Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of Surfactants on Albumin Nanoparticles

Yıl 2022, Cilt: 26 Sayı: 5, 1177 - 1189, 28.06.2025

Öz

This study aimed to examine the effects of various surfactants on the particle size distribution of albumin (HSA) nanoparticles and the binding efficiency of the active substance to albumin. Therefore, gefitinib, an EGFR tyrosine kinase inhibitor and albumin nanoparticles were manufactured using Nab™ technology with various surfactants at different levels. Before producing gefitinib-albumin nanoparticles, the fluorescence spectroscopy method in the absence and presence of surfactants was used to demonstrate the binding of the gefitinib to albumin. Gefitinib binding to HSA in the presence and absence of surfactants, was demonstrated with Stern-Volmer plots. In order to optimize the nanoparticle production method, the effects of critical process parameters such as organic phase volume: total volume %, drug:HSA ratio, homogenization cycle number on particle size distribution were evaluated using the Box-Behnken design. After optimization of production method, the nanoparticles were produced by adding three different levels of DPPC, HSPC, and oleic acid to the formulation, and the effects of surfactants on the particle size distribution and zeta potential were evaluated. Adding surfactants had no statistically significant effect on the Stern Volmer plots but they helped to produce uniform nanoparticles with PDI and particle size values of less than 0.2 and 130 nm respectively. It was observed that adding HSPC, DPPC, or oleic acid to the formulation enabled the production of uniform albumin nanoparticles.

