Araştırma Makalesi
BibTex RIS Kaynak Göster

Sambiloto leaves (Andrographis paniculata (Burm.f.) Wall. Ex. Nees) nanoemulsion preparations: Optimization of Tween 80 and PEG-400 concentrations as photoprotective agents

Yıl 2024, Cilt: 28 Sayı: 5, 1435 - 1448, 28.06.2025

Öz

Sambiloto leaf (Andrographis paniculata (Burm.f.) Wall. Ex Ness) has the potential to be employed as a photoprotective agent due to its high antioxidant content in the form of quercetin and andrographolide. The nanoemulsion preparations can boost the photoprotective activity of sambiloto leaf extract due to its deepest penetration. This study aims to determine the optimum Tween 80 and PEG-400 concentration in the Sambiloto leaf extract nanoemulsion preparation using the factorial 22 design method through Design Expert 12® on pH response, specific gravity, viscosity, and percent transmittance. The optimum formula was tested for sun protection factor (SPF) and DPPH Radical Scavenging activity (IC50). The amounts of andrographolide and quercetin detected in the sambiloto leaf extract were 3.411% and 3.272%, respectively. The optimum formula for nanoemulsion preparations is at Tween 80 and PEG-400 concentrations of 15% and 25%. The optimum Sambiloto leaf extract nanoemulsion formula had a globule size of 172.433±24.312 nm, a PDI of 0.245±0.060, and a zeta potential of -18.100±0.755 mV. The optimum formula for sambiloto leaf nanoemulsion has an SPF value of 44.427 ± 0.081 and an DPPH Radical Scavenging activity (IC50) of 124.863 ± 4.045 ppm. The cycling test showed no significant difference (p>0.05) on organoleptic parameters, pH, specific gravity, and percent transmittance. Based on the results obtained, the optimum formula of Sambiloto leaf extract nanoemulsion has high potential as a photoprotective agent with good globule characteristics and stability.

