Araştırma Makalesi
BibTex RIS Kaynak Göster

A novel therapeutic combination of vildagliptin and agomelatine alleviates the nephropathy in streptozocin- induced diabetic rats: A structural & biochemical study

Yıl 2024, Cilt: 28 Sayı: 4, 1316 - 1330, 28.06.2025

Öz

Diabetes mellitus is a worldwide epidemic causes numerous health problems including nephropathy and depression which are caused by oxygen radicals. We investigated the antioxidative effects of agomelatine or vildagliptin on streptozotocin-induced diabetic nephropathy in rats. 50 male albino rats were distributed into five groups, (n = 10/ group): the normal control, A single intraperitoneal injection of streptozotocin was given to the other four groups to induce diabetes at a dose of 60 mg/kg body weight. After diabetes induction, one of the groups was chosen as a positive control. Other rats were treated with either vildagliptin (10 mg/kg) and/or agomelatine (20 mg/kg/day) daily for 4 weeks. We used different biochemical parameters (blood glucose level, insulin levels, oxidative stress markers) as well as histological analysis on the kidney tissues of the experimental animals. Statistical evaluation was performed by One- way ANOVA for comparison of those groups followed by Duncan's post hoc test for multiple group comparison. Diabetes induced nephropathy via oxidative pathway as this was confirmed by increased serum levels of urea, uric acid and creatinine with decrease in serum total antioxidant Capacity (TAC) in diabetic rats compared to control rats. Also, there were significant increase in renal levels of malondialdehyde (MDA) and nitric oxide (NO); significant decrease in the levels of renal glutathione (GSH) and superoxide dismutase (SOD) in diabetic group compared to the control group. Administration of either vildagliptin and/or agomelatine or both to diabetic rats alleviated the previous indices as confirmed by the biochemical and histological changes with better improvement in (vildagliptin+agomelatine) to that of vildagliptin treatment alone. Conclusion: Combination of agomelatine and vildagliptin could ameliorate diabetic nephropathy through inhibition of oxidative stress.

