Araştırma Makalesi
BibTex RIS Kaynak Göster

Cross-linking with multifunctional excipients and its effect on the physicochemical properties and release profile of ibuprofen-loaded Digitaria exilis starch nanoparticles

Yıl 2022, Cilt: 26 Sayı: 5, 1190 - 1201, 28.06.2025

Öz

Nanoparticles have been used to overcome the limitations of oral drug delivery. This study was performed
to examine the effects of modifying Digitaria exilis starch by cross-linking with multifunctional excipients: citric acid (CA)
and sodium tripolyphosphate (STPP) to produce starch citrate and phosphate respectively at 20 % concentration.
Thereafter, nanoparticles were synthesized via the nanoprecipitation method in the presence of Tween® 80, using
ibuprofen as the model drug. The physicochemical properties of the modified starch were evaluated and the
nanoparticles characterized by the encapsulation efficiciency, loading capacity, particle size, polydispersity index,
scanning electron microscope (SEM), fourier transform infrared spectroscopy(FTIR), in vitro drug release and release
kinetics. Results show that both cross-linkers improved the physicochemical properties of the starch, and produced
particles in the nanometer range (616 nm and 933 nm) for citric acid and sodium tripolyphosphate nanoparticles
respectively. Spherical and pitted particles corresponding to citric acid and sodium tripolyphosphate nanoparticles
respectively were produced and they both showed a controlled release of ibuprofen from the formulation and both
followed the Higuchi kinetic model with R2 values that exhibited a non-fickian diffusion pattern. This study revealed
that the two excipients had different effects on the size and morphology of the nanoparticles and controlled the release of
drug from the nanoparticles.