Kaynakça

  • [1] Addor FAS, Anna, Barcaui CB, Gomes EE, Lupi O, Marçon CR, Miot HA. Sunscreen lotions in the dermatological prescription: review of concepts and controversies. An Bras Dermatol. 2022; 97(2): 204–222. https://doi.org/10.1016/j.abd.2021.05.012
  • [2] D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci. 2013; 14(6): 12222–12248. https://doi.org/10.3390/ijms140612222
  • [3] Ismail HF, Hashim Z, Soon WT, Rahman NSA, Zainudin AN, Majid FAA. Comparative study of herbal plants on the phenolic and flavonoid content, antioxidant activities and toxicity on cells and zebrafish embryo. J Tradit Complement Med. 2017; 7(4): 452–465. https://doi.org/10.1016/j.jtcme.2016.12.006
  • [4] Jarukamjorn K, Nemoto N. Pharmacological aspects of Andrographis paniculata on health and its major diterpenoid constituent andrographolide. J Health Sci. 2008; 54(4): 370–381. https://doi.org/10.1248/jhs.54.370
  • [5] Naik PM. Polyphenol composition and antioxidant activity of Andrographis paniculata L. Nees. Mapana - J Sci. 2017; 13(4): 33–46. https://doi.org/10.12723/mjs.31.4
  • [6] Low M, Khoo CS, Münch G, Govindaraghavan S, Sucher NJ. An in vitro study of anti-inflammatory activity of standardised Andrographis paniculata extracts and pure andrographolide. BMC Complement Altern Med. 2015; 15: 18. https://doi.org/10.1186/s12906-015-0525-7
  • [7] Villedieu-Percheron E, Ferreira V, Campos JF, Destandau E, Pichon C, Berteina-Raboin S. Quantitative determination of andrographolide and related compounds in Andrographis paniculata extracts and biological evaluation of their anti-ınflammatory activity. Foods (Basel, Switzerland). 2019; 8(12): 683. https://doi.org/10.3390/foods8120683
  • [8] Wu TS, Chern HJ, Damu AG, Kuo PC, Su CR, Lee EJ, Teng CM. Flavonoids and ent-labdane diterpenoids from Andrographis paniculata and their antiplatelet aggregatory and vasorelaxing effects. J Asian Nat Prod Res. 2008; 10(1-2): 17–24. https://doi.org/10.1080/10286020701273627
  • [9] Fardiyah Q, Ersam T, Suyanta, Slamet A, Suprapto, Kurniawan F. New potential and characterization of Andrographis paniculata L. Ness plant extracts as photoprotective agent. Arab J Chem. 2020; 13(12): 8888–8897. https://doi.org/10.1016/j.arabjc.2020.10.015
  • [10] Mussard E, Cesaro A, Lespessailles E, Legrain B, Berteina-Raboin S, Toumi H. Andrographolide, a natural antioxidant: An Update. Antioxidants (Basel, Switzerland). 2019; 8(12): 571. https://doi.org/10.3390/antiox8120571
  • [11] Hossain MS, Urbi Z, Sule A, Rahman KMH. Andrographis paniculata (Burm. f.) Wall. ex Nees: A review of ethnobotany, phytochemistry, and pharmacology. Sci World J. 2014: 1-28. https://doi.org/10.1155/2014/274905
  • [12] Arifullah M, Namsa ND, Mandal M, Chiruvella KK, Vikrama P, Gopal GR. Evaluation of anti-bacterial and anti-oxidant potential of andrographolide and echiodinin isolated from callus culture of Andrographis paniculata Nees. Asian Pac J Trop Biomed. 2013; 3(8): 604–610. https://doi.org/10.1016/S2221-1691(13)60123-9
  • [13] Xu D, Hu MJ, Wang YQ, Cui YL. Antioxidant activities of quercetin and ıts complexes for medicinal application. Molecules (Basel, Switzerland). 2019; 24(6): 1123. https://doi.org/10.3390/molecules24061123
  • [14] Deore SL, Kombade S, Baviskar BA, Khadabadi SS. Photoprotective antioxidant phytochemicals. Int J Phytopharm. 2012; 2(3): 72-76. https://doi.org/10.7439/ijpp.v2i3.501
  • [15] Wadhwa K, Kadian V, Puri V, Bhardwaj BY, Sharma A, Pahwa R, Rao R, Gupta M, Singh I. New insights into quercetin nanoformulations for topical delivery. Phytomedicine Plus. 2022; 2(2): 100257. https://doi.org/10.1016/j.phyplu.2022.100257
  • [16] Nisar MF, Yousaf M, Saleem M, Khalid H, Niaz K, Yaqub M, Waqas MY, Ahmed A, Abaid-Ullah M, Chen J, Chen C, Rengasamy KRR, Wan CC. Development of ıron sequester antioxidant quercetin@ZnO nanoparticles with photoprotective effects on UVA-Irradiated HaCaT Cells. Oxid Med Cell Longev. 2021; 6072631. https://doi.org/10.1155/2021/6072631
  • [17] Wang ML, Zhong QY, Lin BQ, Liu YH, Huang YF, Chen Y, Yuan J, Su ZR, Zhan JY. Andrographolide sodium bisulfate attenuates UV‑induced photo‑damage by activating the keap1/Nrf2 pathway and downregulating the NF‑κB pathway in HaCaT keratinocytes. Int J Mol Med. 2020; 45(2): 343–352. https://doi.org/10.3892/ijmm.2019.4415