Kaynakça

  • [1] Islam F, Khadija JF, Islam R, Shohag S, Mitra S, Alghamdi S,Babalghith A, Theyab A, Rahman M, Akter A, Al Mamun A, Alhumaydhi F, Bin Emran T. Investigating polyphenol nanoformulations for therapeutic targets against diabetes mellitus. Evidence-Based Complementary and Alternative Medicine. 2022;2022. https://doi.org/10.1155/2022/5649156
  • [2] Sun X, Yang Y, Sun X, Meng H, Hao W, Yin J, Ma F, Guo X, Du L, Sun L, Wu H. Krill Oil Turns Off TGF-β1 Profibrotic Signaling in the Prevention of Diabetic Nephropathy. Journal of Agricultural and Food Chemistry. 2022;70(32):9865-76. https://doi.org/10.1021/acs.jafc.2c02850
  • [3] Luo Q, Cai Y, Zhao Q, Jiang Y, Tian L, Liu Y,Liu W . Renal Protective Effects of Melatonin in Animal Models of Diabetes Mellitus-Related Kidney Damage: A Systematic Review and Meta-Analysis. Journal of Diabetes Research. 2022;2022. https://doi.org/10.1155/2022/3770417
  • [4] Keelo R, Elbe H, Bicer Y, Yigitturk G, Koca O, Karayakali M, Acar D, Altinoz E. Treatment with crocin suppresses diabetic nephropathy progression via modulating TGF-β1 and oxidative stress in an experimental model of pinealectomized diabetic rats. Chemico-Biological Interactions. 2022;351:109733. https://doi.org/10.1016/j.cbi.2021.109733
  • [5] Horiba Y, Ishizawa K, Takasaki K, Miura J, Babazono T. Effect of depression on progression to end‐stage renal disease or pre‐end‐stage renal disease death in advanced diabetic nephropathy: A prospective cohort study of the Diabetes Study from the Center of Tokyo Women’s Medical University. Journal of Diabetes Investigation. 2022;13(1):94-101. https://doi.org/10.1111/jdi.13620
  • [6] Sherif I, Alshaalan A, Al-Shaalan N. Renoprotective effect of vildagliptin following hepatic ischemia/reperfusion injury. Renal Failure. 2020;42(1):208-15. https://doi.org/10.1080/0886022X.2020.1729189
  • [7] Wahba N, Abdel‐Ghany R, Ghareib S, Abdel‐Aal M, Alsemeh A, Sabry D. Vitamin D3 potentiates the nephroprotective effects of vildagliptin–metformin combination in a rat model of metabolic syndrome. Fundamental & Clinical Pharmacology. 2022;36(2):306-23. https://doi.org/10.1111/fcp.12721
  • [8] Thomas H, Ford Versypt A. Pathophysiology of mesangial expansion in diabetic nephropathy: mesangial structure, glomerular biomechanics, and biochemical signaling and regulation. Journal of Biological Engineering. 2022;16(1):1-13. https://doi.org/10.1186/s13036-022-00299-4
  • [9] Elbe H, Vardi N, Esrefoglu M, Ates B, Yologlu S, Taskapan C. Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats. Human & experimental toxicology. 2015;34(1):100-13. https://doi.org/10.1177/0960327114531995
  • [10] Alqasim A, Eldin E, Hammadi S, Esheba G. Comparing the renoprotective effects of the antioxidants melatonin, vitamin D and vitamin E in diabetic rats. Journal of Taibah University Medical Sciences. 2020;15(5):351-7. https://doi.org/10.1016/j.jtumed.2020.05.007
  • [11] Chenaf C, Chapuy E, Libert F, Marchand F, Courteix C, Bertrand M, Gabriel C; Mocaër E, Eschalier A, Authier N. Agomelatine: a new opportunity to reduce neuropathic pain—preclinical evidence. Pain. 2016;158(1):149-60. https://doi.org/10.1097/j.pain.0000000000000738
  • [12] Castanho A, Bothorel B, Seguin L, Mocaër E, Pévet P. Like melatonin, agomelatine (S20098) increases the amplitude of oscillations of two clock outputs: melatonin and temperature rhythms. Chronobiology International. 2014;31(3):371-81. https://doi.org/10.3109/07420528.2013.860457
  • [13] Ozcan M, Canpolat S, Bulmus O, Ulker N, Tektemur A, Tekin S, Ozcan S, Serhatlioglu I, Kacar E, Ayar A, Kelestimur H. Agomelatine pretreatment prevents development of hyperglycemia and hypoinsulinemia in streptozotocin‐induced diabetes in mice. Fundamental & clinical pharmacology. 2019;33(2):170-80. https://doi.org/10.1111/fcp.12413
  • [14] Hirano S, Miyata S, Onodera K, Kamei J. Effects of histamine H1 receptor antagonists on depressive-like behavior in diabetic mice. Pharmacology Biochemistry and Behavior. 2006;83(2):214-20. https://doi.org/10.1016/j.pbb.2006.02.001
  • [15] Haligur M, Topsakal S, Ozmen O. Early degenerative effects of diabetes mellitus on pancreas, liver, and kidney in rats: an immunohistochemical study. Experimental diabetes research. 2012;2012. https://doi.org/10.1155/2012/120645
