Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis, characterization Research Article www.jrespharm.com and investigation of cholinesterase enzyme inhibition and antioxidant activities of some 4-aryl-1,4-dihydropyridine derivatives

Yıl 2019, Cilt: 23 Sayı: 4, 608 - 616, 27.06.2025

Öz

The aim of this study is to synthesize and characterize 4-aryl-1,4-dihydropyridine derivatives and evaluate their antioxidant and cholinesterase inhibitory properties. Hantzsch reaction was used in the synthesis of compounds; the compounds were prepared by the reaction of methyl 3- acetoacetate, appropriate aromatic aldehyde, ammonia and catalyst. The reactions were carried out in the presence of copper sulfate (for Method A) and boric acid /acetic acid catalyst (for Method B). CuSO4 was used as a catalyst for the Hantzsch reaction for the first time. The structure of the synthesized compounds were characterized by IR and 1H-NMR spectral studies. Furthermore, the enzym (acetylcholinesterase and butyrylcholinesterase) inhibition activity of the synthesized compounds was evaluated using Ellman's spectrophotometrical method as a novel approach. Antioxidant studies of the synthesized compounds were performed by measuring the 1,1-diphenyl-2-picrylhydrazyl radical scavenging assay, phosphomolibdenum reducing antioxidant power assay, and metal chelating activity test. Results showed that 4-bromo substituted derivative (1b) has the highest antioxidant activity compared to other tested compounds. Moreover, compound 1b also has higher cholinesterase inhibitory effect (34.05 ± 2.23% and 24.93 ± 0.68% at 250 µM) than other tested compounds. In this study, eight 1,4-dihydropyridine derivatives, dimethyl 4-(phenyl/substituted phenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5 dicarboxylate compounds were synthesized according to the Hantzsch reaction, using CuSO4 as a catalyst, for the first time. Compared to the classical reaction conditions, the presence of catalyst has been offered several advantages such as excellent good yields and short reaction times.

