Araştırma Makalesi
BibTex RIS Kaynak Göster

The employment of Fourier Transform Infrared Spectroscopy for discrimination and classification of Parupeneus barberinoides fish oil

Yıl 2024, Cilt: 28 Sayı: 5, 1465 - 1471, 28.06.2025

Öz

Goatfish oil (Parupeneus barberinoides) is a great of omega-3 source, which had beneficial effect in human health as consequence, these oil could be mixed with by products. Fourier trasform infrared (FTIR) spectroscopy combined chemometrics techniques of pattern recognition was used for discrimination and classification of fish head, fish meat, and fish bone of goatfish. Each part of goatfish was scanned using FTIR at mid regions (4000-600 cm-1). The result showed that the partial least square – discriminant analysis (PLS-DA) could be perfectly discrimination and classification of goatfish part by using the whole FTIR spectra as a variable. The variable important in projection (VIP) analysis revealed the vibration at 1710, 721, 1744, 3011, 1116, 1377, and 1032 cm-1 were considered for their significant contribution (VIP value > 1) in discriminating of different parts of goatfish oil. It can be concluded that FTIR spectroscopy combined supervised pattern recognition could be used as a rapid analytical technique for discrimination and classification of fish oil.

Kaynakça

  • [1] Longenecker K, Langston R, Bolick H, Crane M, Donaldson TJ, Franklin EC, Kelokelo M, Kondio U, Potuku T. Rapid reproductive analysis and length–weight relations for five species of coral-reef fishes (Actinopterygii) from papua new guinea: Nemipterus isacanthus, parupeneus barberinus, kyphosus cinerascens, ctenochaetus striatus (perciformes), and balistapus undulatus (Tetraodontiformes). Acta Ichthyol Piscat. 2017; 47: 107–124. https://doi:10.3750/AIEP/02146
  • [2] Lukoschek V, McCormick MI. Ontogeny of diet changes in a tropical benthic carnivorous fish, Parupeneus barberinus (Mullidae): Relationship between foraging behaviour, habitat use, jaw size, and prey selection. Mar Biol. 2001; 138: 1099–1113. https://doi:10.1007/S002270000530/METRICS
  • [3] Russ GR, Bergseth BJ, Rizzari JR, Alcala AC. Decadal-scale effects of benthic habitat and marine reserve protection on Philippine goatfish (F: Mullidae). Coral Reefs. 2015; 34: 773–787. https://doi:10.1007/S00338-015-1296-9/METRICS
  • [4] Durmuş M. Fish oil for human health: Omega-3 fatty acid profiles of marine seafood species. Food Sci Technol. 2019; 39: 454–461. https://doi:10.1590/fst.21318
  • [5] He Y, Li J, Kodali S, Chen B, Guo Z. Rationale behind the near-ideal catalysis of Candida antarctica lipase A (CAL-A) for highly concentrating ω-3 polyunsaturated fatty acids into monoacylglycerols. Food Chem. 2017; 219: 230–239. https://doi:10.1016/j.foodchem.2016.09.149
  • [6] Srigley CT, Rader JI. Content and composition of fatty acids in marine oil omega-3 supplements. J Agric Food Chem. 2014; 62: 7268–7278. https://doi:10.1021/jf5016973
  • [7] Vongsvivut J, Miller MR, McNaughton D, Heraud P, Barrow CJ. Rapid discrimination and determination of polyunsaturated fatty acid composition in marine oils by FTIR spectroscopy and multivariate data analysis. Food Bioprocess Technol. 2014; 7: 2410–2422. https://doi:10.1007/s11947-013-1251-0
  • [8] Alamprese C, Casiraghi E. Application of FT-NIR and FT-IR spectroscopy to fish fillet authentication. LWT. 2015; 63: 720–725. https://doi:10.1016/j.lwt.2015.03.021