  • [18] Muzaffer U, Paul VI, Prasad NR, Karthikeyan R, Agilan B. Protective effect of juglans regia L. Against ultraviolet B radiation induced inflammatory responses in human epidermal keratinocytes. Phytomedicine. 2018; 42: 100–111. https://doi.org/10.1016/j.phymed.2018.03.024.
  • [19] Mason TG. Emulsiogenesis and the emergence of nanoemulsions. Matter. 2019; 1(3): 542–546. https://doi.org/10.1016/j.matt.2019.08.004
  • [20] Kale S, Deore S. Emulsion microemulsion and nanoemulsion. Sys Rev Pharm. 2017; 8(1): 39–47.
  • [21] Piva RC, Verdan MH, Cardoso CAL. Antioxidant and photoprotective potentials and chemical comparison of three species of Ocimum. J Biol Active Prod Nature. 2022; 12(3): 243-253. http://doi.org/10.1080/22311866.2022.2073268
  • [22] Gurav TP, Dholakia BB, Giri APA. Glance at the chemodiversity of Ocimum species: Trends, implications, and strategies for the quality and yield improvement of essential oil. Phytochemistry reviews : Proceedings of the Phytochemical Society of Europe. 2022; 21(3): 879–913. https://doi.org/10.1007/s11101-021-09767-z
  • [23] Li H, Ge Y, Luo Z, Zhou Y, Zhang X, Zhang J, Fu Q. Evaluation of the chemical composition, antioxidant and anti-inflammatory activities of distillate and residue fractions of sweet basil essential oil. J Food Sci Technol. 2017; 54(7): 1882–1890. https://doi.org/10.1007/s13197-017-2620-x
  • [24] Perinelli DR, Cespi M, Lorusso N, Palmieri GF, Bonacucina G, Blasi P. Surfactant self-assembling and critical micelle concentration: One approach fits all?. Langmuir. 2020; 36(21): 5745–5753. https://doi.org/10.1021/acs.langmuir.0c00420
  • [25] Ahmed AF, Attia FAK, Liu Z, Li C, Wei J, Kang W. Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Sci Hum Well. 2019; 8(3): 299–305. https://doi.org/10.1016/j.fshw.2019.07.004
  • [26] Dhanani T, Shah S, Gajbhiye NA, Kumar S. Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arab J Chem. 2017; 10: 1193-1199. https://doi.org/10.1016/j.arabjc.2013.02.015
  • [27] Rafi M, Devi AF, Syafitri UD, Heryanto R, Suparto IH, Amran MB, Rohman A, Prajogo B, Lim LW. Classification of Andrographis paniculata extracts by solvent extraction using HPLC fingerprint and chemometric analysis. BMC Res Notes. 2020; 13(1): 56. https://doi.org/10.1186/s13104-020-4920-x
  • [28] Adam OAO, Abadi RSM, Ayoub SMH. The effect of extraction method and solvents on yield and antioxidant activity of certain Sudanese medicinal plant extracts. J Phytopharmacol. 2019; 8(5): 248–252. https://doi.org/10.31254/phyto.2019.8507
  • [29] Apriani EF, Mardiyanto M, Hendrawan A. Optimization of green synthesis of silver nanoparticles from Areca catechu l. seed extract with variations of silver nitrate and extract concentrations using simplex lattice design method. Farmacia. 2022; 70 (5): 917-924. https://doi.org/10.31925/farmacia.2022.5.18
  • [30] Laxmi M, Bhardwaj A, Mehta S, Mehta A. Development and characterization of nanoemulsion as carrier for the enhancement of bioavailability of artemether. Artif Cells Nanomed Biotechnol. 2015; 43(5): 334–344. https://doi.org/10.3109/21691401.2014.887018
  • [31] Matman N, Min Oo Y, Amnuaikit T, Somnuk K. Continuous production of nanoemulsion for skincare product using a 3D-printed rotor-stator hydrodynamic cavitation reactor. Ultrason Sonochem. 2022; 83: 105926. https://doi.org/10.1016/j.ultsonch.2022.105926
  • [32] Onyeogaziri FC, Papaneophytou C. a general guide for the optimization of enzyme assay conditions using the design of experiments approach. SLAS Discov. 2019;24(5):587-596. https://doi.org/10.1177/2472555219830084
  • [33] Rowe RC, Sheskey PJ, Quin M. Handbook of Pharmaceutical Excipients, sixth edition, Pharmaceutical Press, United Kingdom 2009.
  • [34] Saeedi M, Rafati MR, Semnanı KM, Rostam AY, Kelıdarı HR. Evaluation of effect of tween 80 on characteristics of tadalafil 0.1% suspension. Pharm Biomed Res. 2015; 1(2): 35–43. https://doi.org/10.18869/acadpub.pbr.1.2.35.
  • [35] Del Regno A, Warren PB, Bray DJ, Anderson RL. Critical micelle concentrations in surfactant mixtures and blends by simulation. J Phys Chem. 2021; 125(22): 5983–5990. https://doi.org/10.1021/acs.jpcb.1c00893