Kaynakça

  • [1] Lokhande TN, Raut SA. Nanoparticles: an Approach for Novel Drug Delivery System-a Review. Raut al World J Pharm Res. 2019;8(7):652. [CrossRef]
  • [2] Han J, Zhao D, Li D, Wang X, Jin Z, Zhao K. Polymer-Based Nanomaterials and Applications for Vaccines and Drugs. Polymers (Basel). 2018;10(31):1–14. [CrossRef]
  • [3] Patra JK, Das G, Fraceto LF, Vangelie E, Campos R, Rodriguez P, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(71):1–33. [CrossRef]
  • [4] Rizvi SAA, Saleh AM. Applications of Nanoparticle Systems in Drug Delivery Technology. Saudi Pharm J. 2018;1– 25. [CrossRef]
  • [5] Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Reports. 2012;64(5):1020–37. [CrossRef]
  • [6] Singla D, Singh A, Dhull SB, Kumar P, Malik T, Kumar P. Taro starch: Isolation, morphology, modification and novel applications concern - A review. Int J Biol Macromol. 2020;163:1283–90. [CrossRef]
  • [7] Aravamudhan A, Ramos DM, Nada AA, Kumbar SG. Natural Polymers: Polysaccharides and Their Derivatives for Biomedical Applications. Natural and Synthetic Biomedical Polymers. Elsevier Inc.; 2014. 67–89 p. [CrossRef]
  • [8] Corre D Le, Bras J, Dufresne A. Starch Nanoparticles: A Review. Biomacromolecules. 2010;11:1139–53. [CrossRef]
  • [9] Bertoft E, Blennow A. Structure of Potato Starch. In: Advances in Potato Chemistry and Technology. Second Edi. Elsevier Inc.; 2016. p. 57–73. [CrossRef]
  • [10] Gonz P, Carolina S, Jaramillo M, Pii SG. Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent. Carbohydr Polym. 2015;11:1–15. [CrossRef]
  • [11] Silva, N. M. C. D. , de Lima, F. F. , Fialho, R. L. , de Magalhães Cabral Albuquerque, E. C. , Velasco, J. I. , Fakhouri, F. M.. Production and Characterization of Starch Nanoparticles Normane Matta Fakhouri. In: Applications of Modified Starches. IntechOpen; 2018. p. 41–8. [CrossRef]
  • [12] Ghanbarzadeh B, Almasi H, Entezami AA. Improving the barrier and mechanical properties of corn starch-based edible films: Effect of citric acid and carboxymethyl cellulose. Ind Crops Prod. 2011;33(1):229–35. [CrossRef]
  • [13] Jyothi AN, Moorthy SN, Rajasekharan KN. Effect of cross-linking with epichlorohydrin on the properties of cassava (Manihot esculenta Crantz) starch. Starch/Staerke. 2006;58(6):292–9. [CrossRef]
  • [14] Shewry PR. The Major Seed Storage Proteins of Spelt Wheat, Sorghum, Millets and Pseudocereals. In: Pseudocereals and Less Common Cereals. Springer, Berlin, Heidelberg; 2002. p. 1–24. [CrossRef]
  • [15] Ibrahim HM, Saidu B. Effect of Processed Acha (Digitaria exilis) grain on glycemic index of diabetes induced Wistar Rat model. Sch J Biol Sci. 2017;6(3):89–93.
  • [16] Musa H, Muazu J, Bhatia PG, Mshelbwala K. Investigation into the Use of Fonio (Digitaria Exilis) Starch as a Tablet Disintegrant. Niger J Pharm Sci. 2008;7(1):67–78.
  • [17] Odeniyi MA, Adepoju AO, Jaiyeoba KT. Native and Modified Digitaria exilis Starch Nanoparticles as a Carrier System for the Controlled Release of Naproxen. Starch - Stärke. 2019;71:1–10. [CrossRef]
  • [18] Budavari S, MJ O, A S, Heckelman P. An encyclopedia of chemicals, drugs, and biologicals. The Merck index. USA: Merck & Co., Inc; 1989.
  • [19] Xie Y, Zhang B, Li M, Chen H. Eff ects of cross-linking with sodium trimetaphosphate on structural and adsorptive properties of porous wheat starches. Food Chem. 2019;289:187–94. [CrossRef]
  • [20] Lenaerts V, Moussa I, Dumoulin Y, Mebsout F, Chouinard F, Szabo P. Cross-linked high amylose starch for controlled release of drugs: recent advances. J Control Release. 1998;53:225–34.
  • [21] Singh J, Kaur L, McCarthy OJ. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications-A review. Food Hydrocoll. 2007;21(1):1–22. [CrossRef]
  • [22] El-Feky GS, MH E-R, El-Sheikh M, El-Naggar ME, A H. Utilization of Crosslinked Starch Nanoparticles as a Carrier for Indomethacin and Acyclovir Drugs. J Nanomed Nanotechnol. 2015;6(1):1–9.[CrossRef]
  • [23] El-Naggar ME, El-Rafie MH, El-sheikh MA, El-Feky GS, Hebeish A. Synthesis , characterization , release kinetics and toxicity profile of drug- loaded starch nanoparticles Related papers. Int J Biol Macromol. 2015;81:718–29. [CrossRef]
  • [24] Uv B, V KD, Jain N. Formulation and Optimization of Mucoadhesive Nanodrug Delivery System of Acyclovir. J Young Pharm. 2011;3(4):275–83. [CrossRef]
  • [25] Shen Z, Nieh M-P, Li Y. Decorating Nanoparticle Surface for Targeted Drug Delivery: Opportunities and Challenges. Polymers (Basel). 2016;8(3):83. [CrossRef]
  • [26] Saliu OD, Olatunji GA, Ajetomobi OO, Olosho AI. Crystalline starch citrate biopolymer nanorods as potential stabilizers in nano and micro emulsions. J Chem Soc. 2017;1(2):191–200.
  • [27] Shen Y, Zhang N, Xu Y, Huang J, Wu D, Shu X. Physicochemical properties of hydroxypropylated and cross-linked rice starches differential in amylose content. Int J Biol Macromol. 2019;128:775–81. [CrossRef]
  • [28] Zhang B, Cui D, Liu M, Gong H, Huang Y, Han F. Corn porous starch: Preparation, characterization and adsorption property. Int J Biol Macromol. 2011;50(1):250–6. [CrossRef]
  • [29] Ibuprofen Modified Release Tablets 800 mg. Auckland: BNM Group; 2011. 1–17 p.
  • [30] Mehlisch DR, Sykes J. Ibuprofen blood plasma levels and onset of analgesia. Int J Clin Pract. 2013;67:3–8. [CrossRef]
  • [31] Jain R, Sukla SK, Nema N, Panday A. Drug Nano-particle : A Release Kinetics Nanomedicine & Nanotechnology. J Nanomedicine Nanotechnol. 2015;6(5):1–6. [CrossRef]
  • [32] Barzegar-jalali M, Adibkia K, Valizadeh H, Reza M, Shadbad S. Kinetic analysis of drug release from nanoparticles. J Pharm Pharm Sci. 2008;11(1):167–77. [CrossRef]
  • [33] Kunle OO, Ibrahim YE, Emeje MO, Shaba S, Kunle Y. Extraction, physicochemical and compaction properties of tacca starch - A potential pharmaceutical excipient. Starch/Staerke. 2003;55(7):319–25. [CrossRef]
  • [34] Moses O, Abayomi T, Michael O, Adedayo B. Preparation and physicochemical characterization of icacina starch citrate – a potential pharmaceutical/industrial starch. Agric Biol J North Am. 2012;3(1):11–6. [CrossRef]
  • [35] Babu AS, Parimalavalli R. " Functional and Chemical Properties of Starch isolated from Tubers ". Int J Agric Food Sci. 2012;2(3):77–80.
  • [36] Nagarajan E, Shanmugasundaram P, Ravichandiran V, Vijayalakshmi A, Senthilnathan B, Masilamani K. Development and Evaluation of Chitosan Based Polymeric Nanoparticles of an Antiulcer Drug Lansoprazole. J Appl Pharm Sci. 2015;5(04):20–5. [CrossRef]
  • [37] Álvarez C, Núñez I, Torrado JJ, Gordon J, Potthast H, García-Arieta A. Investigation on the possibility of biowaivers for ibuprofen. J Pharm Sci. 2011;100(6):2343–9. [CrossRef]
  • [38] Chourasiya V, Bohrey S, Pandey A. Formulation, optimization, characterization and in-vitro drug release kinetics of atenolol loaded PLGA nanoparticles using 33 factorial design for oral delivery. Mater Discov. 2016;1–32. [CrossRef]
Yıl 2022, Cilt: 26 Sayı: 5, 1190 - 1201, 28.06.2025