  • [9] Cheng JH, Dai Q, Sun DW, Zeng XA, Liu D, Pu HB. Applications of non-destructive spectroscopic techniques for fish quality and safety evaluation and inspection. Trends Food Sci Technol. 2013; 34: 18–31. https://doi:10.1016/J.TIFS.2013.08.005
  • [10] Dalle Zotte A, Ottavian M, Concollato A, Serva L, Martelli R, Parisi G. Authentication of raw and cooked freeze-dried rainbow trout (Oncorhynchus mykiss) by means of near infrared spectroscopy and data fusion. Food Res Int. 2014; 60: 180–188. https://doi:10.1016/J.FOODRES.2013.10.033
  • [11] Ottavian M, Fasolato L, Facco P, Barolo M. Foodstuff authentication from spectral data: Toward a species-independent discrimination between fresh and frozen–thawed fish samples. J Food Eng. 2013; 119: 765–775. https://doi:10.1016/J.JFOODENG.2013.07.005
  • [12] Karunathilaka SR, Choi SH, Mossoba MM, Yakes BJ, Brückner L, Ellsworth Z, Srigley CT. Rapid classification and quantification of marine oil omega-3 supplements using ATR-FTIR, FT-NIR and chemometrics. J Food Compos Anal. 2019; 77: 9–19. https://doi:10.1016/j.jfca.2018.12.009
  • [13] Mustafidah M, Irnawati I, Lukitaningsih E, Rohman A. Authentication analysis of milkfish fish oil using the combination of FTIR spectroscopy and chemometrics. Food Res. 2021; 5: 272–278. https://doi:10.26656/fr.2017.5(2).607
  • [14] Zhang XY, Hu W, Teng J, Peng HH, Gan JH, Wang XC, Sun SQ, Xu CH, Liu Y. Rapid recognition of marine fish surimi by one-step discriminant analysis based on near-infrared diffuse reflectance spectroscopy. Int J Food Prop. 2017; 20: 2932–2943. https://doi:10.1080/10942912.2016.1261153
  • [15] Yi T, Li SM, Fan JY, Fan LL, Zhang ZF, Luo P, Zhang XJ, Wang JG, Zhu L, Zhao ZZ, Chen HB. Comparative analysis of EPA and DHA in fish oil nutritional capsules by GC-MS. Lipids Health Dis. 2014; 13: 190. https://doi:10.1186/1476-511X-13-190
  • [16] Rincón-Cervera MÁ, Villarreal-Rubio MB, Valenzuela R, Valenzuela A. Comparison of fatty acid profiles of dried and raw by-products from cultured and wild fishes. Eur J Lipid Sci Technol. 2017; 119: 1600516. https://doi:10.1002/ejlt.201600516
  • [17] Irnawati I, Windarsih A, Indrianingsih AW, Apriyana W, Ratnawati YA, Nadia LOMH, Rohman A. Rapid detection of tuna fish oil adulteration using FTIR-ATR spectroscopy and chemometrics for halal authentication. J. Appl. Pharm. Sci. 2023; 13: 231–239. https://doi:10.7324/japs.2023.120270
  • [18] Ali NAM, Tukiran NA. Detection of pork in used cooking oil using Fourier Transform Infrared Spectroscopy. Int J Allied Heal Sci. 2021; 5: 2110–2110.
  • [19] de la Fuente B, Pinela J, Mandim F, Heleno SA, Ferreira ICFR, Barba FJ, Berrada H, Caleja C, Barros L. Nutritional and bioactive oils from salmon (Salmo salar) side streams obtained by Soxhlet and optimized microwave-assisted extraction. Food Chem. 2022; 386: 132778. https://doi.org/10.1016/j.foodchem.2022.132778
  • [20] Earlia N, Muslem, Suhendra R, Amin M, Prakoeswa CRS, Khairan, Idroes R. GC/MS Analysis of fatty acids on Pliek U Oil and its pharmacological study by molecular docking to filaggrin as a drug candidate in atopic dermatitis treatment. Sci World J. 2019; 2019: 8605743. https://doi:10.1155/2019/8605743
  • [21] Irnawati I, Riyanto S, Martono S, Windarsih A, Rohman A. Physicochemical properties and antioxidant activities of pumpkin seed oil as affected by different origins and extraction methods. J Appl Pharm Sci. 2021; 12: 115-122. https://doi.org/10.7324/JAPS.2022.120312.
Yıl 2024, Cilt: 28 Sayı: 5, 1465 - 1471, 28.06.2025

