelany M, Miele P. Nanostructured boron nitride–based materials: synthesis and applications. Mater Today Adv. 2020; 8: 100107. https://doi.org/10.1016/j.mtadv.2020.100107
  • [11] Bikramjeet S, Gurpreet K, Paviter S, Kulwinder S, Baban K, AnkushV, Manjeet K, Rajini B, Ramovatar M, Ajay S, Anup T, Akshay K. Nanostructured boron nitride with high water dispersibility for boron neutron capture therapy. Sci Rep. 2016; 6(1): 1-10. https://doi.org/10.1038/srep35535
  • [12] Ikram M, Jahan I, Haider A, Hassan J, Ul-Hamid A, Imran M, Haider J, Shahzadi A, Shahbaz A,Ali S. Bactericidal behavior of chemically exfoliated boron nitride nanosheets doped with zirconium. Appl Nanosci. 2020; 10: 2339-2349. https://doi.org/10.1007/s13204-020-01412-z
  • [13] Joshi K, Chandra A, Jain K, Talegaonkar S. Nanocrystalization: An emerging technology to enhance the bioavailability of poorly soluble drugs. Pharm Nanotechnol. 2019; 7(4): 259-278. https://doi.org/10.2174/2211738507666190405182524
  • [14] Filipović N, Ušjak D, Milenković MT, Zheng K, Liverani L, Boccaccini AR, Stevanović MM. Comparative study of the antimicrobial activity of selenium nanoparticles with different surface chemistry and structure. Front Bioeng Biotechnol. 2021; 8: 624621. https://doi.org/10.3389/fbioe.2020.624621
  • [15] Cooper DL, Harirforoosh S. Design and optimization of PLGA-based diclofenac loaded nanoparticles. PLoS One. 2014; 9(1): e87326. https://doi.org/10.1371/journal.pone.0087326
  • [16] Bélteky P, Rónavári A, Igaz N, Szerencsés B, Tóth IY, Pfeiffer I, Kiricsi M, Kónya Z. Silver nanoparticles: Aggregation behavior in biorelevant conditions and its impact on biological activity. Int J Nanomedicine. 2019; 667-687. https://doi.org/10.2147/IJN.S185965
  • [17] Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018; 10(2): 57. https://doi.org/10.3390/pharmaceutics10020057
  • [18] Katas H, Hussain Z, Awang SA. Bovine serum albumin-loaded chitosan/dextran nanoparticles: preparation and evaluation of ex vivo colloidal stability in serum. J Nanomater. 2013; 2013: 536291. https://doi.org/10.1155/2013/536291
  • [19] Hassan J, Ikram M, Ul-Hamid A, Imran M, Aqeel M, Ali S. Application of chemically exfoliated boron nitride nanosheets doped with co to remove organic pollutants rapidly from textile water. Nanoscale Res Lett. 2020; 15(1):75. https://doi.org/10.1186/s11671-020-03315-y
  • [20] Yuan F, Jiao W, Yang F, Liu W, Liu J, Xu Z, Wang R. Scalable exfoliation for large-size boron nitride nanosheets by low temperature thermal expansion-assisted ultrasonic exfoliation. J Mater Chem C. 2017; 5(25): 6359-6368. https://doi.org/10.1039/C7TC01692A
  • [21] Liu B, Qi W, Tian L, Li Z, Miao G, An W, Liu D, Lin J, Zhang X, Wu W. In vivo biodistribution and toxicity of highly soluble PEG-coated boron nitride in mice. Nanoscale Res Lett. 2015; 10(1):478. https://doi.org/10.1186/s11671-015-1172-0
  • [22] Guan M, Hao L, Chen L, Gao F, Qiu S, Zhou H, Chen H, Zhou X. Facile mechanical-induced functionalization of hexagonal boron nitride and its application as vehicles for antibacterial essential oil. ACS Sustain Chem Eng. 2020; 8(40): 15120-15133. https://doi.org/10.1021/acssuschemeng.0c03781