Kaynakça

  • [1] Saji H, Tsuboi M, Yoshida K, Kato Y, Nomura M, Matsubayashi J, et al. Prognostic impact of number of resected and involved lymph nodes at complete resection on survival in non-small cell lung cancer. J Thorac Oncol. 2011;6(11):1865-71. [CrossRef]
  • [2] Tang M-C, Wu M-Y, Hwang M-H, Chang Y-T, Huang H-J, Lin AM-Y, et al. Chloroquine enhances gefitinib cytotoxicity in gefitinib-resistant nonsmall cell lung cancer cells. PloS one. 2015;10(3):e0119135. [CrossRef]
  • [3] Phillip Lee Y-H, Sathigari S, Jean Lin Y-J, Ravis WR, Chadha G, Parsons DL, et al. Gefitinib–cyclodextrin inclusion complexes: physico-chemical characterization and dissolution studies. Drug Dev Ind Pharm. 2009;35(9):1113-20. [CrossRef]
  • [4] Liu S, Yang H, Ge X, Su L, Zhang A, Liang L. Drug resistance analysis of gefitinib-targeted therapy in non-small cell lung cancer. Oncol Lett. 2016;12(5):3941-3. [CrossRef]
  • [5] Pang X, Yang P, Wang L, Cao J, Cheng Y, Sheng D, et al. Human serum albumin nanoparticulate system with encapsulation of gefitinib for enhanced anti-tumor effects in non-small cell lung cancer. J Drug Deliv Sci Technol. 2019;52:997-1007. [CrossRef]
  • [6] Fanali G, Di Masi A, Trezza V, Marino M, Fasano M, Ascenzi P. Human serum albumin: from bench to bedside. Mol Aspects Med. 2012;33(3):209-90. [CrossRef]
  • [7] Karimi M, Bahrami S, Ravari SB, Zangabad PS, Mirshekari H, Bozorgomid M, et al. Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv. 2016;13(11):1609-23. [CrossRef]
  • [8] Merlot AM, Kalinowski DS, Richardson DR. Unraveling the mysteries of serum albumin—more than just a serum protein. Front Physiol. 2014;5:299. [CrossRef]
  • [9] Okamoto I, Yamamoto N, Kubota K, Ohe Y, Nogami N, Murakami H, et al. Safety and pharmacokinetic study of nab-paclitaxel plus carboplatin in chemotherapy-naïve patients with advanced non–small cell lung cancer. Invest New Drugs. 2012;30(3):1132-7. [CrossRef]
  • [10] Desai et al., (2010). US20100226996.
  • [11] Hollis CP, Weiss HL, Leggas M, Evers BM, Gemeinhart RA, Li T. Biodistribution and bioimaging studies of hybrid paclitaxel nanocrystals: lessons learned of the EPR effect and image-guided drug delivery. J Control Release. 2013;172(1):12-21. [CrossRef]
  • [12] Wang F, Chen L, Jiang S, He J, Zhang X, Peng J, et al. Optimization of methazolamide-loaded solid lipid nanoparticles for ophthalmic delivery using Box–Behnken design. J Liposome Res. 2014;24(3):171-81. [CrossRef]
  • [13] Barabadi H, Honary S, Ebrahimi P, Alizadeh A, Naghibi F, Saravanan M. Optimization of myco-synthesized silver nanoparticles by response surface methodology employing Box-Behnken design. Inorg Nano-Met Chem. 2019;49(2):33-43. [CrossRef]
  • [14] Shah HG, Rathod V, Basim P, Gajera B, Dave RH. Understanding the Impact of Multi-factorial Composition on Efficient Loading of the Stable Ketoprofen Nanoparticles on Orodispersible Films Using Box-Behnken Design. J Pharm Sci. 2022;111(5):1451-62. [CrossRef]
  • [15] Hao J, Fang X, Zhou Y, Wang J, Guo F, Li F, et al. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design. Int J Nanomedicine. 2011;6:683. [CrossRef]
  • [16] Lee ES, Youn YS. Albumin-based potential drugs: focus on half-life extension and nanoparticle preparation. J Pharm Investig. 2016;46(4):305-15. [CrossRef]
  • [17] Lomis N, Westfall S, Farahdel L, Malhotra M, Shum-Tim D, Prakash S. Human serum albumin nanoparticles for use in cancer drug delivery: process optimization and in vitro characterization. Nanomaterials. 2016;6(6):116. [CrossRef]
  • [18] Joseph D, Sachar S, Kishore N, Chandra S. Mechanistic insights into the interactions of magnetic nanoparticles with bovine serum albumin in presence of surfactants. Colloids Surf B Biointerfaces. 2015;135:596-603. [CrossRef]
  • [19] Ge F, Chen C, Liu D, Han B, Xiong X, Zhao S. Study on the interaction between theasinesin and human serum albumin by fluorescence spectroscopy. J Lumin. 2010;130(1):168-73. [CrossRef]
  • [20] Fu Q, Sun J, Zhang W, Sui X, Yan Z, He Z. Nanoparticle albumin-bound (NAB) technology is a promising method for anti-cancer drug delivery. Recent Pat Anticancer Drug Discov. 2009;4(3):262-72. [CrossRef]
  • [21]Miele E, Spinelli GP, Miele E, Tomao F, Tomao S. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int J Nanomed. 2009;4:99. [CrossRef]
  • [22] Wan X, Zheng X, Pang X, Zhang Z, Zhang Q. Incorporation of lapatinib into human serum albumin nanoparticles with enhanced anti-tumor effects in HER2-positive breast cancer. Colloids Surf B Biointerfaces. 2015;136:817-27. [CrossRef]
  • [23] Birnbaum DT, Kosmala JD, Brannon-Peppas L. Optimization of preparation techniques for poly (lactic acid-coglycolic acid) nanoparticles. J Nanopart Res. 2000;2(2):173-81. [CrossRef]
  • [24] Epps DE, Raub TJ, Caiolfa V, Chiari A, Zamai M. Determination of the affinity of drugs toward serum albumin by measurement of the quenching of the intrinsic tryptophan fluorescence of the protein. J Pharm Pharmacol. 1999;51(1):41-8. [CrossRef]
  • [25] Bijari N, Moradi S, Ghobadi S, Shahlaei M. Elucidating the interaction of letrozole with human serum albumin by combination of spectroscopic and molecular modeling techniques. Res Pharm Sci. 2018;13(4):304. [CrossRef]
Yıl 2022, Cilt: 26 Sayı: 5, 1177 - 1189, 28.06.2025