  • [16] Al-Qulaly M, Okasha MA, Hassan MG. Effect of Ginger and Cinnamon on Induced Diabetes Mellitus in Adult Male Albino Rats. Bulletin of Egyptian Society for Physiological Sciences. 2021;41(3):373-88. https://doi.org/10.21608/BESPS.2020.45577.1078
  • [17] Anwar MM, Meki A-RM. Oxidative stress in streptozotocin-induced diabetic rats: effects of garlic oil and melatonin. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2003;135(4):539-47. https://doi.org/10.1016/s1095-6433(03)00114-4
  • [18] Gul M, Laaksonen DE, Atalay M, Vider L, Hänninen O. Effects of endurance training on tissue glutathione homeostasis and lipid peroxidation in streptozotocin‐induced diabetic rats. Scandinavian journal of medicine & science in sports. 2002;12(3):163-70. https://doi.org/10.1034/j.1600-0838.2002.120307.x
  • [19] Abd Wahab N, Giribabu N, Kilari EK, Salleh N. Abietic acid ameliorates nephropathy progression via mitigating renal oxidative stress, inflammation, fibrosis and apoptosis in high fat diet and low dose streptozotocin-induced diabetic rats. Phytomedicine. 2022;107:154464. https://doi.org/10.1016/j.phymed.2022.154464
  • [20] Tunçdemir M, Ozturk M. The effects of ACE inhibitor and angiotensin receptor blocker on clusterin and apoptosis in the kidney tissue of streptozotocin-diabetic rats. Journal of molecular histology. 2008;39:605-16. https://doi.org/10.1007/s10735-008-9201-2
  • [21] Vardı N, Iraz M, Gül M, Öztürk F, Uçar M, Otlu A. İmprovıng effects of aminoguanidine on the histologic alterations in rat kidneys in diabetes. Turkiye Klinikleri J Med Sci. 2006;26:599-606.
  • [22] Jha J, Banal C, Chow B, Cooper M, Jandeleit-Dahm K. Diabetes and kidney disease: role of oxidative stress. Antioxidants & redox signaling. 2016;25(12):657-84. https://doi.org/10.1089/ars.2016.6664
  • [23] Sankaranarayanan C, Kalaivani K. Isopulegol mitigates hyperglycemia mediated oxidative and endoplasmic reticulum stress in HFD/STZ induced diabetic rats. Archives of Medical Research. 2020;51(3):204-14. https://doi.org/10.1016/j.arcmed.2020.02.001
  • [24] Li S, Lin Q, Shao X, Mou S, Gu L, Wang L, Zhang Z, Shen J, Zhou Y, Qi C, Jin H, Pang H, Ni Z. NLRP3 inflammasome inhibition attenuates cisplatin-induced renal fibrosis by decreasing oxidative stress and inflammation. Experimental cell research. 2019;383(1):111488. https://doi.org/10.1016/j.yexcr.2019.07.001
  • [25] Alsaad K, Edrees B, Rahim KA, Alanazi A, Ahmad M, Aloudah N. Collagenofibrotic (Collagen Type III) glomerulopathy in association with diabetic nephropathy. Saudi Journal of Kidney Diseases and Transplantation. 2017;28(4):898.
  • [26] Wang L, Liu J, Ning W, Yuan Q, Zhang F, Peng Z, Lu M, Luo R, Fu Z, Hu G, Wang Z, Tao L. Fluorofenidone attenuates diabetic nephropathy and kidney fibrosis in db/db mice. Pharmacology. 2011;88(1-2):88-99. https://doi.org/10.1159/000329419
  • [27] Humphreys B. Mechanisms of renal fibrosis. Annual review of physiology. 2018;80:309-26. https://doi.org/10.1146/annurev-physiol-022516-034227
  • [28] Sapian S, Budin S, Taib I, Mariappan V, Zainalabidin S, Chin K. Role of polyphenol in regulating oxidative stress, inflammation, fibrosis, and apoptosis in diabetic nephropathy. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders). 2022;22(5):453-70. https://doi.org/10.2174/1871530321666211119144309
  • [29] Singh A, Kukreti R, Saso L, Kukreti S. Mechanistic insight into oxidative stress-triggered signaling pathways and type 2 diabetes. Molecules. 2022;27(3):950. https://doi.org/10.3390/molecules27030950
  • [30] Mohany M, Ahmed M, Al-Rejaie S. The Role of NF-κB and Bax/Bcl-2/Caspase-3 Signaling Pathways in the Protective Effects of Sacubitril/Valsartan (Entresto) against HFD/STZ-Induced Diabetic Kidney Disease. Biomedicines. 2022;10(11):2863. https://doi.org/10.3390/biomedicines10112863
  • [31] Pintana H, Apaijai N, Chattipakorn N, Chattipakorn SC. DPP-4 inhibitors improve cognition and brain mitochondrial function of insulin-resistant rats. J Endocrinol. 2013;218(1):1-11. https://doi.org/10.1530/JOE-12-0521
  • [32] Li Y, Hansotia T, Yusta B, Ris F, Halban PA, Drucker DJ. Glucagon-like peptide-1 receptor signaling modulates β cell apoptosis. Journal of Biological Chemistry. 2003;278(1):471-8. https://doi.org/10.1074/jbc.M209423200