  • [36] Kurpiers M, Wolf JD, Steinbring C, Zaichik S, Bernkop-Schnürch A. Zeta potential changing nanoemulsions based on phosphate moiety cleavage of a PEGylated surfactant. J Mol Liquids. 2020; 316: 113868. https://doi.org/10.1016/j.molliq.2020.113868
  • [37] Marzuki NHC, Wahab RA, Hamid MA. An overview of nanoemulsion: Concepts of development and cosmeceutical applications. Biotechnol Biotechnol Equip. 2019; 33(1): 779–797. https://doi.org/10.1080/13102818.2019.1620124
  • [38] Deryabin DG, Efremova LV, Vasilchenko AS, Saidakova EV, Sizova EA, Troshin PA, Zhilenkov AV, Khakina EA. A zeta potential value determines the aggregate's size of penta-substituted fullerene derivatives in aqueous suspension whereas positive charge is required for toxicity against bacterial cells. J Nanobiotechnol. 2015; 13: 50. https://doi.org/10.1186/s12951-015-0112-6
  • [39] Septembre-Malaterre A, Boumendjel A, Seteyen ALS, Boina C, Gasque P, Guiraud P, Sélambarom J. Focus on the high therapeutic potentials of quercetin and its derivatives. Phytomedicine Plus. 2022; 2(1):100220. https://doi.org/10.1016/j.phyplu.2022.100220
  • [40] Costa SCC, Detoni CB, Branco CRC, Botura MB, Branco, A. In vitro photoprotective effects of Marcetia taxifolia ethanolic extract and its potential for sunscreen formulations. Rev Bras Farmacogn. 2015; 25(4): 413–418. https://doi.org/10.1016/j.bjp.2015.07.013
  • [41] Hairunisa I, Dai M, Wikantyasning R. Validated UV-Vis spectrophotometric determination of andrographolide in herbal nano-preparation. Asian J Chem. 2019; 31 (9): 1985-1988. https://doi.org/10.14233/ajchem.2019.21951.
  • [42] Indarti K, Apriani EF, Wibowo AE, Simanjuntak P. Antioxidant Activity of ethanolic extract and various fractions from green tea (Camellia sinensis L.) leaves. Pharmacogn J. 2019; 11 (4): 771-776. https://doi.org/10.5530/pj.2019.11.122
  • [43] Miksusanti, Apriani EF, Bihurini AHB. Optimization of Tween 80 and PEG-400 concentration in ındonesian virgin coconut oil nanoemulsion as antibacterial against Staphylococcus aureus. Sains Malaysiana. 2023; 52 (4): 1259-1272. http://doi.org/10.17576/jsm-2023-5204-17
  • [44] Suryani, Handoyo M, Alfiandi, Putrawansya RP, Adjeng TA, Aswan M, Ruslin. The self-nanoemulsifying drug delivery system formulation of mefenamic acid. Asian J Pharm. 2019; 13(4): 287. https://doi.org/https://dx.doi.org/10.22377/ajp.v13i04.3399
  • [45] Alhamdany A, Saeed AMH, Alaayedi M. Nanoemulsion and solid nanoemulsion for ımproving oral delivery of a breast cancer drug: Formulation, evaluation, and a comparison study. Saudi Pharm J. 2021; 29(11): 1278–1288. https://doi.org/10.1016/j.jsps.2021.09.016
  • [46] Apriani EF, Shiyan S, Hardestyariki D, Starlista V, Febriani M. Factorial design for the optimization of Clindamycin HCl-loaded ethosome with various concentration of Phospholipon 90G and ethanol. Res J Pharm Technol. 2023; 16 (4): 1561-1568. https://doi.org/10.52711/0974-360X.2023.00255
  • [47] Mardiyanto M, Apriani EF, Alfarizi MH. Formulation and ın-vitro antibacterial activity of gel containing ethanolic extract of purple sweet potato leaves (Ipomoea batatas (L.) loaded poly lactic co-glycolic acid submicroparticles against Staphylococcus aureus. Res J Pharm Technol. 2022; 15 (8): 3599-3605. https://doi.org/10.52711/0974-360X.2022.00603
  • [48] Dutra EA, Da Costa E, Oliveira DAG, Kedor-Hackmann ERM, Miritello Santoro MIR. Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. Braz J Pharm Sci. 2004; 40(3): 381–385. https://doi.org/10.1590/S1516-93322004000300014
  • [49] Sudirman S, Herpandi, Safitri E, Apriani EF, Taqwa FH. Total polyphenol and flavonoid contents and antioxidant activities of water lettuce (Pistia stratiotes) leave extracts. Food Res. 2022; 6(4): 205 – 210. https://doi.org/10.26656/fr.2017.6(4).484
  • [50] Apriani EF, Miksusanti M, Fransiska N. Formulation and optimization peel-off gel mask with polyvinyl alcohol and gelatin based using factorial design from banana peel flour (Musa paradisiaca L) as antioxidant. Indonesian J Pharm. 2022; 33(2): 261–268. https://doi.org/10.22146/ijp.3408
Yıl 2024, Cilt: 28 Sayı: 5, 1435 - 1448, 28.06.2025