Öz

Kaynakça

  • [1] Saji H, Tsuboi M, Yoshida K, Kato Y, Nomura M, Matsubayashi J, et al. Prognostic impact of number of resected and involved lymph nodes at complete resection on survival in non-small cell lung cancer. J Thorac Oncol. 2011;6(11):1865-71. [CrossRef]
  • [2] Tang M-C, Wu M-Y, Hwang M-H, Chang Y-T, Huang H-J, Lin AM-Y, et al. Chloroquine enhances gefitinib cytotoxicity in gefitinib-resistant nonsmall cell lung cancer cells. PloS one. 2015;10(3):e0119135. [CrossRef]
  • [3] Phillip Lee Y-H, Sathigari S, Jean Lin Y-J, Ravis WR, Chadha G, Parsons DL, et al. Gefitinib–cyclodextrin inclusion complexes: physico-chemical characterization and dissolution studies. Drug Dev Ind Pharm. 2009;35(9):1113-20. [CrossRef]
  • [4] Liu S, Yang H, Ge X, Su L, Zhang A, Liang L. Drug resistance analysis of gefitinib-targeted therapy in non-small cell lung cancer. Oncol Lett. 2016;12(5):3941-3. [CrossRef]
  • [5] Pang X, Yang P, Wang L, Cao J, Cheng Y, Sheng D, et al. Human serum albumin nanoparticulate system with encapsulation of gefitinib for enhanced anti-tumor effects in non-small cell lung cancer. J Drug Deliv Sci Technol. 2019;52:997-1007. [CrossRef]
  • [6] Fanali G, Di Masi A, Trezza V, Marino M, Fasano M, Ascenzi P. Human serum albumin: from bench to bedside. Mol Aspects Med. 2012;33(3):209-90. [CrossRef]
  • [7] Karimi M, Bahrami S, Ravari SB, Zangabad PS, Mirshekari H, Bozorgomid M, et al. Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv. 2016;13(11):1609-23. [CrossRef]
  • [8] Merlot AM, Kalinowski DS, Richardson DR. Unraveling the mysteries of serum albumin—more than just a serum protein. Front Physiol. 2014;5:299. [CrossRef]
  • [9] Okamoto I, Yamamoto N, Kubota K, Ohe Y, Nogami N, Murakami H, et al. Safety and pharmacokinetic study of nab-paclitaxel plus carboplatin in chemotherapy-naïve patients with advanced non–small cell lung cancer. Invest New Drugs. 2012;30(3):1132-7. [CrossRef]
  • [10] Desai et al., (2010). US20100226996.
  • [11] Hollis CP, Weiss HL, Leggas M, Evers BM, Gemeinhart RA, Li T. Biodistribution and bioimaging studies of hybrid paclitaxel nanocrystals: lessons learned of the EPR effect and image-guided drug delivery. J Control Release. 2013;172(1):12-21. [CrossRef]
  • [12] Wang F, Chen L, Jiang S, He J, Zhang X, Peng J, et al. Optimization of methazolamide-loaded solid lipid nanoparticles for ophthalmic delivery using Box–Behnken design. J Liposome Res. 2014;24(3):171-81. [CrossRef]
  • [13] Barabadi H, Honary S, Ebrahimi P, Alizadeh A, Naghibi F, Saravanan M. Optimization of myco-synthesized silver nanoparticles by response surface methodology employing Box-Behnken design. Inorg Nano-Met Chem. 2019;49(2):33-43. [CrossRef]
  • [14] Shah HG, Rathod V, Basim P, Gajera B, Dave RH. Understanding the Impact of Multi-factorial Composition on Efficient Loading of the Stable Ketoprofen Nanoparticles on Orodispersible Films Using Box-Behnken Design. J Pharm Sci. 2022;111(5):1451-62. [CrossRef]
  • [15] Hao J, Fang X, Zhou Y, Wang J, Guo F, Li F, et al. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design. Int J Nanomedicine. 2011;6:683. [CrossRef]
  • [16] Lee ES, Youn YS. Albumin-based potential drugs: focus on half-life extension and nanoparticle preparation. J Pharm Investig. 2016;46(4):305-15. [CrossRef]
  • [17] Lomis N, Westfall S, Farahdel L, Malhotra M, Shum-Tim D, Prakash S. Human serum albumin nanoparticles for use in cancer drug delivery: process optimization and in vitro characterization. Nanomaterials. 2016;6(6):116. [CrossRef]
  • [18] Joseph D, Sachar S, Kishore N, Chandra S. Mechanistic insights into the interactions of magnetic nanoparticles with bovine serum albumin in presence of surfactants. Colloids Surf B Biointerfaces. 2015;135:596-603. [CrossRef]
  • [19] Ge F, Chen C, Liu D, Han B, Xiong X, Zhao S. Study on the interaction between theasinesin and human serum albumin by fluorescence spectroscopy. J Lumin. 2010;130(1):168-73. [CrossRef]
  • [20] Fu Q, Sun J, Zhang W, Sui X, Yan Z, He Z. Nanoparticle albumin-bound (NAB) technology is a promising method for anti-cancer drug delivery. Recent Pat Anticancer Drug Discov. 2009;4(3):262-72. [CrossRef]
  • [21]Miele E, Spinelli GP, Miele E, Tomao F, Tomao S. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int J Nanomed. 2009;4:99. [CrossRef]
  • [22] Wan X, Zheng X, Pang X, Zhang Z, Zhang Q. Incorporation of lapatinib into human serum albumin nanoparticles with enhanced anti-tumor effects in HER2-positive breast cancer. Colloids Surf B Biointerfaces. 2015;136:817-27. [CrossRef]
  • [23] Birnbaum DT, Kosmala JD, Brannon-Peppas L. Optimization of preparation techniques for poly (lactic acid-coglycolic acid) nanoparticles. J Nanopart Res. 2000;2(2):173-81. [CrossRef]
  • [24] Epps DE, Raub TJ, Caiolfa V, Chiari A, Zamai M. Determination of the affinity of drugs toward serum albumin by measurement of the quenching of the intrinsic tryptophan fluorescence of the protein. J Pharm Pharmacol. 1999;51(1):41-8. [CrossRef]
  • [25] Bijari N, Moradi S, Ghobadi S, Shahlaei M. Elucidating the interaction of letrozole with human serum albumin by combination of spectroscopic and molecular modeling techniques. Res Pharm Sci. 2018;13(4):304. [CrossRef]
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Farmasotik Biyoteknoloji
Bölüm Articles
Yazarlar