Öz

Kaynakça

  • [1] Lokhande TN, Raut SA. Nanoparticles: an Approach for Novel Drug Delivery System-a Review. Raut al World J Pharm Res. 2019;8(7):652. [CrossRef]
  • [2] Han J, Zhao D, Li D, Wang X, Jin Z, Zhao K. Polymer-Based Nanomaterials and Applications for Vaccines and Drugs. Polymers (Basel). 2018;10(31):1–14. [CrossRef]
  • [3] Patra JK, Das G, Fraceto LF, Vangelie E, Campos R, Rodriguez P, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(71):1–33. [CrossRef]
  • [4] Rizvi SAA, Saleh AM. Applications of Nanoparticle Systems in Drug Delivery Technology. Saudi Pharm J. 2018;1– 25. [CrossRef]
  • [5] Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Reports. 2012;64(5):1020–37. [CrossRef]
  • [6] Singla D, Singh A, Dhull SB, Kumar P, Malik T, Kumar P. Taro starch: Isolation, morphology, modification and novel applications concern - A review. Int J Biol Macromol. 2020;163:1283–90. [CrossRef]
  • [7] Aravamudhan A, Ramos DM, Nada AA, Kumbar SG. Natural Polymers: Polysaccharides and Their Derivatives for Biomedical Applications. Natural and Synthetic Biomedical Polymers. Elsevier Inc.; 2014. 67–89 p. [CrossRef]
  • [8] Corre D Le, Bras J, Dufresne A. Starch Nanoparticles: A Review. Biomacromolecules. 2010;11:1139–53. [CrossRef]
  • [9] Bertoft E, Blennow A. Structure of Potato Starch. In: Advances in Potato Chemistry and Technology. Second Edi. Elsevier Inc.; 2016. p. 57–73. [CrossRef]
  • [10] Gonz P, Carolina S, Jaramillo M, Pii SG. Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent. Carbohydr Polym. 2015;11:1–15. [CrossRef]
  • [11] Silva, N. M. C. D. , de Lima, F. F. , Fialho, R. L. , de Magalhães Cabral Albuquerque, E. C. , Velasco, J. I. , Fakhouri, F. M.. Production and Characterization of Starch Nanoparticles Normane Matta Fakhouri. In: Applications of Modified Starches. IntechOpen; 2018. p. 41–8. [CrossRef]
  • [12] Ghanbarzadeh B, Almasi H, Entezami AA. Improving the barrier and mechanical properties of corn starch-based edible films: Effect of citric acid and carboxymethyl cellulose. Ind Crops Prod. 2011;33(1):229–35. [CrossRef]
  • [13] Jyothi AN, Moorthy SN, Rajasekharan KN. Effect of cross-linking with epichlorohydrin on the properties of cassava (Manihot esculenta Crantz) starch. Starch/Staerke. 2006;58(6):292–9. [CrossRef]
  • [14] Shewry PR. The Major Seed Storage Proteins of Spelt Wheat, Sorghum, Millets and Pseudocereals. In: Pseudocereals and Less Common Cereals. Springer, Berlin, Heidelberg; 2002. p. 1–24. [CrossRef]
  • [15] Ibrahim HM, Saidu B. Effect of Processed Acha (Digitaria exilis) grain on glycemic index of diabetes induced Wistar Rat model. Sch J Biol Sci. 2017;6(3):89–93.
  • [16] Musa H, Muazu J, Bhatia PG, Mshelbwala K. Investigation into the Use of Fonio (Digitaria Exilis) Starch as a Tablet Disintegrant. Niger J Pharm Sci. 2008;7(1):67–78.
  • [17] Odeniyi MA, Adepoju AO, Jaiyeoba KT. Native and Modified Digitaria exilis Starch Nanoparticles as a Carrier System for the Controlled Release of Naproxen. Starch - Stärke. 2019;71:1–10. [CrossRef]
  • [18] Budavari S, MJ O, A S, Heckelman P. An encyclopedia of chemicals, drugs, and biologicals. The Merck index. USA: Merck & Co., Inc; 1989.
  • [19] Xie Y, Zhang B, Li M, Chen H. Eff ects of cross-linking with sodium trimetaphosphate on structural and adsorptive properties of porous wheat starches. Food Chem. 2019;289:187–94. [CrossRef]
  • [20] Lenaerts V, Moussa I, Dumoulin Y, Mebsout F, Chouinard F, Szabo P. Cross-linked high amylose starch for controlled release of drugs: recent advances. J Control Release. 1998;53:225–34.