  • [33] Shimodaira M, Niwa T, Nakajima K, Kobayashi M. Beneficial effects of vildagliptin on metabolic parameters in patients with type 2 diabetes. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders). 2015;15(3):223-8. https://doi.org/10.1074/jbc.M209423200
  • [34] Marques A, Cunha-Santos J, Leal H, Sousa-Ferreira L, de Almeida L, Cavadas C, Rosmaninho-Salgado J. Dipeptidyl peptidase IV (DPP-IV) inhibition prevents fibrosis in adipose tissue of obese mice. Biochimica et Biophysica Acta (BBA)-General Subjects. 2018;1862(3):403-13. https://doi.org/10.1016/j.bbagen.2017.11.012
  • [35] Greco E, Russo G, Giandalia A, Viazzi F, Pontremoli R, De Cosmo S. GLP-1 receptor agonists and kidney protection. Medicina. 2019;55(6):233. https://doi.org/10.3390/medicina55060233
  • [36] Fujita H, Morii T, Fujishima H, Sato T, Shimizu T, Hosoba M, Tsukiyama K, Narita T, Takahashi T, Drucker D, Seino Y, Yamada Y . The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential. Kidney international. 2014;85(3):579-89. https://doi.org/10.1038/ki.2013.427
  • [37] Dennis JM, Witting PK. Protective role for antioxidants in acute kidney disease. Nutrients. 2017;9(7):718. https://doi.org/10.3390/nu9070718
  • [38] Guo C, He J, Deng X, Wang D, Yuan G. Potential therapeutic value of melatonin in diabetic nephropathy: improvement beyond anti-oxidative stress. Archives of Physiology and Biochemistry. 2021:1-12. https://doi.org/10.1080/13813455.2021.1933539
  • [39] Aghahoseini F, Alihemmati A, Hosseini L, Badalzadeh R. Vildagliptin ameliorates renal injury in type 2 diabetic rats by suppressing oxidative stress. Journal of Diabetes & Metabolic Disorders. 2020;19:701-7. https://doi.org/10.1007/s40200-020-00548-7
  • [40] Rodríguez C, Contreras C, Sáenz-Medina J, Muñoz M, Corbacho C, Carballido J, García-Sacristán A, Hernandez M, López M, Rivera L, Prieto D. Activation of the AMP-related kinase (AMPK) induces renal vasodilatation and downregulates Nox-derived reactive oxygen species (ROS) generation. Redox Biology. 2020;34:101575. https://doi.org/10.1016/j.redox.2020.101575
  • [41] Yigitturk G, Acara A, Erbas O, Oltulu F, Yavasoglu N, Uysal A, Yavasoglu A . The antioxidant role of agomelatine and gallic acid on oxidative stress in STZ induced type I diabetic rat testes. Biomedicine & pharmacotherapy. 2017;87:240-6. https://doi.org/10.1016/j.biopha.2016.12.102
  • [42] Fathi D, Abulsoud AI, Saad M, Nassar N, Maksimos M, Rizk S, Senousy M. Agomelatine attenuates alcohol craving and withdrawal symptoms by modulating the Notch1 signaling pathway in rats. Life Sciences. 2021;284:119904. https://doi.org/10.1016/j.lfs.2021.119904
  • [43] ALmohaimeed H, Mohammedsaleh Z, Batawi A, Balgoon M, Ramadan O, Baz H, Al Jaouni S, Ayuob N. Synergistic Anti-inflammatory and Neuroprotective Effects of Cinnamomum cassia and Zingiber officinale Alleviate Diabetes-Induced Hippocampal Changes in Male Albino Rats: Structural and Molecular Evidence. Frontiers in Cell and Developmental Biology. 2021;9. https://doi.org/10.3389/fcell.2021.727049
  • [44] Matthews D, Hosker J, Rudenski A, Naylor B, Treacher D, Turner R. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-9. https://doi.org/10.1007/BF00280883
  • [45] Huculeci R, Dinu D, Staicu A, Munteanu M, Costache M, Dinischiotu A. Malathion‐induced alteration of the antioxidant defence system in kidney, gill, and intestine of Carassius auratus gibelio. 2009;24(6):523-30. https://doi.org/10.1002/tox.20454
  • [46] Bancroft J. Layton C. Theory & practice of histological techniques, 7th ed: Churchill Livingstone of Elsevier, Philadelphia. 2013:172-214.
  • [47] Magalhães P, Pejchinovski M, Markoska K, Banasik M, Klinger M, Švec-Billá D, Rychlík I, Rroji M, Restivo A, Capasso G, Bob F, Schiller A, Ortiz A, Perez-Gomez M, Cannata P, Sanchez-Niño M, Naumovic R, Brkovic V, Polenakovic M, Mullen W, Vlahou A, Zürbig P, Pape L, Ferrario F, Denis C, Spasovski G, Mischak H & Schanstra J. Association of kidney fibrosis with urinary peptides: a path towards non-invasive liquid biopsies? Scientific Reports. 2017;7(1):1-8. https://doi.org/10.1038/s41598-017-17083-w
Yıl 2024, Cilt: 28 Sayı: 4, 1316 - 1330, 28.06.2025