  • [23] Kıvanç M, Barutca B, Koparal AT, Göncü Y, Bostancı SH, Ay N. Effects of hexagonal boron nitride nanoparticles on antimicrobial and antibiofilm activities, cell viability. Mater Sci Eng C. 2018; 91: 115-124. https://doi.org/10.1016/j.msec.2018.05.028
  • [24] Wei R, Xiao Q, Zhan C, You Y, Zhou X, Liu X. Polyarylene ether nitrile and boron nitride composites: Coating with sulfonated polyarylene ether nitrile. e-Polymers. 2019; 19(1): 70-78. https://doi.org/10.1515/epoly-2019-0009
  • [25] Dhanavel S, Sivaranjani T, Sivakumar K, Palani P, Gupta VK, Narayanan V, Stephen A. Cross-linked chitosan/hydroxylated boron nitride nanocomposites for co-delivery of curcumin and 5-fluorouracil towards human colon cancer cells. J Iran Chem Soc. 2021; 18: 317-329. https://doi.org/10.1007/s13738-020-02031-9
  • [26] Benarroch JM, Asally M. The microbiologist’s guide to membrane potential dynamics. Trends Microbiol. 2020; 28(4): 304-314. https://doi.org/10.1016/j.tim.2019.12.008
  • [27] Nabavizadeh M, Abbaszadegan A, Gholami A, Kadkhoda Z, Mirhadi H, Ghasemi Y, Safari A, Hemmateenejad B, Dorostkar S, Sharghi H. Antibiofilm efficacy of positively charged imidazolium-based silver nanoparticles in Enterococcus faecalis using quantitative real-time PCR. Jundishapur J Microbiol. 2017; 10(10):e55616. https://doi.org/10.5812/jjm.55616.
  • [28] Abbaszadegan A, Ghahramani Y, Gholami A, Hemmateenejad B, Dorostkar S, Nabavizadeh M, Sharghi H. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: A preliminary study. J Nanomater. 2015; 16(1): 53-53. https://doi.org/10.1155/2015/720654
  • [29] Niño-Martínez N, Salas Orozco MF, Martínez-Castañón G-A, Torres Méndez F, Ruiz F. Molecular mechanisms of bacterial resistance to metal and metal oxide nanoparticles. Int J Mol Sci. 2019; 20(11): 2808. https://doi.org/10.3390/ijms20112808
  • [30] De Melo APZ, Maciel MVdOB, Sganzerla WG, da Rosa Almeida A, de Armas RD, Machado MH, da Rosa CG, Nunes MR, Bertoldi FC, Barreto PLM. Antibacterial activity, morphology, and physicochemical stability of biosynthesized silver nanoparticles using thyme (Thymus vulgaris) essential oil. Mater Res Express. 2020; 7(1): 015087. https://doi.org/10.1088/2053-1591/ab6c63
  • [31] Tormena RPI, Rosa EV, Mota BdFO, Chaker JA, Fagg CW, Freire DO, Martins PM, da Silva ICR, Sousa MH. Evaluation of the antimicrobial activity of silver nanoparticles obtained by microwave-assisted green synthesis using Handroanthus impetiginosus (Mart. ex DC.) Mattos underbark extract. RSC Advances. 2020; 10(35): 20676-20681. https://doi.org/10.1039/D0RA03240A
  • [32] Salvioni L, Galbiati E, Collico V, Alessio G, Avvakumova S, Corsi F, Tortora P, Prosperi D, Colombo M. Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations. Int J Nanomedicine. 2017: 2517-2530. https://doi.org/10.2147/IJN.S127799
  • [33] El-Waseif AA. Cytotoxicity and antimicrobial activity of naturally and chemically synthesized zinc oxide nanoparticles. J Arab Soc Med Res. 2019; 14(1): 42.