Kaynakça

  • [1] Goldmann S, Stoltefuss, J. 1,4-Dihydropyridines - Effects of chirality and conformation on the calcium-antagonist and calcium agonist activities. Angewandte Chemie-International Edition in English. Angew Chem Int Ed Engl. 1991; 30(12): 1559-1578. [CrossRef]
  • [2] Cotterill IC, Usyatinsky AY, Amold JM, Clark DS, Dordick JS, Michels PC, Khmelnitsky YL. Microwave assisted combinatorial chemistry synthesis of substituted pyridines. Tetrahedron Lett. 1998; 39: 1117-1120. [CrossRef]
  • [3] Hantzsch A. Ueber die Synthese pyridinartiger Verbindungen aus Acetessigäther und Aldehydammoniak. Justus Liebigs Ann Chem. 1882; 215: 1-82. [CrossRef]
  • [4] Beyer C. Ueber den Mechanismus der Hantzsch'schen Pyridinsynthesen. Chem Ber. 1891; 24(1): 1662-1670. [CrossRef]
  • [5] Vater W, Kroneberg G, Hoffmeister F, Kaller H, Meng K, Oberdorf AO, Puls W, Schlossmann K, Stoepel K. Zur Pharmakologie von 4-(2’-Nitrophenyl)-2,6-dimethyl-1,4- dihydropyridin-3,5-dicarbonsäure dimethylester (Nifedipin), Bay A 1040. Arzneimittel Forschung - Drug Res. 1972; 22: 1-170.
  • [6] Zorkun IS, Saraç S, Çelebi S, Erol K. Synthesis of 4-aryl-3,4-dihydropyrimidin-2(1H)-thione derivatives as potential calcium channel blocker. Bioorg Med Chem. 2006; 14: 8582-8589. [CrossRef]
  • [7] David JT. Calcium channel antagonists: Clinical uses—Past, present and future. Biochem Pharmacol. 2007; 74: 1–9. [CrossRef]
  • [8] Prasanthi G, Prasad KV, Bharathi K. Design, synthesis and evaluation of dialkyl 4-(benzo[d][1,3]dioxol-6-yl)-1,4-dihydro-2,6-dimethyl-1-substituted pyridine-3,5-dicarboxylates as potential anticonvulsants and their molecular properties prediction. Eur J Med Chem. 2013; 66: 516-525. [CrossRef]
  • [9] Gasco AM, Ermondi G, Fruttero R, Gasco A. Benzofurazinyl- and benzofuroxanyl- 1,4-dihydropyridines: synthesis and calcium entry blocker activity. Eur J Med Chem. 1996; 31: 3-10. [CrossRef]
  • [10] Nelson EB, Pool JL, Taylor AA. Antihypertensive activity of isradipine in humans: a new dihydropyridine calcium channel antagonist. Clin Pharmacol Ther. 1986; 40: 694-697. [CrossRef]
  • [11] Borowicz KK, Gasior M, Kleinrok Z, Czuczwar SJ. Influence of isradipine, niguldipine and dantrolene on the anticonvulsive action of conventional antiepileptics in mice. Eur J Pharmacol. 1997; 323: 45-51. [CrossRef]
  • [12] Boer R, Gekeler V. Chemosensitizers in tumor therapy: new compounds promise better efficacy. Drugs Future. 1995; 20: 499–509.
  • [13] Briukhanov VM, Laf Z, Elkin VI. Effects of calcium antagonists on the development of inflammatory edema in rat. Exp Clin Pharmacol. 1994; 57: 47–49.
  • [14] Gullapalli S, Ramarao P. L-type Ca+2 channel modulation by dihydropyridines potentiates κ-opioid receptor agonist induced acute analgesia and inhibits development of tolerance in rats. Neuropharmacology. 2002; 42: 467–475. [CrossRef]
  • [15] Anwar A, Hameed A, Perveen S, Uroos M, Chounhary M, Basha F. 1,1-Diphenyl-2-picrylhydrazyl radical scavenging activity of novel dihydropyridine derivatives. Eur J Chem. 2014; 5: 189-191. [CrossRef]
  • [16] Dhinakaran I, Padmini V, Bhuvanesh N. One-pot synthesis of N-aryl 1,4-dihydropyridine derivatives and their biological activities. J Chem Sci. 2015; 127: 2201-2209. [CrossRef]
  • [17] Li Q, Siyu H, Chen Y, Feng F, Wei Q, Sun H. Donepezil-based multi-functional cholinesterase inhibitors for treatment of Alzheimer's disease. Eur J Med Chem. 2018; 158: 463-477. [CrossRef]
  • [18] Butterfield D, Lauderback CM. Lipid peroxidation and protein oxidation in Alzheimer's disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic Biol Med. 2002; 32: 1050-1060. [CrossRef]
  • [19] Nordberg A, Svensson AL. Cholinesterase inhibitors in the treatment of Alzheimer’s disease: A comparison of tolerability and pharmacology. Drug Saf. 1998; 19: 465–480. [CrossRef]
  • [20] Maheswara M, Siddaiah V, Damu GLV, Rao CV. An efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation using a heterogeneous catalyst under solvent-free conditions. Arkivoc. 2006; (ii): 201-206. [CrossRef]
  • [21] Ko S, Sastry MNV, Lin C, Yao C. Molecular iodine-catalyzed one-pot synthesis of 4-substituted-1,4-dihydropyridine derivatives via Hantzsch reaction. Tetrahedron Lett. 2005; 46: 5771-5774. [CrossRef]
  • [22] Zolfigol MA, Salehi P, Khorramabadi-Zad A, Shayegh M. Iodine-catalyzed synthesis of novel Hantzsch N-hydroxyethyl 1,4-dihydropyridines under mild conditions. J Mol Catal A Chem. 2007; 261: 88-92. [CrossRef]
  • [23] Sabitha G, Reddy GSKK, Reddy Ch.S, Yadav JS. A novel TMSI-mediated synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature. Tetrahedron Lett. 2003; 44: 4129-4131. [CrossRef]
  • [24] Ko S, Yao C. Ceric Ammonium Nitrate (CAN) catalyzes the one-pot synthesis of polyhydroquinoline via the Hantzsch reaction. Tetrahedron. 2006; 62: 7293-7299. [CrossRef]