Öz

Kaynakça

  • [1] Islam F, Khadija JF, Islam R, Shohag S, Mitra S, Alghamdi S,Babalghith A, Theyab A, Rahman M, Akter A, Al Mamun A, Alhumaydhi F, Bin Emran T. Investigating polyphenol nanoformulations for therapeutic targets against diabetes mellitus. Evidence-Based Complementary and Alternative Medicine. 2022;2022. https://doi.org/10.1155/2022/5649156
  • [2] Sun X, Yang Y, Sun X, Meng H, Hao W, Yin J, Ma F, Guo X, Du L, Sun L, Wu H. Krill Oil Turns Off TGF-β1 Profibrotic Signaling in the Prevention of Diabetic Nephropathy. Journal of Agricultural and Food Chemistry. 2022;70(32):9865-76. https://doi.org/10.1021/acs.jafc.2c02850
  • [3] Luo Q, Cai Y, Zhao Q, Jiang Y, Tian L, Liu Y,Liu W . Renal Protective Effects of Melatonin in Animal Models of Diabetes Mellitus-Related Kidney Damage: A Systematic Review and Meta-Analysis. Journal of Diabetes Research. 2022;2022. https://doi.org/10.1155/2022/3770417
  • [4] Keelo R, Elbe H, Bicer Y, Yigitturk G, Koca O, Karayakali M, Acar D, Altinoz E. Treatment with crocin suppresses diabetic nephropathy progression via modulating TGF-β1 and oxidative stress in an experimental model of pinealectomized diabetic rats. Chemico-Biological Interactions. 2022;351:109733. https://doi.org/10.1016/j.cbi.2021.109733
  • [5] Horiba Y, Ishizawa K, Takasaki K, Miura J, Babazono T. Effect of depression on progression to end‐stage renal disease or pre‐end‐stage renal disease death in advanced diabetic nephropathy: A prospective cohort study of the Diabetes Study from the Center of Tokyo Women’s Medical University. Journal of Diabetes Investigation. 2022;13(1):94-101. https://doi.org/10.1111/jdi.13620
  • [6] Sherif I, Alshaalan A, Al-Shaalan N. Renoprotective effect of vildagliptin following hepatic ischemia/reperfusion injury. Renal Failure. 2020;42(1):208-15. https://doi.org/10.1080/0886022X.2020.1729189
  • [7] Wahba N, Abdel‐Ghany R, Ghareib S, Abdel‐Aal M, Alsemeh A, Sabry D. Vitamin D3 potentiates the nephroprotective effects of vildagliptin–metformin combination in a rat model of metabolic syndrome. Fundamental & Clinical Pharmacology. 2022;36(2):306-23. https://doi.org/10.1111/fcp.12721
  • [8] Thomas H, Ford Versypt A. Pathophysiology of mesangial expansion in diabetic nephropathy: mesangial structure, glomerular biomechanics, and biochemical signaling and regulation. Journal of Biological Engineering. 2022;16(1):1-13. https://doi.org/10.1186/s13036-022-00299-4
  • [9] Elbe H, Vardi N, Esrefoglu M, Ates B, Yologlu S, Taskapan C. Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats. Human & experimental toxicology. 2015;34(1):100-13. https://doi.org/10.1177/0960327114531995
  • [10] Alqasim A, Eldin E, Hammadi S, Esheba G. Comparing the renoprotective effects of the antioxidants melatonin, vitamin D and vitamin E in diabetic rats. Journal of Taibah University Medical Sciences. 2020;15(5):351-7. https://doi.org/10.1016/j.jtumed.2020.05.007
  • [11] Chenaf C, Chapuy E, Libert F, Marchand F, Courteix C, Bertrand M, Gabriel C; Mocaër E, Eschalier A, Authier N. Agomelatine: a new opportunity to reduce neuropathic pain—preclinical evidence. Pain. 2016;158(1):149-60. https://doi.org/10.1097/j.pain.0000000000000738
  • [12] Castanho A, Bothorel B, Seguin L, Mocaër E, Pévet P. Like melatonin, agomelatine (S20098) increases the amplitude of oscillations of two clock outputs: melatonin and temperature rhythms. Chronobiology International. 2014;31(3):371-81. https://doi.org/10.3109/07420528.2013.860457
  • [13] Ozcan M, Canpolat S, Bulmus O, Ulker N, Tektemur A, Tekin S, Ozcan S, Serhatlioglu I, Kacar E, Ayar A, Kelestimur H. Agomelatine pretreatment prevents development of hyperglycemia and hypoinsulinemia in streptozotocin‐induced diabetes in mice. Fundamental & clinical pharmacology. 2019;33(2):170-80. https://doi.org/10.1111/fcp.12413
  • [14] Hirano S, Miyata S, Onodera K, Kamei J. Effects of histamine H1 receptor antagonists on depressive-like behavior in diabetic mice. Pharmacology Biochemistry and Behavior. 2006;83(2):214-20. https://doi.org/10.1016/j.pbb.2006.02.001
  • [15] Haligur M, Topsakal S, Ozmen O. Early degenerative effects of diabetes mellitus on pancreas, liver, and kidney in rats: an immunohistochemical study. Experimental diabetes research. 2012;2012. https://doi.org/10.1155/2012/120645