Yagmur Akdag 0000-0003-4139-9815

Zeynep Merve Geyik 0000-0003-2775-6724

Yayımlanma Tarihi 28 Haziran 2025
Yayımlandığı Sayı Yıl 2022 Cilt: 26 Sayı: 5

Kaynak Göster

APA Akdag, Y., & Geyik, Z. M. (2025). Effects of Surfactants on Albumin Nanoparticles. Journal of Research in Pharmacy, 26(5), 1177-1189.
AMA Akdag Y, Geyik ZM. Effects of Surfactants on Albumin Nanoparticles. J. Res. Pharm. Haziran 2025;26(5):1177-1189.
Chicago Akdag, Yagmur, ve Zeynep Merve Geyik. “Effects of Surfactants on Albumin Nanoparticles”. Journal of Research in Pharmacy 26, sy. 5 (Haziran 2025): 1177-89.
EndNote Akdag Y, Geyik ZM (01 Haziran 2025) Effects of Surfactants on Albumin Nanoparticles. Journal of Research in Pharmacy 26 5 1177–1189.
IEEE Y. Akdag ve Z. M. Geyik, “Effects of Surfactants on Albumin Nanoparticles”, J. Res. Pharm., c. 26, sy. 5, ss. 1177–1189, 2025.
ISNAD Akdag, Yagmur - Geyik, Zeynep Merve. “Effects of Surfactants on Albumin Nanoparticles”. Journal of Research in Pharmacy 26/5 (Haziran 2025), 1177-1189.
JAMA Akdag Y, Geyik ZM. Effects of Surfactants on Albumin Nanoparticles. J. Res. Pharm. 2025;26:1177–1189.
MLA Akdag, Yagmur ve Zeynep Merve Geyik. “Effects of Surfactants on Albumin Nanoparticles”. Journal of Research in Pharmacy, c. 26, sy. 5, 2025, ss. 1177-89.
Vancouver Akdag Y, Geyik ZM. Effects of Surfactants on Albumin Nanoparticles. J. Res. Pharm. 2025;26(5):1177-89.