Öz

Kaynakça

  • [1] Addor FAS, Anna, Barcaui CB, Gomes EE, Lupi O, Marçon CR, Miot HA. Sunscreen lotions in the dermatological prescription: review of concepts and controversies. An Bras Dermatol. 2022; 97(2): 204–222. https://doi.org/10.1016/j.abd.2021.05.012
  • [2] D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci. 2013; 14(6): 12222–12248. https://doi.org/10.3390/ijms140612222
  • [3] Ismail HF, Hashim Z, Soon WT, Rahman NSA, Zainudin AN, Majid FAA. Comparative study of herbal plants on the phenolic and flavonoid content, antioxidant activities and toxicity on cells and zebrafish embryo. J Tradit Complement Med. 2017; 7(4): 452–465. https://doi.org/10.1016/j.jtcme.2016.12.006
  • [4] Jarukamjorn K, Nemoto N. Pharmacological aspects of Andrographis paniculata on health and its major diterpenoid constituent andrographolide. J Health Sci. 2008; 54(4): 370–381. https://doi.org/10.1248/jhs.54.370
  • [5] Naik PM. Polyphenol composition and antioxidant activity of Andrographis paniculata L. Nees. Mapana - J Sci. 2017; 13(4): 33–46. https://doi.org/10.12723/mjs.31.4
  • [6] Low M, Khoo CS, Münch G, Govindaraghavan S, Sucher NJ. An in vitro study of anti-inflammatory activity of standardised Andrographis paniculata extracts and pure andrographolide. BMC Complement Altern Med. 2015; 15: 18. https://doi.org/10.1186/s12906-015-0525-7
  • [7] Villedieu-Percheron E, Ferreira V, Campos JF, Destandau E, Pichon C, Berteina-Raboin S. Quantitative determination of andrographolide and related compounds in Andrographis paniculata extracts and biological evaluation of their anti-ınflammatory activity. Foods (Basel, Switzerland). 2019; 8(12): 683. https://doi.org/10.3390/foods8120683
  • [8] Wu TS, Chern HJ, Damu AG, Kuo PC, Su CR, Lee EJ, Teng CM. Flavonoids and ent-labdane diterpenoids from Andrographis paniculata and their antiplatelet aggregatory and vasorelaxing effects. J Asian Nat Prod Res. 2008; 10(1-2): 17–24. https://doi.org/10.1080/10286020701273627
  • [9] Fardiyah Q, Ersam T, Suyanta, Slamet A, Suprapto, Kurniawan F. New potential and characterization of Andrographis paniculata L. Ness plant extracts as photoprotective agent. Arab J Chem. 2020; 13(12): 8888–8897. https://doi.org/10.1016/j.arabjc.2020.10.015
  • [10] Mussard E, Cesaro A, Lespessailles E, Legrain B, Berteina-Raboin S, Toumi H. Andrographolide, a natural antioxidant: An Update. Antioxidants (Basel, Switzerland). 2019; 8(12): 571. https://doi.org/10.3390/antiox8120571
  • [11] Hossain MS, Urbi Z, Sule A, Rahman KMH. Andrographis paniculata (Burm. f.) Wall. ex Nees: A review of ethnobotany, phytochemistry, and pharmacology. Sci World J. 2014: 1-28. https://doi.org/10.1155/2014/274905
  • [12] Arifullah M, Namsa ND, Mandal M, Chiruvella KK, Vikrama P, Gopal GR. Evaluation of anti-bacterial and anti-oxidant potential of andrographolide and echiodinin isolated from callus culture of Andrographis paniculata Nees. Asian Pac J Trop Biomed. 2013; 3(8): 604–610. https://doi.org/10.1016/S2221-1691(13)60123-9
  • [13] Xu D, Hu MJ, Wang YQ, Cui YL. Antioxidant activities of quercetin and ıts complexes for medicinal application. Molecules (Basel, Switzerland). 2019; 24(6): 1123. https://doi.org/10.3390/molecules24061123
  • [14] Deore SL, Kombade S, Baviskar BA, Khadabadi SS. Photoprotective antioxidant phytochemicals. Int J Phytopharm. 2012; 2(3): 72-76. https://doi.org/10.7439/ijpp.v2i3.501
  • [15] Wadhwa K, Kadian V, Puri V, Bhardwaj BY, Sharma A, Pahwa R, Rao R, Gupta M, Singh I. New insights into quercetin nanoformulations for topical delivery. Phytomedicine Plus. 2022; 2(2): 100257. https://doi.org/10.1016/j.phyplu.2022.100257
  • [16] Nisar MF, Yousaf M, Saleem M, Khalid H, Niaz K, Yaqub M, Waqas MY, Ahmed A, Abaid-Ullah M, Chen J, Chen C, Rengasamy KRR, Wan CC. Development of ıron sequester antioxidant quercetin@ZnO nanoparticles with photoprotective effects on UVA-Irradiated HaCaT Cells. Oxid Med Cell Longev. 2021; 6072631. https://doi.org/10.1155/2021/6072631
  • [17] Wang ML, Zhong QY, Lin BQ, Liu YH, Huang YF, Chen Y, Yuan J, Su ZR, Zhan JY. Andrographolide sodium bisulfate attenuates UV‑induced photo‑damage by activating the keap1/Nrf2 pathway and downregulating the NF‑κB pathway in HaCaT keratinocytes. Int J Mol Med. 2020; 45(2): 343–352. https://doi.org/10.3892/ijmm.2019.4415