  • [21] Singh J, Kaur L, McCarthy OJ. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications-A review. Food Hydrocoll. 2007;21(1):1–22. [CrossRef]
  • [22] El-Feky GS, MH E-R, El-Sheikh M, El-Naggar ME, A H. Utilization of Crosslinked Starch Nanoparticles as a Carrier for Indomethacin and Acyclovir Drugs. J Nanomed Nanotechnol. 2015;6(1):1–9.[CrossRef]
  • [23] El-Naggar ME, El-Rafie MH, El-sheikh MA, El-Feky GS, Hebeish A. Synthesis , characterization , release kinetics and toxicity profile of drug- loaded starch nanoparticles Related papers. Int J Biol Macromol. 2015;81:718–29. [CrossRef]
  • [24] Uv B, V KD, Jain N. Formulation and Optimization of Mucoadhesive Nanodrug Delivery System of Acyclovir. J Young Pharm. 2011;3(4):275–83. [CrossRef]
  • [25] Shen Z, Nieh M-P, Li Y. Decorating Nanoparticle Surface for Targeted Drug Delivery: Opportunities and Challenges. Polymers (Basel). 2016;8(3):83. [CrossRef]
  • [26] Saliu OD, Olatunji GA, Ajetomobi OO, Olosho AI. Crystalline starch citrate biopolymer nanorods as potential stabilizers in nano and micro emulsions. J Chem Soc. 2017;1(2):191–200.
  • [27] Shen Y, Zhang N, Xu Y, Huang J, Wu D, Shu X. Physicochemical properties of hydroxypropylated and cross-linked rice starches differential in amylose content. Int J Biol Macromol. 2019;128:775–81. [CrossRef]
  • [28] Zhang B, Cui D, Liu M, Gong H, Huang Y, Han F. Corn porous starch: Preparation, characterization and adsorption property. Int J Biol Macromol. 2011;50(1):250–6. [CrossRef]
  • [29] Ibuprofen Modified Release Tablets 800 mg. Auckland: BNM Group; 2011. 1–17 p.
  • [30] Mehlisch DR, Sykes J. Ibuprofen blood plasma levels and onset of analgesia. Int J Clin Pract. 2013;67:3–8. [CrossRef]
  • [31] Jain R, Sukla SK, Nema N, Panday A. Drug Nano-particle : A Release Kinetics Nanomedicine & Nanotechnology. J Nanomedicine Nanotechnol. 2015;6(5):1–6. [CrossRef]
  • [32] Barzegar-jalali M, Adibkia K, Valizadeh H, Reza M, Shadbad S. Kinetic analysis of drug release from nanoparticles. J Pharm Pharm Sci. 2008;11(1):167–77. [CrossRef]
  • [33] Kunle OO, Ibrahim YE, Emeje MO, Shaba S, Kunle Y. Extraction, physicochemical and compaction properties of tacca starch - A potential pharmaceutical excipient. Starch/Staerke. 2003;55(7):319–25. [CrossRef]
  • [34] Moses O, Abayomi T, Michael O, Adedayo B. Preparation and physicochemical characterization of icacina starch citrate – a potential pharmaceutical/industrial starch. Agric Biol J North Am. 2012;3(1):11–6. [CrossRef]
  • [35] Babu AS, Parimalavalli R. " Functional and Chemical Properties of Starch isolated from Tubers ". Int J Agric Food Sci. 2012;2(3):77–80.
  • [36] Nagarajan E, Shanmugasundaram P, Ravichandiran V, Vijayalakshmi A, Senthilnathan B, Masilamani K. Development and Evaluation of Chitosan Based Polymeric Nanoparticles of an Antiulcer Drug Lansoprazole. J Appl Pharm Sci. 2015;5(04):20–5. [CrossRef]
  • [37] Álvarez C, Núñez I, Torrado JJ, Gordon J, Potthast H, García-Arieta A. Investigation on the possibility of biowaivers for ibuprofen. J Pharm Sci. 2011;100(6):2343–9. [CrossRef]
  • [38] Chourasiya V, Bohrey S, Pandey A. Formulation, optimization, characterization and in-vitro drug release kinetics of atenolol loaded PLGA nanoparticles using 33 factorial design for oral delivery. Mater Discov. 2016;1–32. [CrossRef]
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Farmasotik Biyoteknoloji, Farmasotik Kimya
Bölüm Articles
Yazarlar