  • [16] Al-Qulaly M, Okasha MA, Hassan MG. Effect of Ginger and Cinnamon on Induced Diabetes Mellitus in Adult Male Albino Rats. Bulletin of Egyptian Society for Physiological Sciences. 2021;41(3):373-88. https://doi.org/10.21608/BESPS.2020.45577.1078
  • [17] Anwar MM, Meki A-RM. Oxidative stress in streptozotocin-induced diabetic rats: effects of garlic oil and melatonin. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2003;135(4):539-47. https://doi.org/10.1016/s1095-6433(03)00114-4
  • [18] Gul M, Laaksonen DE, Atalay M, Vider L, Hänninen O. Effects of endurance training on tissue glutathione homeostasis and lipid peroxidation in streptozotocin‐induced diabetic rats. Scandinavian journal of medicine & science in sports. 2002;12(3):163-70. https://doi.org/10.1034/j.1600-0838.2002.120307.x
  • [19] Abd Wahab N, Giribabu N, Kilari EK, Salleh N. Abietic acid ameliorates nephropathy progression via mitigating renal oxidative stress, inflammation, fibrosis and apoptosis in high fat diet and low dose streptozotocin-induced diabetic rats. Phytomedicine. 2022;107:154464. https://doi.org/10.1016/j.phymed.2022.154464
  • [20] Tunçdemir M, Ozturk M. The effects of ACE inhibitor and angiotensin receptor blocker on clusterin and apoptosis in the kidney tissue of streptozotocin-diabetic rats. Journal of molecular histology. 2008;39:605-16. https://doi.org/10.1007/s10735-008-9201-2
  • [21] Vardı N, Iraz M, Gül M, Öztürk F, Uçar M, Otlu A. İmprovıng effects of aminoguanidine on the histologic alterations in rat kidneys in diabetes. Turkiye Klinikleri J Med Sci. 2006;26:599-606.
  • [22] Jha J, Banal C, Chow B, Cooper M, Jandeleit-Dahm K. Diabetes and kidney disease: role of oxidative stress. Antioxidants & redox signaling. 2016;25(12):657-84. https://doi.org/10.1089/ars.2016.6664
  • [23] Sankaranarayanan C, Kalaivani K. Isopulegol mitigates hyperglycemia mediated oxidative and endoplasmic reticulum stress in HFD/STZ induced diabetic rats. Archives of Medical Research. 2020;51(3):204-14. https://doi.org/10.1016/j.arcmed.2020.02.001
  • [24] Li S, Lin Q, Shao X, Mou S, Gu L, Wang L, Zhang Z, Shen J, Zhou Y, Qi C, Jin H, Pang H, Ni Z. NLRP3 inflammasome inhibition attenuates cisplatin-induced renal fibrosis by decreasing oxidative stress and inflammation. Experimental cell research. 2019;383(1):111488. https://doi.org/10.1016/j.yexcr.2019.07.001
  • [25] Alsaad K, Edrees B, Rahim KA, Alanazi A, Ahmad M, Aloudah N. Collagenofibrotic (Collagen Type III) glomerulopathy in association with diabetic nephropathy. Saudi Journal of Kidney Diseases and Transplantation. 2017;28(4):898.
  • [26] Wang L, Liu J, Ning W, Yuan Q, Zhang F, Peng Z, Lu M, Luo R, Fu Z, Hu G, Wang Z, Tao L. Fluorofenidone attenuates diabetic nephropathy and kidney fibrosis in db/db mice. Pharmacology. 2011;88(1-2):88-99. https://doi.org/10.1159/000329419
  • [27] Humphreys B. Mechanisms of renal fibrosis. Annual review of physiology. 2018;80:309-26. https://doi.org/10.1146/annurev-physiol-022516-034227
  • [28] Sapian S, Budin S, Taib I, Mariappan V, Zainalabidin S, Chin K. Role of polyphenol in regulating oxidative stress, inflammation, fibrosis, and apoptosis in diabetic nephropathy. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders). 2022;22(5):453-70. https://doi.org/10.2174/1871530321666211119144309
  • [29] Singh A, Kukreti R, Saso L, Kukreti S. Mechanistic insight into oxidative stress-triggered signaling pathways and type 2 diabetes. Molecules. 2022;27(3):950. https://doi.org/10.3390/molecules27030950
  • [30] Mohany M, Ahmed M, Al-Rejaie S. The Role of NF-κB and Bax/Bcl-2/Caspase-3 Signaling Pathways in the Protective Effects of Sacubitril/Valsartan (Entresto) against HFD/STZ-Induced Diabetic Kidney Disease. Biomedicines. 2022;10(11):2863. https://doi.org/10.3390/biomedicines10112863
  • [31] Pintana H, Apaijai N, Chattipakorn N, Chattipakorn SC. DPP-4 inhibitors improve cognition and brain mitochondrial function of insulin-resistant rats. J Endocrinol. 2013;218(1):1-11. https://doi.org/10.1530/JOE-12-0521
  • [32] Li Y, Hansotia T, Yusta B, Ris F, Halban PA, Drucker DJ. Glucagon-like peptide-1 receptor signaling modulates β cell apoptosis. Journal of Biological Chemistry. 2003;278(1):471-8. https://doi.org/10.1074/jbc.M209423200