  • [18] Muzaffer U, Paul VI, Prasad NR, Karthikeyan R, Agilan B. Protective effect of juglans regia L. Against ultraviolet B radiation induced inflammatory responses in human epidermal keratinocytes. Phytomedicine. 2018; 42: 100–111. https://doi.org/10.1016/j.phymed.2018.03.024.
  • [19] Mason TG. Emulsiogenesis and the emergence of nanoemulsions. Matter. 2019; 1(3): 542–546. https://doi.org/10.1016/j.matt.2019.08.004
  • [20] Kale S, Deore S. Emulsion microemulsion and nanoemulsion. Sys Rev Pharm. 2017; 8(1): 39–47.
  • [21] Piva RC, Verdan MH, Cardoso CAL. Antioxidant and photoprotective potentials and chemical comparison of three species of Ocimum. J Biol Active Prod Nature. 2022; 12(3): 243-253. http://doi.org/10.1080/22311866.2022.2073268
  • [22] Gurav TP, Dholakia BB, Giri APA. Glance at the chemodiversity of Ocimum species: Trends, implications, and strategies for the quality and yield improvement of essential oil. Phytochemistry reviews : Proceedings of the Phytochemical Society of Europe. 2022; 21(3): 879–913. https://doi.org/10.1007/s11101-021-09767-z
  • [23] Li H, Ge Y, Luo Z, Zhou Y, Zhang X, Zhang J, Fu Q. Evaluation of the chemical composition, antioxidant and anti-inflammatory activities of distillate and residue fractions of sweet basil essential oil. J Food Sci Technol. 2017; 54(7): 1882–1890. https://doi.org/10.1007/s13197-017-2620-x
  • [24] Perinelli DR, Cespi M, Lorusso N, Palmieri GF, Bonacucina G, Blasi P. Surfactant self-assembling and critical micelle concentration: One approach fits all?. Langmuir. 2020; 36(21): 5745–5753. https://doi.org/10.1021/acs.langmuir.0c00420
  • [25] Ahmed AF, Attia FAK, Liu Z, Li C, Wei J, Kang W. Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Sci Hum Well. 2019; 8(3): 299–305. https://doi.org/10.1016/j.fshw.2019.07.004
  • [26] Dhanani T, Shah S, Gajbhiye NA, Kumar S. Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arab J Chem. 2017; 10: 1193-1199. https://doi.org/10.1016/j.arabjc.2013.02.015
  • [27] Rafi M, Devi AF, Syafitri UD, Heryanto R, Suparto IH, Amran MB, Rohman A, Prajogo B, Lim LW. Classification of Andrographis paniculata extracts by solvent extraction using HPLC fingerprint and chemometric analysis. BMC Res Notes. 2020; 13(1): 56. https://doi.org/10.1186/s13104-020-4920-x
  • [28] Adam OAO, Abadi RSM, Ayoub SMH. The effect of extraction method and solvents on yield and antioxidant activity of certain Sudanese medicinal plant extracts. J Phytopharmacol. 2019; 8(5): 248–252. https://doi.org/10.31254/phyto.2019.8507
  • [29] Apriani EF, Mardiyanto M, Hendrawan A. Optimization of green synthesis of silver nanoparticles from Areca catechu l. seed extract with variations of silver nitrate and extract concentrations using simplex lattice design method. Farmacia. 2022; 70 (5): 917-924. https://doi.org/10.31925/farmacia.2022.5.18
  • [30] Laxmi M, Bhardwaj A, Mehta S, Mehta A. Development and characterization of nanoemulsion as carrier for the enhancement of bioavailability of artemether. Artif Cells Nanomed Biotechnol. 2015; 43(5): 334–344. https://doi.org/10.3109/21691401.2014.887018
  • [31] Matman N, Min Oo Y, Amnuaikit T, Somnuk K. Continuous production of nanoemulsion for skincare product using a 3D-printed rotor-stator hydrodynamic cavitation reactor. Ultrason Sonochem. 2022; 83: 105926. https://doi.org/10.1016/j.ultsonch.2022.105926
  • [32] Onyeogaziri FC, Papaneophytou C. a general guide for the optimization of enzyme assay conditions using the design of experiments approach. SLAS Discov. 2019;24(5):587-596. https://doi.org/10.1177/2472555219830084
  • [33] Rowe RC, Sheskey PJ, Quin M. Handbook of Pharmaceutical Excipients, sixth edition, Pharmaceutical Press, United Kingdom 2009.
  • [34] Saeedi M, Rafati MR, Semnanı KM, Rostam AY, Kelıdarı HR. Evaluation of effect of tween 80 on characteristics of tadalafil 0.1% suspension. Pharm Biomed Res. 2015; 1(2): 35–43. https://doi.org/10.18869/acadpub.pbr.1.2.35.
  • [35] Del Regno A, Warren PB, Bray DJ, Anderson RL. Critical micelle concentrations in surfactant mixtures and blends by simulation. J Phys Chem. 2021; 125(22): 5983–5990. https://doi.org/10.1021/acs.jpcb.1c00893