  • [25] Debache A, Ghalem W, Boulcina R, Belfaitah A, Rhouati S, Bertrand C. An efficient one-step synthesis of 1,4-dihydropyridines via a triphenylphosphine-catalyzed three-component Hantzsch reaction under mild conditions. Tetrahedron Lett. 2009; 50: 5248-5250. [CrossRef]
  • [26] Safari J, Banitaba SH, Khalili SD. Cellulose sulfuric acid catalyzed multicomponent reaction for efficient synthesis of 1,4-dihydropyridines via unsymmetrical Hantzsch reaction in aqueous media. J Mol Cat A Chem. 2011; 335: 46-50. [CrossRef]
  • [27] Khadilkar BM, Gaikar VG, Chitnavis AA. Aqueous hydrotrope solution as a safer medium for microwave enhanced Hantzsch dihydropyridine ester synthesis. Tetrahedron Lett. 1995; 36: 8083-8086. [CrossRef]
  • [28] Balalaie S, Baoosi L, Tahoori F, Rominger F, Bijanzadeh HR. Synthesis of polysubstituted 1,4-dihydropyridines via three-component reaction. Tetrahedron. 2013; 69: 738-743. [CrossRef]
  • [29] Babu G, Perumal PT. Synthetic applications of indium trichloride catalyzed reactions. Aldrichimica Acta. 2000; 33: 16-22. [CrossRef]
  • [30] Chari MA, Syamasundar K. Silica gel/NaHSO4 catalyzed one-pot synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature. Catal Comm. 2005; 6: 624-626. [CrossRef]
  • [31] Tewari N, Dwivedi N, Tripathi RP. Tetrabutylammonium hydrogen sulfate catalyzed eco-friendly and efficient synthesis of glycosyl 1,4-dihydropyridines. Tetrahedron Lett. 2004; 45: 9011-9014. [CrossRef]
  • [32] Wang LM, Sheng J, Zhang L, Han JW, Fan ZY, Tian H, Qian CT. Facile Yb(OTf)3 promoted one-pot synthesis of polyhydroquinoline derivatives through Hantzsch reaction. Tetrahedron. 2005; 61: 1539-1543. [CrossRef]
  • [33] Surasani R, Kalita D, Rao AVD, Yarbagi K, Chandrasekhar KB. FeF3 as a novel catalyst for the synthesis of polyhydroquinoline derivatives via unsymmetrical Hantzsch reaction. J Fluorine Chem. 2012; 135: 91-96. [CrossRef]
  • [34] Davoodnia A, Khashi M, Tavakoli-Huseini N. Tetrabutylammonium hexatungstate [TBA]2[W6O19]: Novel and reusable heterogeneous catalyst for rapid solvent-free synthesis of polyhydroquinoline via unsymmetrical Hantzsch reaction. Chinese J Catal. 2013; 34: 1173-1178. [CrossRef]
  • [35] Hantzsch A. Condensationprodukte aus Aldehydammoniak und Ketonartigen Verbindungen. Chem Ber. 1881; 14: 1637–1638. [CrossRef]
  • [36] Albayrak E. Master Thesis. Condensed 1,4-dihydropyridine-3-carboxylate derivatives and their calcium modulatory activities. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey, 2015.
  • [37] Chandavoinee M-M, de Fillain PdeC, Pigerol C. Dihydropyridine Derivatives. United State Patent. 1980. US 4239893 A 19801216.
  • [38] Qi C, Zhang F. Method for preparation of 1,4-dihydropyridine compounds. Faming Zhuanli Shenqing. 2015. CN 105017132 A 20151104.
  • [39] Keleş T, Barut B, Biyiklioglu Z, Özel, A. A comparative study on DNA/BSA binding, DNA photocleavage and antioxidant activities of water soluble peripherally and non-peripherally tetra-3-pyridin-3-ylpropoxy-substituted Mn(III), Cu(II) phthalocyanines. Dyes Pigm. 2017; 139: 575-586. [CrossRef]
  • [40] Barut EN, Barut B, Engin S, Yıldırım S, Yaşar A, Türkiş S, Özel A, Sezen FS. Antioxidant capacity, anti acetylcholinesterase activity and inhibitory effect on lipid peroxidation in mice brain homogenate of Achillea millefolium. Turk J Biochem. 2017; 42: 493-502. [CrossRef]
  • [41] Leon R, de los Rios C, Marco-Contelles J, Huertas O, Barril X, Luque F, Lopez M, Garcia M, Garcia A, Villarroya M. New tacrine-dihydropyridine hybrids that inhibit acetylcholinesterase, calcium entry, and exhibit neuroprotection properties. Bioorg Med Chem. 2008; 16: 7759-7769. [CrossRef]
  • [42] Bolger GT, Gengo P, Klockowski R, Luchowski E, Siegel H, Janis RA, Triggle AM, Triggle DJ. Characterization of binding of the Ca++ channel antagonist, [3H]nitrendipine, to guinea-pig ileal smooth muscle. Pharmacol Exp Ther. 1983; 225(2): 291-309.
  • [43] Minocherhomjee AM, Roufogalis BD. Antagonism of calmodulin and phosphodiesterase by nifedipine and related calcium entry blockers. Cell Calcium. 1984; 5(1): 57-63. [CrossRef]
  • [44] Young SD. Facile conversion of Hantzsch type 4-aryl-2,6-dimethyl-1,4-dihydropyridine-3,5-carboxylates into 4-Aryl-2-methyl-5-oxo-1,4,5,7-tetrahydrofuro[3,4-b]pyridine-3-carboxylates. Synthesis. 1984; 1984(7): 617-618. [CrossRef]
  • [45] Rodenkirchen R, Bayer R, Steiner R, Bossert F, Meyer H, Möller E. Structure-activity studies on nifedipine in isolated cardiac muscle. Naunyn Schmiedebergs Arch Pharmacol. 1979; 310(1): 69-78. [CrossRef]
  • [46] Silverstein RM, Webster FX. Spectrometric identification of organic compounds, John Wiley & Sons Inc., New York, USA, 1998.
  • [47] Pretsch E, Clerk T, Seibl J, Simon W. Tables of spectral data for structure determination of organic compounds. Springer-Verlag, Berlin, 1983.
Yıl 2019, Cilt: 23 Sayı: 4, 608 - 616, 27.06.2025