  • [33] Shimodaira M, Niwa T, Nakajima K, Kobayashi M. Beneficial effects of vildagliptin on metabolic parameters in patients with type 2 diabetes. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders). 2015;15(3):223-8. https://doi.org/10.1074/jbc.M209423200
  • [34] Marques A, Cunha-Santos J, Leal H, Sousa-Ferreira L, de Almeida L, Cavadas C, Rosmaninho-Salgado J. Dipeptidyl peptidase IV (DPP-IV) inhibition prevents fibrosis in adipose tissue of obese mice. Biochimica et Biophysica Acta (BBA)-General Subjects. 2018;1862(3):403-13. https://doi.org/10.1016/j.bbagen.2017.11.012
  • [35] Greco E, Russo G, Giandalia A, Viazzi F, Pontremoli R, De Cosmo S. GLP-1 receptor agonists and kidney protection. Medicina. 2019;55(6):233. https://doi.org/10.3390/medicina55060233
  • [36] Fujita H, Morii T, Fujishima H, Sato T, Shimizu T, Hosoba M, Tsukiyama K, Narita T, Takahashi T, Drucker D, Seino Y, Yamada Y . The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential. Kidney international. 2014;85(3):579-89. https://doi.org/10.1038/ki.2013.427
  • [37] Dennis JM, Witting PK. Protective role for antioxidants in acute kidney disease. Nutrients. 2017;9(7):718. https://doi.org/10.3390/nu9070718
  • [38] Guo C, He J, Deng X, Wang D, Yuan G. Potential therapeutic value of melatonin in diabetic nephropathy: improvement beyond anti-oxidative stress. Archives of Physiology and Biochemistry. 2021:1-12. https://doi.org/10.1080/13813455.2021.1933539
  • [39] Aghahoseini F, Alihemmati A, Hosseini L, Badalzadeh R. Vildagliptin ameliorates renal injury in type 2 diabetic rats by suppressing oxidative stress. Journal of Diabetes & Metabolic Disorders. 2020;19:701-7. https://doi.org/10.1007/s40200-020-00548-7
  • [40] Rodríguez C, Contreras C, Sáenz-Medina J, Muñoz M, Corbacho C, Carballido J, García-Sacristán A, Hernandez M, López M, Rivera L, Prieto D. Activation of the AMP-related kinase (AMPK) induces renal vasodilatation and downregulates Nox-derived reactive oxygen species (ROS) generation. Redox Biology. 2020;34:101575. https://doi.org/10.1016/j.redox.2020.101575
  • [41] Yigitturk G, Acara A, Erbas O, Oltulu F, Yavasoglu N, Uysal A, Yavasoglu A . The antioxidant role of agomelatine and gallic acid on oxidative stress in STZ induced type I diabetic rat testes. Biomedicine & pharmacotherapy. 2017;87:240-6. https://doi.org/10.1016/j.biopha.2016.12.102
  • [42] Fathi D, Abulsoud AI, Saad M, Nassar N, Maksimos M, Rizk S, Senousy M. Agomelatine attenuates alcohol craving and withdrawal symptoms by modulating the Notch1 signaling pathway in rats. Life Sciences. 2021;284:119904. https://doi.org/10.1016/j.lfs.2021.119904
  • [43] ALmohaimeed H, Mohammedsaleh Z, Batawi A, Balgoon M, Ramadan O, Baz H, Al Jaouni S, Ayuob N. Synergistic Anti-inflammatory and Neuroprotective Effects of Cinnamomum cassia and Zingiber officinale Alleviate Diabetes-Induced Hippocampal Changes in Male Albino Rats: Structural and Molecular Evidence. Frontiers in Cell and Developmental Biology. 2021;9. https://doi.org/10.3389/fcell.2021.727049
  • [44] Matthews D, Hosker J, Rudenski A, Naylor B, Treacher D, Turner R. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-9. https://doi.org/10.1007/BF00280883
  • [45] Huculeci R, Dinu D, Staicu A, Munteanu M, Costache M, Dinischiotu A. Malathion‐induced alteration of the antioxidant defence system in kidney, gill, and intestine of Carassius auratus gibelio. 2009;24(6):523-30. https://doi.org/10.1002/tox.20454
  • [46] Bancroft J. Layton C. Theory & practice of histological techniques, 7th ed: Churchill Livingstone of Elsevier, Philadelphia. 2013:172-214.
  • [47] Magalhães P, Pejchinovski M, Markoska K, Banasik M, Klinger M, Švec-Billá D, Rychlík I, Rroji M, Restivo A, Capasso G, Bob F, Schiller A, Ortiz A, Perez-Gomez M, Cannata P, Sanchez-Niño M, Naumovic R, Brkovic V, Polenakovic M, Mullen W, Vlahou A, Zürbig P, Pape L, Ferrario F, Denis C, Spasovski G, Mischak H & Schanstra J. Association of kidney fibrosis with urinary peptides: a path towards non-invasive liquid biopsies? Scientific Reports. 2017;7(1):1-8. https://doi.org/10.1038/s41598-017-17083-w
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri (Diğer)
Bölüm Articles
Yazarlar