  • [34] Staff RH, Landfester K, Crespy D. Recent advances in the emulsion solvent evaporation technique for the preparation of nanoparticles and nanocapsules. Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize II. 2013: 329-344. https://doi.org/10.1007/12_2013_233
  • [35] Meewan J, Somani S, Almowalad J, Laskar P, Mullin M, MacKenzie G, Khadke S, Perrie Y, Dufès C. Preparation of zein-based nanoparticles: Nanoprecipitation versus microfluidic-assisted manufacture, effects of PEGylation on nanoparticle characteristics and cellular uptake by melanoma cells. Int J Nanomed. 2022: 2809-2822. https://doi.org/10.2147/IJN.S366138
  • [36] Türkez H, Arslan ME, Sönmez E, Açikyildiz M, Tatar A, Geyikoğlu F. Synthesis, characterization and cytotoxicity of boron nitride nanoparticles: emphasis on toxicogenomics. Cytotechnology. 2019; 71(1): 351-361. https://doi.org/10.1007/s10616-019-00292-8
  • [37] Kozerozhets IV, Avdeeva VV, Buzanov GA, Semenov EA, Ioni YV, Gubin SP. A new approach for the synthesis of powder zinc oxide and zinc borates with desired properties. Inorganics. 2022; 10(11): 212. https://doi.org/10.3390/inorganics10110212
  • [38] Rose F, Wern JE, Gavins F, Andersen P, Follmann F, Foged C. A strong adjuvant based on glycol-chitosan-coated lipid-polymer hybrid nanoparticles potentiates mucosal immune responses against the recombinant Chlamydia trachomatis fusion antigen CTH522. J Control Release. 2018; 271: 88-97. https://doi.org/10.1016/j.jconrel.2017.12.003
  • [39] European Committee on Antimicrobial Susceptibility Testing (EUCAST). Media preparation for EUCAST disk diffusion testing and for determination of MIC values by the broth microdilution method. Version 7.0. 2022. http://www.eucast.org (accessed on 14 January 2024).
Yıl 2024, Cilt: 28 Sayı: 4, 1188 - 1199, 28.06.2025

Öz

Kaynakça

  • [1] Mukheem A, Shahabuddin S, Akbar N, Miskon A, Muhamad Sarih N, Sudesh K, Ahmed Khan N, Saidur R, Sridewi N. Boron nitride doped polyhydroxyalkanoate/chitosan nanocomposite for antibacterial and biological applications. Nanomaterials (Basel). 2019;9(4):645. https://doi.org/10.3390/nano9040645
  • [2] Hsu C-Y, Rheima AM, Kadhim MM, Nadhim AN, Hashim MS, Hashim FA, Talib AZ, Muhammed MZ, Sabri AZ, Hachim SK, Ali FK, Mahmoud ZH, Kianfar E. An overview of nanoparticles in drug delivery: Properties and applications. S Afr J Chem Eng. 2023; 46: 233-270. https://doi.org/10.1016/j.sajce.2023.08.009
  • [3] Azam A, Ahmed AS, Oves Mohammad, Khan MS, Habib SS, Memic A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomedicine. 2012; 6003-6009. https://doi.org/10.2147/IJN.S35347
  • [4] Padmanaban S, Minjong L, Yoon-Seok K, Suk SM. Photo-triggered antibacterial and anticancer activities of zinc oxide nanoparticles. J Mater Chem B. 2018; 6(30): 4852-4871. https://doi.org/10.1039/C8TB00948A
  • [5] Sayin Z, Ucan US, Sakmanoglu A. Antibacterial and antibiofilm effects of boron on different bacteria. Biol Trace Elem Res. 2016; 173: 241-246. https://doi.org/10.1007/s12011-016-0637-z
  • [6] Jedrzejczak-Silicka M, Trukawka M, Dudziak M, Piotrowska K, Mijowska E. Hexagonal boron nitride functionalized with Au nanoparticles—properties and potential biological applications. Nanomater. 2018; 8(8): 605.