Öz

Kaynakça

  • [1] Goldmann S, Stoltefuss, J. 1,4-Dihydropyridines - Effects of chirality and conformation on the calcium-antagonist and calcium agonist activities. Angewandte Chemie-International Edition in English. Angew Chem Int Ed Engl. 1991; 30(12): 1559-1578. [CrossRef]
  • [2] Cotterill IC, Usyatinsky AY, Amold JM, Clark DS, Dordick JS, Michels PC, Khmelnitsky YL. Microwave assisted combinatorial chemistry synthesis of substituted pyridines. Tetrahedron Lett. 1998; 39: 1117-1120. [CrossRef]
  • [3] Hantzsch A. Ueber die Synthese pyridinartiger Verbindungen aus Acetessigäther und Aldehydammoniak. Justus Liebigs Ann Chem. 1882; 215: 1-82. [CrossRef]
  • [4] Beyer C. Ueber den Mechanismus der Hantzsch'schen Pyridinsynthesen. Chem Ber. 1891; 24(1): 1662-1670. [CrossRef]
  • [5] Vater W, Kroneberg G, Hoffmeister F, Kaller H, Meng K, Oberdorf AO, Puls W, Schlossmann K, Stoepel K. Zur Pharmakologie von 4-(2’-Nitrophenyl)-2,6-dimethyl-1,4- dihydropyridin-3,5-dicarbonsäure dimethylester (Nifedipin), Bay A 1040. Arzneimittel Forschung - Drug Res. 1972; 22: 1-170.
  • [6] Zorkun IS, Saraç S, Çelebi S, Erol K. Synthesis of 4-aryl-3,4-dihydropyrimidin-2(1H)-thione derivatives as potential calcium channel blocker. Bioorg Med Chem. 2006; 14: 8582-8589. [CrossRef]
  • [7] David JT. Calcium channel antagonists: Clinical uses—Past, present and future. Biochem Pharmacol. 2007; 74: 1–9. [CrossRef]
  • [8] Prasanthi G, Prasad KV, Bharathi K. Design, synthesis and evaluation of dialkyl 4-(benzo[d][1,3]dioxol-6-yl)-1,4-dihydro-2,6-dimethyl-1-substituted pyridine-3,5-dicarboxylates as potential anticonvulsants and their molecular properties prediction. Eur J Med Chem. 2013; 66: 516-525. [CrossRef]
  • [9] Gasco AM, Ermondi G, Fruttero R, Gasco A. Benzofurazinyl- and benzofuroxanyl- 1,4-dihydropyridines: synthesis and calcium entry blocker activity. Eur J Med Chem. 1996; 31: 3-10. [CrossRef]
  • [10] Nelson EB, Pool JL, Taylor AA. Antihypertensive activity of isradipine in humans: a new dihydropyridine calcium channel antagonist. Clin Pharmacol Ther. 1986; 40: 694-697. [CrossRef]
  • [11] Borowicz KK, Gasior M, Kleinrok Z, Czuczwar SJ. Influence of isradipine, niguldipine and dantrolene on the anticonvulsive action of conventional antiepileptics in mice. Eur J Pharmacol. 1997; 323: 45-51. [CrossRef]
  • [12] Boer R, Gekeler V. Chemosensitizers in tumor therapy: new compounds promise better efficacy. Drugs Future. 1995; 20: 499–509.
  • [13] Briukhanov VM, Laf Z, Elkin VI. Effects of calcium antagonists on the development of inflammatory edema in rat. Exp Clin Pharmacol. 1994; 57: 47–49.
  • [14] Gullapalli S, Ramarao P. L-type Ca+2 channel modulation by dihydropyridines potentiates κ-opioid receptor agonist induced acute analgesia and inhibits development of tolerance in rats. Neuropharmacology. 2002; 42: 467–475. [CrossRef]
  • [15] Anwar A, Hameed A, Perveen S, Uroos M, Chounhary M, Basha F. 1,1-Diphenyl-2-picrylhydrazyl radical scavenging activity of novel dihydropyridine derivatives. Eur J Chem. 2014; 5: 189-191. [CrossRef]
  • [16] Dhinakaran I, Padmini V, Bhuvanesh N. One-pot synthesis of N-aryl 1,4-dihydropyridine derivatives and their biological activities. J Chem Sci. 2015; 127: 2201-2209. [CrossRef]