  • [36] Kurpiers M, Wolf JD, Steinbring C, Zaichik S, Bernkop-Schnürch A. Zeta potential changing nanoemulsions based on phosphate moiety cleavage of a PEGylated surfactant. J Mol Liquids. 2020; 316: 113868. https://doi.org/10.1016/j.molliq.2020.113868
  • [37] Marzuki NHC, Wahab RA, Hamid MA. An overview of nanoemulsion: Concepts of development and cosmeceutical applications. Biotechnol Biotechnol Equip. 2019; 33(1): 779–797. https://doi.org/10.1080/13102818.2019.1620124
  • [38] Deryabin DG, Efremova LV, Vasilchenko AS, Saidakova EV, Sizova EA, Troshin PA, Zhilenkov AV, Khakina EA. A zeta potential value determines the aggregate's size of penta-substituted fullerene derivatives in aqueous suspension whereas positive charge is required for toxicity against bacterial cells. J Nanobiotechnol. 2015; 13: 50. https://doi.org/10.1186/s12951-015-0112-6
  • [39] Septembre-Malaterre A, Boumendjel A, Seteyen ALS, Boina C, Gasque P, Guiraud P, Sélambarom J. Focus on the high therapeutic potentials of quercetin and its derivatives. Phytomedicine Plus. 2022; 2(1):100220. https://doi.org/10.1016/j.phyplu.2022.100220
  • [40] Costa SCC, Detoni CB, Branco CRC, Botura MB, Branco, A. In vitro photoprotective effects of Marcetia taxifolia ethanolic extract and its potential for sunscreen formulations. Rev Bras Farmacogn. 2015; 25(4): 413–418. https://doi.org/10.1016/j.bjp.2015.07.013
  • [41] Hairunisa I, Dai M, Wikantyasning R. Validated UV-Vis spectrophotometric determination of andrographolide in herbal nano-preparation. Asian J Chem. 2019; 31 (9): 1985-1988. https://doi.org/10.14233/ajchem.2019.21951.
  • [42] Indarti K, Apriani EF, Wibowo AE, Simanjuntak P. Antioxidant Activity of ethanolic extract and various fractions from green tea (Camellia sinensis L.) leaves. Pharmacogn J. 2019; 11 (4): 771-776. https://doi.org/10.5530/pj.2019.11.122
  • [43] Miksusanti, Apriani EF, Bihurini AHB. Optimization of Tween 80 and PEG-400 concentration in ındonesian virgin coconut oil nanoemulsion as antibacterial against Staphylococcus aureus. Sains Malaysiana. 2023; 52 (4): 1259-1272. http://doi.org/10.17576/jsm-2023-5204-17
  • [44] Suryani, Handoyo M, Alfiandi, Putrawansya RP, Adjeng TA, Aswan M, Ruslin. The self-nanoemulsifying drug delivery system formulation of mefenamic acid. Asian J Pharm. 2019; 13(4): 287. https://doi.org/https://dx.doi.org/10.22377/ajp.v13i04.3399
  • [45] Alhamdany A, Saeed AMH, Alaayedi M. Nanoemulsion and solid nanoemulsion for ımproving oral delivery of a breast cancer drug: Formulation, evaluation, and a comparison study. Saudi Pharm J. 2021; 29(11): 1278–1288. https://doi.org/10.1016/j.jsps.2021.09.016
  • [46] Apriani EF, Shiyan S, Hardestyariki D, Starlista V, Febriani M. Factorial design for the optimization of Clindamycin HCl-loaded ethosome with various concentration of Phospholipon 90G and ethanol. Res J Pharm Technol. 2023; 16 (4): 1561-1568. https://doi.org/10.52711/0974-360X.2023.00255
  • [47] Mardiyanto M, Apriani EF, Alfarizi MH. Formulation and ın-vitro antibacterial activity of gel containing ethanolic extract of purple sweet potato leaves (Ipomoea batatas (L.) loaded poly lactic co-glycolic acid submicroparticles against Staphylococcus aureus. Res J Pharm Technol. 2022; 15 (8): 3599-3605. https://doi.org/10.52711/0974-360X.2022.00603
  • [48] Dutra EA, Da Costa E, Oliveira DAG, Kedor-Hackmann ERM, Miritello Santoro MIR. Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. Braz J Pharm Sci. 2004; 40(3): 381–385. https://doi.org/10.1590/S1516-93322004000300014
  • [49] Sudirman S, Herpandi, Safitri E, Apriani EF, Taqwa FH. Total polyphenol and flavonoid contents and antioxidant activities of water lettuce (Pistia stratiotes) leave extracts. Food Res. 2022; 6(4): 205 – 210. https://doi.org/10.26656/fr.2017.6(4).484
  • [50] Apriani EF, Miksusanti M, Fransiska N. Formulation and optimization peel-off gel mask with polyvinyl alcohol and gelatin based using factorial design from banana peel flour (Musa paradisiaca L) as antioxidant. Indonesian J Pharm. 2022; 33(2): 261–268. https://doi.org/10.22146/ijp.3408
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İlaç Dağıtım Teknolojileri, Eczacılık ve İlaç Bilimleri (Diğer)
Bölüm Articles
Yazarlar