  • [7] Li H, Wei Q, Yizhe S, Huashan X, Yuan F, Yuxiang L, Yadi L, Yan G, Fuxue C, Shini F. Biomimetic boron nitride nanoparticles for targeted drug delivery and enhanced antitumor activity. Pharm. 2023; 15(4): 1269. https://doi.org/10.3390/pharmaceutics15041269
  • [8] Xinxin F, Jingxuan C, Xiang Z, Wen-Di L, Haixiong G, Yong H. Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical applications. Adv Drug Deliv Rev. 2018; 132: 169-187. https://doi.org/10.1016/j.addr.2018.07.006
  • [9] Hak-Kim C, Lip KPC . Production methods for nanodrug particles using the bottom-up approach. Adv Drug Deliv Rev. 2011; 63(6): 406-416. https://doi.org/10.1016/j.addr.2011.03.011
  • [10] Gonzalez-Ortiz D, Salameh C, Bechelany M, Miele P. Nanostructured boron nitride–based materials: synthesis and applications. Mater Today Adv. 2020; 8: 100107. https://doi.org/10.1016/j.mtadv.2020.100107
  • [11] Bikramjeet S, Gurpreet K, Paviter S, Kulwinder S, Baban K, AnkushV, Manjeet K, Rajini B, Ramovatar M, Ajay S, Anup T, Akshay K. Nanostructured boron nitride with high water dispersibility for boron neutron capture therapy. Sci Rep. 2016; 6(1): 1-10. https://doi.org/10.1038/srep35535
  • [12] Ikram M, Jahan I, Haider A, Hassan J, Ul-Hamid A, Imran M, Haider J, Shahzadi A, Shahbaz A,Ali S. Bactericidal behavior of chemically exfoliated boron nitride nanosheets doped with zirconium. Appl Nanosci. 2020; 10: 2339-2349. https://doi.org/10.1007/s13204-020-01412-z
  • [13] Joshi K, Chandra A, Jain K, Talegaonkar S. Nanocrystalization: An emerging technology to enhance the bioavailability of poorly soluble drugs. Pharm Nanotechnol. 2019; 7(4): 259-278. https://doi.org/10.2174/2211738507666190405182524
  • [14] Filipović N, Ušjak D, Milenković MT, Zheng K, Liverani L, Boccaccini AR, Stevanović MM. Comparative study of the antimicrobial activity of selenium nanoparticles with different surface chemistry and structure. Front Bioeng Biotechnol. 2021; 8: 624621. https://doi.org/10.3389/fbioe.2020.624621
  • [15] Cooper DL, Harirforoosh S. Design and optimization of PLGA-based diclofenac loaded nanoparticles. PLoS One. 2014; 9(1): e87326. https://doi.org/10.1371/journal.pone.0087326
  • [16] Bélteky P, Rónavári A, Igaz N, Szerencsés B, Tóth IY, Pfeiffer I, Kiricsi M, Kónya Z. Silver nanoparticles: Aggregation behavior in biorelevant conditions and its impact on biological activity. Int J Nanomedicine. 2019; 667-687. https://doi.org/10.2147/IJN.S185965
  • [17] Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018; 10(2): 57. https://doi.org/10.3390/pharmaceutics10020057
  • [18] Katas H, Hussain Z, Awang SA. Bovine serum albumin-loaded chitosan/dextran nanoparticles: preparation and evaluation of ex vivo colloidal stability in serum. J Nanomater. 2013; 2013: 536291. https://doi.org/10.1155/2013/536291
  • [19] Hassan J, Ikram M, Ul-Hamid A, Imran M, Aqeel M, Ali S. Application of chemically exfoliated boron nitride nanosheets doped with co to remove organic pollutants rapidly from textile water. Nanoscale Res Lett. 2020; 15(1):75. https://doi.org/10.1186/s11671-020-03315-y
  • [20] Yuan F, Jiao W, Yang F, Liu W, Liu J, Xu Z, Wang R. Scalable exfoliation for large-size boron nitride nanosheets by low temperature thermal expansion-assisted ultrasonic exfoliation. J Mater Chem C. 2017; 5(25): 6359-6368. https://doi.org/10.1039/C7TC01692A