  • [17] Li Q, Siyu H, Chen Y, Feng F, Wei Q, Sun H. Donepezil-based multi-functional cholinesterase inhibitors for treatment of Alzheimer's disease. Eur J Med Chem. 2018; 158: 463-477. [CrossRef]
  • [18] Butterfield D, Lauderback CM. Lipid peroxidation and protein oxidation in Alzheimer's disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic Biol Med. 2002; 32: 1050-1060. [CrossRef]
  • [19] Nordberg A, Svensson AL. Cholinesterase inhibitors in the treatment of Alzheimer’s disease: A comparison of tolerability and pharmacology. Drug Saf. 1998; 19: 465–480. [CrossRef]
  • [20] Maheswara M, Siddaiah V, Damu GLV, Rao CV. An efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation using a heterogeneous catalyst under solvent-free conditions. Arkivoc. 2006; (ii): 201-206. [CrossRef]
  • [21] Ko S, Sastry MNV, Lin C, Yao C. Molecular iodine-catalyzed one-pot synthesis of 4-substituted-1,4-dihydropyridine derivatives via Hantzsch reaction. Tetrahedron Lett. 2005; 46: 5771-5774. [CrossRef]
  • [22] Zolfigol MA, Salehi P, Khorramabadi-Zad A, Shayegh M. Iodine-catalyzed synthesis of novel Hantzsch N-hydroxyethyl 1,4-dihydropyridines under mild conditions. J Mol Catal A Chem. 2007; 261: 88-92. [CrossRef]
  • [23] Sabitha G, Reddy GSKK, Reddy Ch.S, Yadav JS. A novel TMSI-mediated synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature. Tetrahedron Lett. 2003; 44: 4129-4131. [CrossRef]
  • [24] Ko S, Yao C. Ceric Ammonium Nitrate (CAN) catalyzes the one-pot synthesis of polyhydroquinoline via the Hantzsch reaction. Tetrahedron. 2006; 62: 7293-7299. [CrossRef]
  • [25] Debache A, Ghalem W, Boulcina R, Belfaitah A, Rhouati S, Bertrand C. An efficient one-step synthesis of 1,4-dihydropyridines via a triphenylphosphine-catalyzed three-component Hantzsch reaction under mild conditions. Tetrahedron Lett. 2009; 50: 5248-5250. [CrossRef]
  • [26] Safari J, Banitaba SH, Khalili SD. Cellulose sulfuric acid catalyzed multicomponent reaction for efficient synthesis of 1,4-dihydropyridines via unsymmetrical Hantzsch reaction in aqueous media. J Mol Cat A Chem. 2011; 335: 46-50. [CrossRef]
  • [27] Khadilkar BM, Gaikar VG, Chitnavis AA. Aqueous hydrotrope solution as a safer medium for microwave enhanced Hantzsch dihydropyridine ester synthesis. Tetrahedron Lett. 1995; 36: 8083-8086. [CrossRef]
  • [28] Balalaie S, Baoosi L, Tahoori F, Rominger F, Bijanzadeh HR. Synthesis of polysubstituted 1,4-dihydropyridines via three-component reaction. Tetrahedron. 2013; 69: 738-743. [CrossRef]
  • [29] Babu G, Perumal PT. Synthetic applications of indium trichloride catalyzed reactions. Aldrichimica Acta. 2000; 33: 16-22. [CrossRef]
  • [30] Chari MA, Syamasundar K. Silica gel/NaHSO4 catalyzed one-pot synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature. Catal Comm. 2005; 6: 624-626. [CrossRef]
  • [31] Tewari N, Dwivedi N, Tripathi RP. Tetrabutylammonium hydrogen sulfate catalyzed eco-friendly and efficient synthesis of glycosyl 1,4-dihydropyridines. Tetrahedron Lett. 2004; 45: 9011-9014. [CrossRef]
  • [32] Wang LM, Sheng J, Zhang L, Han JW, Fan ZY, Tian H, Qian CT. Facile Yb(OTf)3 promoted one-pot synthesis of polyhydroquinoline derivatives through Hantzsch reaction. Tetrahedron. 2005; 61: 1539-1543. [CrossRef]