Judith Eloyi John 0000-0001-7789-4776

Babajide Akinyele Tytler 0000-0002-0135-0892

James Habila 0000-0003-3518-5271

Yonni Eshovo Apeji 0000-0002-3116-7570

Olubunmi Olayemi 0000-0001-5759-7176

Christiana Yetunde Isimi 0000-0002-9066-9984

Yayımlanma Tarihi 28 Haziran 2025
Yayımlandığı Sayı Yıl 2022 Cilt: 26 Sayı: 5

Kaynak Göster

APA John, J. E., Tytler, B. A., Habila, J., Apeji, Y. E., vd. (2025). Cross-linking with multifunctional excipients and its effect on the physicochemical properties and release profile of ibuprofen-loaded Digitaria exilis starch nanoparticles. Journal of Research in Pharmacy, 26(5), 1190-1201.
AMA John JE, Tytler BA, Habila J, Apeji YE, Olayemi O, Isimi CY. Cross-linking with multifunctional excipients and its effect on the physicochemical properties and release profile of ibuprofen-loaded Digitaria exilis starch nanoparticles. J. Res. Pharm. Haziran 2025;26(5):1190-1201.
Chicago John, Judith Eloyi, Babajide Akinyele Tytler, James Habila, Yonni Eshovo Apeji, Olubunmi Olayemi, ve Christiana Yetunde Isimi. “Cross-Linking With Multifunctional Excipients and Its Effect on the Physicochemical Properties and Release Profile of Ibuprofen-Loaded Digitaria Exilis Starch Nanoparticles”. Journal of Research in Pharmacy 26, sy. 5 (Haziran 2025): 1190-1201.
EndNote John JE, Tytler BA, Habila J, Apeji YE, Olayemi O, Isimi CY (01 Haziran 2025) Cross-linking with multifunctional excipients and its effect on the physicochemical properties and release profile of ibuprofen-loaded Digitaria exilis starch nanoparticles. Journal of Research in Pharmacy 26 5 1190–1201.
IEEE J. E. John, B. A. Tytler, J. Habila, Y. E. Apeji, O. Olayemi, ve C. Y. Isimi, “Cross-linking with multifunctional excipients and its effect on the physicochemical properties and release profile of ibuprofen-loaded Digitaria exilis starch nanoparticles”, J. Res. Pharm., c. 26, sy. 5, ss. 1190–1201, 2025.
ISNAD John, Judith Eloyi vd. “Cross-Linking With Multifunctional Excipients and Its Effect on the Physicochemical Properties and Release Profile of Ibuprofen-Loaded Digitaria Exilis Starch Nanoparticles”. Journal of Research in Pharmacy 26/5 (Haziran 2025), 1190-1201.
JAMA John JE, Tytler BA, Habila J, Apeji YE, Olayemi O, Isimi CY. Cross-linking with multifunctional excipients and its effect on the physicochemical properties and release profile of ibuprofen-loaded Digitaria exilis starch nanoparticles. J. Res. Pharm. 2025;26:1190–1201.
MLA John, Judith Eloyi vd. “Cross-Linking With Multifunctional Excipients and Its Effect on the Physicochemical Properties and Release Profile of Ibuprofen-Loaded Digitaria Exilis Starch Nanoparticles”. Journal of Research in Pharmacy, c. 26, sy. 5, 2025, ss. 1190-01.
Vancouver John JE, Tytler BA, Habila J, Apeji YE, Olayemi O, Isimi CY. Cross-linking with multifunctional excipients and its effect on the physicochemical properties and release profile of ibuprofen-loaded Digitaria exilis starch nanoparticles. J. Res. Pharm. 2025;26(5):1190-201.