  • [21] Liu B, Qi W, Tian L, Li Z, Miao G, An W, Liu D, Lin J, Zhang X, Wu W. In vivo biodistribution and toxicity of highly soluble PEG-coated boron nitride in mice. Nanoscale Res Lett. 2015; 10(1):478. https://doi.org/10.1186/s11671-015-1172-0
  • [22] Guan M, Hao L, Chen L, Gao F, Qiu S, Zhou H, Chen H, Zhou X. Facile mechanical-induced functionalization of hexagonal boron nitride and its application as vehicles for antibacterial essential oil. ACS Sustain Chem Eng. 2020; 8(40): 15120-15133. https://doi.org/10.1021/acssuschemeng.0c03781
  • [23] Kıvanç M, Barutca B, Koparal AT, Göncü Y, Bostancı SH, Ay N. Effects of hexagonal boron nitride nanoparticles on antimicrobial and antibiofilm activities, cell viability. Mater Sci Eng C. 2018; 91: 115-124. https://doi.org/10.1016/j.msec.2018.05.028
  • [24] Wei R, Xiao Q, Zhan C, You Y, Zhou X, Liu X. Polyarylene ether nitrile and boron nitride composites: Coating with sulfonated polyarylene ether nitrile. e-Polymers. 2019; 19(1): 70-78. https://doi.org/10.1515/epoly-2019-0009
  • [25] Dhanavel S, Sivaranjani T, Sivakumar K, Palani P, Gupta VK, Narayanan V, Stephen A. Cross-linked chitosan/hydroxylated boron nitride nanocomposites for co-delivery of curcumin and 5-fluorouracil towards human colon cancer cells. J Iran Chem Soc. 2021; 18: 317-329. https://doi.org/10.1007/s13738-020-02031-9
  • [26] Benarroch JM, Asally M. The microbiologist’s guide to membrane potential dynamics. Trends Microbiol. 2020; 28(4): 304-314. https://doi.org/10.1016/j.tim.2019.12.008
  • [27] Nabavizadeh M, Abbaszadegan A, Gholami A, Kadkhoda Z, Mirhadi H, Ghasemi Y, Safari A, Hemmateenejad B, Dorostkar S, Sharghi H. Antibiofilm efficacy of positively charged imidazolium-based silver nanoparticles in Enterococcus faecalis using quantitative real-time PCR. Jundishapur J Microbiol. 2017; 10(10):e55616. https://doi.org/10.5812/jjm.55616.
  • [28] Abbaszadegan A, Ghahramani Y, Gholami A, Hemmateenejad B, Dorostkar S, Nabavizadeh M, Sharghi H. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: A preliminary study. J Nanomater. 2015; 16(1): 53-53. https://doi.org/10.1155/2015/720654
  • [29] Niño-Martínez N, Salas Orozco MF, Martínez-Castañón G-A, Torres Méndez F, Ruiz F. Molecular mechanisms of bacterial resistance to metal and metal oxide nanoparticles. Int J Mol Sci. 2019; 20(11): 2808. https://doi.org/10.3390/ijms20112808
  • [30] De Melo APZ, Maciel MVdOB, Sganzerla WG, da Rosa Almeida A, de Armas RD, Machado MH, da Rosa CG, Nunes MR, Bertoldi FC, Barreto PLM. Antibacterial activity, morphology, and physicochemical stability of biosynthesized silver nanoparticles using thyme (Thymus vulgaris) essential oil. Mater Res Express. 2020; 7(1): 015087. https://doi.org/10.1088/2053-1591/ab6c63
  • [31] Tormena RPI, Rosa EV, Mota BdFO, Chaker JA, Fagg CW, Freire DO, Martins PM, da Silva ICR, Sousa MH. Evaluation of the antimicrobial activity of silver nanoparticles obtained by microwave-assisted green synthesis using Handroanthus impetiginosus (Mart. ex DC.) Mattos underbark extract. RSC Advances. 2020; 10(35): 20676-20681. https://doi.org/10.1039/D0RA03240A
  • [32] Salvioni L, Galbiati E, Collico V, Alessio G, Avvakumova S, Corsi F, Tortora P, Prosperi D, Colombo M. Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations. Int J Nanomedicine. 2017: 2517-2530. https://doi.org/10.2147/IJN.S127799
  • [33] El-Waseif AA. Cytotoxicity and antimicrobial activity of naturally and chemically synthesized zinc oxide nanoparticles. J Arab Soc Med Res. 2019; 14(1): 42.