  • [33] Surasani R, Kalita D, Rao AVD, Yarbagi K, Chandrasekhar KB. FeF3 as a novel catalyst for the synthesis of polyhydroquinoline derivatives via unsymmetrical Hantzsch reaction. J Fluorine Chem. 2012; 135: 91-96. [CrossRef]
  • [34] Davoodnia A, Khashi M, Tavakoli-Huseini N. Tetrabutylammonium hexatungstate [TBA]2[W6O19]: Novel and reusable heterogeneous catalyst for rapid solvent-free synthesis of polyhydroquinoline via unsymmetrical Hantzsch reaction. Chinese J Catal. 2013; 34: 1173-1178. [CrossRef]
  • [35] Hantzsch A. Condensationprodukte aus Aldehydammoniak und Ketonartigen Verbindungen. Chem Ber. 1881; 14: 1637–1638. [CrossRef]
  • [36] Albayrak E. Master Thesis. Condensed 1,4-dihydropyridine-3-carboxylate derivatives and their calcium modulatory activities. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey, 2015.
  • [37] Chandavoinee M-M, de Fillain PdeC, Pigerol C. Dihydropyridine Derivatives. United State Patent. 1980. US 4239893 A 19801216.
  • [38] Qi C, Zhang F. Method for preparation of 1,4-dihydropyridine compounds. Faming Zhuanli Shenqing. 2015. CN 105017132 A 20151104.
  • [39] Keleş T, Barut B, Biyiklioglu Z, Özel, A. A comparative study on DNA/BSA binding, DNA photocleavage and antioxidant activities of water soluble peripherally and non-peripherally tetra-3-pyridin-3-ylpropoxy-substituted Mn(III), Cu(II) phthalocyanines. Dyes Pigm. 2017; 139: 575-586. [CrossRef]
  • [40] Barut EN, Barut B, Engin S, Yıldırım S, Yaşar A, Türkiş S, Özel A, Sezen FS. Antioxidant capacity, anti acetylcholinesterase activity and inhibitory effect on lipid peroxidation in mice brain homogenate of Achillea millefolium. Turk J Biochem. 2017; 42: 493-502. [CrossRef]
  • [41] Leon R, de los Rios C, Marco-Contelles J, Huertas O, Barril X, Luque F, Lopez M, Garcia M, Garcia A, Villarroya M. New tacrine-dihydropyridine hybrids that inhibit acetylcholinesterase, calcium entry, and exhibit neuroprotection properties. Bioorg Med Chem. 2008; 16: 7759-7769. [CrossRef]
  • [42] Bolger GT, Gengo P, Klockowski R, Luchowski E, Siegel H, Janis RA, Triggle AM, Triggle DJ. Characterization of binding of the Ca++ channel antagonist, [3H]nitrendipine, to guinea-pig ileal smooth muscle. Pharmacol Exp Ther. 1983; 225(2): 291-309.
  • [43] Minocherhomjee AM, Roufogalis BD. Antagonism of calmodulin and phosphodiesterase by nifedipine and related calcium entry blockers. Cell Calcium. 1984; 5(1): 57-63. [CrossRef]
  • [44] Young SD. Facile conversion of Hantzsch type 4-aryl-2,6-dimethyl-1,4-dihydropyridine-3,5-carboxylates into 4-Aryl-2-methyl-5-oxo-1,4,5,7-tetrahydrofuro[3,4-b]pyridine-3-carboxylates. Synthesis. 1984; 1984(7): 617-618. [CrossRef]
  • [45] Rodenkirchen R, Bayer R, Steiner R, Bossert F, Meyer H, Möller E. Structure-activity studies on nifedipine in isolated cardiac muscle. Naunyn Schmiedebergs Arch Pharmacol. 1979; 310(1): 69-78. [CrossRef]
  • [46] Silverstein RM, Webster FX. Spectrometric identification of organic compounds, John Wiley & Sons Inc., New York, USA, 1998.
  • [47] Pretsch E, Clerk T, Seibl J, Simon W. Tables of spectral data for structure determination of organic compounds. Springer-Verlag, Berlin, 1983.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık Biyokimyası, Farmasotik Kimya, Temel Farmakoloji
Bölüm Articles
Yazarlar