Öz

Kaynakça

  • [1] Longenecker K, Langston R, Bolick H, Crane M, Donaldson TJ, Franklin EC, Kelokelo M, Kondio U, Potuku T. Rapid reproductive analysis and length–weight relations for five species of coral-reef fishes (Actinopterygii) from papua new guinea: Nemipterus isacanthus, parupeneus barberinus, kyphosus cinerascens, ctenochaetus striatus (perciformes), and balistapus undulatus (Tetraodontiformes). Acta Ichthyol Piscat. 2017; 47: 107–124. https://doi:10.3750/AIEP/02146
  • [2] Lukoschek V, McCormick MI. Ontogeny of diet changes in a tropical benthic carnivorous fish, Parupeneus barberinus (Mullidae): Relationship between foraging behaviour, habitat use, jaw size, and prey selection. Mar Biol. 2001; 138: 1099–1113. https://doi:10.1007/S002270000530/METRICS
  • [3] Russ GR, Bergseth BJ, Rizzari JR, Alcala AC. Decadal-scale effects of benthic habitat and marine reserve protection on Philippine goatfish (F: Mullidae). Coral Reefs. 2015; 34: 773–787. https://doi:10.1007/S00338-015-1296-9/METRICS
  • [4] Durmuş M. Fish oil for human health: Omega-3 fatty acid profiles of marine seafood species. Food Sci Technol. 2019; 39: 454–461. https://doi:10.1590/fst.21318
  • [5] He Y, Li J, Kodali S, Chen B, Guo Z. Rationale behind the near-ideal catalysis of Candida antarctica lipase A (CAL-A) for highly concentrating ω-3 polyunsaturated fatty acids into monoacylglycerols. Food Chem. 2017; 219: 230–239. https://doi:10.1016/j.foodchem.2016.09.149
  • [6] Srigley CT, Rader JI. Content and composition of fatty acids in marine oil omega-3 supplements. J Agric Food Chem. 2014; 62: 7268–7278. https://doi:10.1021/jf5016973
  • [7] Vongsvivut J, Miller MR, McNaughton D, Heraud P, Barrow CJ. Rapid discrimination and determination of polyunsaturated fatty acid composition in marine oils by FTIR spectroscopy and multivariate data analysis. Food Bioprocess Technol. 2014; 7: 2410–2422. https://doi:10.1007/s11947-013-1251-0
  • [8] Alamprese C, Casiraghi E. Application of FT-NIR and FT-IR spectroscopy to fish fillet authentication. LWT. 2015; 63: 720–725. https://doi:10.1016/j.lwt.2015.03.021
  • [9] Cheng JH, Dai Q, Sun DW, Zeng XA, Liu D, Pu HB. Applications of non-destructive spectroscopic techniques for fish quality and safety evaluation and inspection. Trends Food Sci Technol. 2013; 34: 18–31. https://doi:10.1016/J.TIFS.2013.08.005
  • [10] Dalle Zotte A, Ottavian M, Concollato A, Serva L, Martelli R, Parisi G. Authentication of raw and cooked freeze-dried rainbow trout (Oncorhynchus mykiss) by means of near infrared spectroscopy and data fusion. Food Res Int. 2014; 60: 180–188. https://doi:10.1016/J.FOODRES.2013.10.033
  • [11] Ottavian M, Fasolato L, Facco P, Barolo M. Foodstuff authentication from spectral data: Toward a species-independent discrimination between fresh and frozen–thawed fish samples. J Food Eng. 2013; 119: 765–775. https://doi:10.1016/J.JFOODENG.2013.07.005
  • [12] Karunathilaka SR, Choi SH, Mossoba MM, Yakes BJ, Brückner L, Ellsworth Z, Srigley CT. Rapid classification and quantification of marine oil omega-3 supplements using ATR-FTIR, FT-NIR and chemometrics. J Food Compos Anal. 2019; 77: 9–19. https://doi:10.1016/j.jfca.2018.12.009
  • [13] Mustafidah M, Irnawati I, Lukitaningsih E, Rohman A. Authentication analysis of milkfish fish oil using the combination of FTIR spectroscopy and chemometrics. Food Res. 2021; 5: 272–278. https://doi:10.26656/fr.2017.5(2).607
  • [14] Zhang XY, Hu W, Teng J, Peng HH, Gan JH, Wang XC, Sun SQ, Xu CH, Liu Y. Rapid recognition of marine fish surimi by one-step discriminant analysis based on near-infrared diffuse reflectance spectroscopy. Int J Food Prop. 2017; 20: 2932–2943. https://doi:10.1080/10942912.2016.1261153
  • [15] Yi T, Li SM, Fan JY, Fan LL, Zhang ZF, Luo P, Zhang XJ, Wang JG, Zhu L, Zhao ZZ, Chen HB. Comparative analysis of EPA and DHA in fish oil nutritional capsules by GC-MS. Lipids Health Dis. 2014; 13: 190. https://doi:10.1186/1476-511X-13-190
  • [16] Rincón-Cervera MÁ, Villarreal-Rubio MB, Valenzuela R, Valenzuela A. Comparison of fatty acid profiles of dried and raw by-products from cultured and wild fishes. Eur J Lipid Sci Technol. 2017; 119: 1600516. https://doi:10.1002/ejlt.201600516
  • [17] Irnawati I, Windarsih A, Indrianingsih AW, Apriyana W, Ratnawati YA, Nadia LOMH, Rohman A. Rapid detection of tuna fish oil adulteration using FTIR-ATR spectroscopy and chemometrics for halal authentication. J. Appl. Pharm. Sci. 2023; 13: 231–239. https://doi:10.7324/japs.2023.120270
  • [18] Ali NAM, Tukiran NA. Detection of pork in used cooking oil using Fourier Transform Infrared Spectroscopy. Int J Allied Heal Sci. 2021; 5: 2110–2110.
  • [19] de la Fuente B, Pinela J, Mandim F, Heleno SA, Ferreira ICFR, Barba FJ, Berrada H, Caleja C, Barros L. Nutritional and bioactive oils from salmon (Salmo salar) side streams obtained by Soxhlet and optimized microwave-assisted extraction. Food Chem. 2022; 386: 132778. https://doi.org/10.1016/j.foodchem.2022.132778
  • [20] Earlia N, Muslem, Suhendra R, Amin M, Prakoeswa CRS, Khairan, Idroes R. GC/MS Analysis of fatty acids on Pliek U Oil and its pharmacological study by molecular docking to filaggrin as a drug candidate in atopic dermatitis treatment. Sci World J. 2019; 2019: 8605743. https://doi:10.1155/2019/8605743
  • [21] Irnawati I, Riyanto S, Martono S, Windarsih A, Rohman A. Physicochemical properties and antioxidant activities of pumpkin seed oil as affected by different origins and extraction methods. J Appl Pharm Sci. 2021; 12: 115-122. https://doi.org/10.7324/JAPS.2022.120312.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Farmasotik Kimya
Bölüm Articles
Yazarlar