Dwi Hardestyarik 0000-0002-1220-2502

Rida Seranita Al-rasyid 0009-0007-9872-2106

Elsa Fitria Apriani 0000-0002-0403-8458

Yayımlanma Tarihi 28 Haziran 2025
Yayımlandığı Sayı Yıl 2024 Cilt: 28 Sayı: 5

Kaynak Göster

APA Hardestyarik, D., Al-rasyid, R. S., & Apriani, E. F. (2025). Sambiloto leaves (Andrographis paniculata (Burm.f.) Wall. Ex. Nees) nanoemulsion preparations: Optimization of Tween 80 and PEG-400 concentrations as photoprotective agents. Journal of Research in Pharmacy, 28(5), 1435-1448.
AMA Hardestyarik D, Al-rasyid RS, Apriani EF. Sambiloto leaves (Andrographis paniculata (Burm.f.) Wall. Ex. Nees) nanoemulsion preparations: Optimization of Tween 80 and PEG-400 concentrations as photoprotective agents. J. Res. Pharm. Temmuz 2025;28(5):1435-1448.
Chicago Hardestyarik, Dwi, Rida Seranita Al-rasyid, ve Elsa Fitria Apriani. “Sambiloto Leaves (Andrographis Paniculata (Burm.F.) Wall. Ex. Nees) Nanoemulsion Preparations: Optimization of Tween 80 and PEG-400 Concentrations As Photoprotective Agents”. Journal of Research in Pharmacy 28, sy. 5 (Temmuz 2025): 1435-48.
EndNote Hardestyarik D, Al-rasyid RS, Apriani EF (01 Temmuz 2025) Sambiloto leaves (Andrographis paniculata (Burm.f.) Wall. Ex. Nees) nanoemulsion preparations: Optimization of Tween 80 and PEG-400 concentrations as photoprotective agents. Journal of Research in Pharmacy 28 5 1435–1448.
IEEE D. Hardestyarik, R. S. Al-rasyid, ve E. F. Apriani, “Sambiloto leaves (Andrographis paniculata (Burm.f.) Wall. Ex. Nees) nanoemulsion preparations: Optimization of Tween 80 and PEG-400 concentrations as photoprotective agents”, J. Res. Pharm., c. 28, sy. 5, ss. 1435–1448, 2025.
ISNAD Hardestyarik, Dwi vd. “Sambiloto Leaves (Andrographis Paniculata (Burm.F.) Wall. Ex. Nees) Nanoemulsion Preparations: Optimization of Tween 80 and PEG-400 Concentrations As Photoprotective Agents”. Journal of Research in Pharmacy 28/5 (Temmuz 2025), 1435-1448.
JAMA Hardestyarik D, Al-rasyid RS, Apriani EF. Sambiloto leaves (Andrographis paniculata (Burm.f.) Wall. Ex. Nees) nanoemulsion preparations: Optimization of Tween 80 and PEG-400 concentrations as photoprotective agents. J. Res. Pharm. 2025;28:1435–1448.
MLA Hardestyarik, Dwi vd. “Sambiloto Leaves (Andrographis Paniculata (Burm.F.) Wall. Ex. Nees) Nanoemulsion Preparations: Optimization of Tween 80 and PEG-400 Concentrations As Photoprotective Agents”. Journal of Research in Pharmacy, c. 28, sy. 5, 2025, ss. 1435-48.
Vancouver Hardestyarik D, Al-rasyid RS, Apriani EF. Sambiloto leaves (Andrographis paniculata (Burm.f.) Wall. Ex. Nees) nanoemulsion preparations: Optimization of Tween 80 and PEG-400 concentrations as photoprotective agents. J. Res. Pharm. 2025;28(5):1435-48.