  • [34] Staff RH, Landfester K, Crespy D. Recent advances in the emulsion solvent evaporation technique for the preparation of nanoparticles and nanocapsules. Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize II. 2013: 329-344. https://doi.org/10.1007/12_2013_233
  • [35] Meewan J, Somani S, Almowalad J, Laskar P, Mullin M, MacKenzie G, Khadke S, Perrie Y, Dufès C. Preparation of zein-based nanoparticles: Nanoprecipitation versus microfluidic-assisted manufacture, effects of PEGylation on nanoparticle characteristics and cellular uptake by melanoma cells. Int J Nanomed. 2022: 2809-2822. https://doi.org/10.2147/IJN.S366138
  • [36] Türkez H, Arslan ME, Sönmez E, Açikyildiz M, Tatar A, Geyikoğlu F. Synthesis, characterization and cytotoxicity of boron nitride nanoparticles: emphasis on toxicogenomics. Cytotechnology. 2019; 71(1): 351-361. https://doi.org/10.1007/s10616-019-00292-8
  • [37] Kozerozhets IV, Avdeeva VV, Buzanov GA, Semenov EA, Ioni YV, Gubin SP. A new approach for the synthesis of powder zinc oxide and zinc borates with desired properties. Inorganics. 2022; 10(11): 212. https://doi.org/10.3390/inorganics10110212
  • [38] Rose F, Wern JE, Gavins F, Andersen P, Follmann F, Foged C. A strong adjuvant based on glycol-chitosan-coated lipid-polymer hybrid nanoparticles potentiates mucosal immune responses against the recombinant Chlamydia trachomatis fusion antigen CTH522. J Control Release. 2018; 271: 88-97. https://doi.org/10.1016/j.jconrel.2017.12.003
  • [39] European Committee on Antimicrobial Susceptibility Testing (EUCAST). Media preparation for EUCAST disk diffusion testing and for determination of MIC values by the broth microdilution method. Version 7.0. 2022. http://www.eucast.org (accessed on 14 January 2024).
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İlaç Dağıtım Teknolojileri
Bölüm Articles
Yazarlar

Emrah Özakar 0000-0002-7443-208X

Rukiye Sevinç Özakar 0000-0002-2972-8084

Mehmet Cemal Adigüzel 0000-0002-2385-9649

Yayımlanma Tarihi 28 Haziran 2025
Gönderilme Tarihi 24 Ocak 2024
Kabul Tarihi 8 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 28 Sayı: 4

Kaynak Göster

APA Özakar, E., Sevinç Özakar, R., & Adigüzel, M. C. (2025). Boron nitride nanoparticles: Preparation, characterization, stability and evaluation of antibacterial activities. Journal of Research in Pharmacy, 28(4), 1188-1199.
AMA Özakar E, Sevinç Özakar R, Adigüzel MC. Boron nitride nanoparticles: Preparation, characterization, stability and evaluation of antibacterial activities. J. Res. Pharm. Temmuz 2025;28(4):1188-1199.
Chicago Özakar, Emrah, Rukiye Sevinç Özakar, ve Mehmet Cemal Adigüzel. “Boron Nitride Nanoparticles: Preparation, Characterization, Stability and Evaluation of Antibacterial Activities”. Journal of Research in Pharmacy 28, sy. 4 (Temmuz 2025): 1188-99.
EndNote Özakar E, Sevinç Özakar R, Adigüzel MC (01 Temmuz 2025) Boron nitride nanoparticles: Preparation, characterization, stability and evaluation of antibacterial activities. Journal of Research in Pharmacy 28 4 1188–1199.
IEEE E. Özakar, R. Sevinç Özakar, ve M. C. Adigüzel, “Boron nitride nanoparticles: Preparation, characterization, stability and evaluation of antibacterial activities”, J. Res. Pharm., c. 28, sy. 4, ss. 1188–1199, 2025.
ISNAD Özakar, Emrah vd. “Boron Nitride Nanoparticles: Preparation, Characterization, Stability and Evaluation of Antibacterial Activities”. Journal of Research in Pharmacy 28/4 (Temmuz 2025), 1188-1199.
JAMA Özakar E, Sevinç Özakar R, Adigüzel MC. Boron nitride nanoparticles: Preparation, characterization, stability and evaluation of antibacterial activities. J. Res. Pharm. 2025;28:1188–1199.
MLA Özakar, Emrah vd. “Boron Nitride Nanoparticles: Preparation, Characterization, Stability and Evaluation of Antibacterial Activities”. Journal of Research in Pharmacy, c. 28, sy. 4, 2025, ss. 1188-99.
Vancouver Özakar E, Sevinç Özakar R, Adigüzel MC. Boron nitride nanoparticles: Preparation, characterization, stability and evaluation of antibacterial activities. J. Res. Pharm. 2025;28(4):1188-99.