Osama Ibrahim Ramadan 0000-0002-7916-5494

Ahmed A. Damanhory 0000-0002-3441-7459

Ezz-eldin E. Abd-allah 0009-0004-4959-4169

Tamer A. Gomah

Mohammed E. Mahmoud

Fatma M. Abd-allah

Haitham M. Sewilam

Reda M.a. Fayyad

Medhat M. Darwish

Fahaid Al-hashem

Moaaz M.y. Awad

Mahmoud Diab

Elsayed Mohamed Tayee

Magdy Y. Elseed

Alsayed A. Abdel Hady

Abdelhamid K. Elsify

Yayımlanma Tarihi 28 Haziran 2025
Yayımlandığı Sayı Yıl 2024 Cilt: 28 Sayı: 4

Kaynak Göster

APA Ibrahim Ramadan, O., Damanhory, A. A., Abd-allah, E.-e. E., Gomah, T. A., vd. (2025). A novel therapeutic combination of vildagliptin and agomelatine alleviates the nephropathy in streptozocin- induced diabetic rats: A structural & biochemical study. Journal of Research in Pharmacy, 28(4), 1316-1330.
AMA Ibrahim Ramadan O, Damanhory AA, Abd-allah EeE, Gomah TA, Mahmoud ME, Abd-allah FM, Sewilam HM, Fayyad RM, Darwish MM, Al-hashem F, Awad MM, Diab M, Tayee EM, Elseed MY, Abdel Hady AA, Elsify AK. A novel therapeutic combination of vildagliptin and agomelatine alleviates the nephropathy in streptozocin- induced diabetic rats: A structural & biochemical study. J. Res. Pharm. Temmuz 2025;28(4):1316-1330.
Chicago Ibrahim Ramadan, Osama, Ahmed A. Damanhory, Ezz-eldin E. Abd-allah, Tamer A. Gomah, Mohammed E. Mahmoud, Fatma M. Abd-allah, Haitham M. Sewilam, Reda M.a. Fayyad, Medhat M. Darwish, Fahaid Al-hashem, Moaaz M.y. Awad, Mahmoud Diab, Elsayed Mohamed Tayee, Magdy Y. Elseed, Alsayed A. Abdel Hady, ve Abdelhamid K. Elsify. “A Novel Therapeutic Combination of Vildagliptin and Agomelatine Alleviates the Nephropathy in Streptozocin- Induced Diabetic Rats: A Structural & Biochemical Study”. Journal of Research in Pharmacy 28, sy. 4 (Temmuz 2025): 1316-30.
EndNote Ibrahim Ramadan O, Damanhory AA, Abd-allah E-eE, Gomah TA, Mahmoud ME, Abd-allah FM, Sewilam HM, Fayyad RM, Darwish MM, Al-hashem F, Awad MM, Diab M, Tayee EM, Elseed MY, Abdel Hady AA, Elsify AK (01 Temmuz 2025) A novel therapeutic combination of vildagliptin and agomelatine alleviates the nephropathy in streptozocin- induced diabetic rats: A structural & biochemical study. Journal of Research in Pharmacy 28 4 1316–1330.
IEEE O. Ibrahim Ramadan, “A novel therapeutic combination of vildagliptin and agomelatine alleviates the nephropathy in streptozocin- induced diabetic rats: A structural & biochemical study”, J. Res. Pharm., c. 28, sy. 4, ss. 1316–1330, 2025.
ISNAD Ibrahim Ramadan, Osama vd. “A Novel Therapeutic Combination of Vildagliptin and Agomelatine Alleviates the Nephropathy in Streptozocin- Induced Diabetic Rats: A Structural & Biochemical Study”. Journal of Research in Pharmacy 28/4 (Temmuz 2025), 1316-1330.
JAMA Ibrahim Ramadan O, Damanhory AA, Abd-allah E-eE, Gomah TA, Mahmoud ME, Abd-allah FM, Sewilam HM, Fayyad RM, Darwish MM, Al-hashem F, Awad MM, Diab M, Tayee EM, Elseed MY, Abdel Hady AA, Elsify AK. A novel therapeutic combination of vildagliptin and agomelatine alleviates the nephropathy in streptozocin- induced diabetic rats: A structural & biochemical study. J. Res. Pharm. 2025;28:1316–1330.
MLA Ibrahim Ramadan, Osama vd. “A Novel Therapeutic Combination of Vildagliptin and Agomelatine Alleviates the Nephropathy in Streptozocin- Induced Diabetic Rats: A Structural & Biochemical Study”. Journal of Research in Pharmacy, c. 28, sy. 4, 2025, ss. 1316-30.
Vancouver Ibrahim Ramadan O, Damanhory AA, Abd-allah E-eE, Gomah TA, Mahmoud ME, Abd-allah FM, Sewilam HM, Fayyad RM, Darwish MM, Al-hashem F, Awad MM, Diab M, Tayee EM, Elseed MY, Abdel Hady AA, Elsify AK. A novel therapeutic combination of vildagliptin and agomelatine alleviates the nephropathy in streptozocin- induced diabetic rats: A structural & biochemical study. J. Res. Pharm. 2025;28(4):1316-30.