Irnawati Irnawati 0000-0001-8054-1664

Asriullah Jabbar 0000-0001-8319-6341

Muhammad Ilyas Yusuf 0000-0001-7882-5107

Abdul Rohman 0000-0002-1141-7093

Sakinah Alfadillah 0009-0007-5602-8597

Yayımlanma Tarihi 28 Haziran 2025
Gönderilme Tarihi 26 Ekim 2023
Kabul Tarihi 20 Aralık 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 28 Sayı: 5

Kaynak Göster

APA Irnawati, I., Jabbar, A., Yusuf, M. I., Rohman, A., vd. (2025). The employment of Fourier Transform Infrared Spectroscopy for discrimination and classification of Parupeneus barberinoides fish oil. Journal of Research in Pharmacy, 28(5), 1465-1471.
AMA Irnawati I, Jabbar A, Yusuf MI, Rohman A, Alfadillah S. The employment of Fourier Transform Infrared Spectroscopy for discrimination and classification of Parupeneus barberinoides fish oil. J. Res. Pharm. Temmuz 2025;28(5):1465-1471.
Chicago Irnawati, Irnawati, Asriullah Jabbar, Muhammad Ilyas Yusuf, Abdul Rohman, ve Sakinah Alfadillah. “The Employment of Fourier Transform Infrared Spectroscopy for Discrimination and Classification of Parupeneus Barberinoides Fish Oil”. Journal of Research in Pharmacy 28, sy. 5 (Temmuz 2025): 1465-71.
EndNote Irnawati I, Jabbar A, Yusuf MI, Rohman A, Alfadillah S (01 Temmuz 2025) The employment of Fourier Transform Infrared Spectroscopy for discrimination and classification of Parupeneus barberinoides fish oil. Journal of Research in Pharmacy 28 5 1465–1471.
IEEE I. Irnawati, A. Jabbar, M. I. Yusuf, A. Rohman, ve S. Alfadillah, “The employment of Fourier Transform Infrared Spectroscopy for discrimination and classification of Parupeneus barberinoides fish oil”, J. Res. Pharm., c. 28, sy. 5, ss. 1465–1471, 2025.
ISNAD Irnawati, Irnawati vd. “The Employment of Fourier Transform Infrared Spectroscopy for Discrimination and Classification of Parupeneus Barberinoides Fish Oil”. Journal of Research in Pharmacy 28/5 (Temmuz 2025), 1465-1471.
JAMA Irnawati I, Jabbar A, Yusuf MI, Rohman A, Alfadillah S. The employment of Fourier Transform Infrared Spectroscopy for discrimination and classification of Parupeneus barberinoides fish oil. J. Res. Pharm. 2025;28:1465–1471.
MLA Irnawati, Irnawati vd. “The Employment of Fourier Transform Infrared Spectroscopy for Discrimination and Classification of Parupeneus Barberinoides Fish Oil”. Journal of Research in Pharmacy, c. 28, sy. 5, 2025, ss. 1465-71.
Vancouver Irnawati I, Jabbar A, Yusuf MI, Rohman A, Alfadillah S. The employment of Fourier Transform Infrared Spectroscopy for discrimination and classification of Parupeneus barberinoides fish oil. J. Res. Pharm. 2025;28(5):1465-71.