Hasan Erdinç Sellitepe

İnci Selin Doğan

Gamze Eroğlu

Burak Barut

Arzu Özel

Yayımlanma Tarihi 27 Haziran 2025
Yayımlandığı Sayı Yıl 2019 Cilt: 23 Sayı: 4

Kaynak Göster

APA Sellitepe, H. E., Doğan, İ. S., Eroğlu, G., Barut, B., vd. (2025). Synthesis, characterization Research Article www.jrespharm.com and investigation of cholinesterase enzyme inhibition and antioxidant activities of some 4-aryl-1,4-dihydropyridine derivatives. Journal of Research in Pharmacy, 23(4), 608-616.
AMA Sellitepe HE, Doğan İS, Eroğlu G, Barut B, Özel A. Synthesis, characterization Research Article www.jrespharm.com and investigation of cholinesterase enzyme inhibition and antioxidant activities of some 4-aryl-1,4-dihydropyridine derivatives. J. Res. Pharm. Haziran 2025;23(4):608-616.
Chicago Sellitepe, Hasan Erdinç, İnci Selin Doğan, Gamze Eroğlu, Burak Barut, ve Arzu Özel. “Synthesis, Characterization Research Article www.jrespharm.Com and Investigation of Cholinesterase Enzyme Inhibition and Antioxidant Activities of Some 4-Aryl-1,4-Dihydropyridine Derivatives”. Journal of Research in Pharmacy 23, sy. 4 (Haziran 2025): 608-16.
EndNote Sellitepe HE, Doğan İS, Eroğlu G, Barut B, Özel A (01 Haziran 2025) Synthesis, characterization Research Article www.jrespharm.com and investigation of cholinesterase enzyme inhibition and antioxidant activities of some 4-aryl-1,4-dihydropyridine derivatives. Journal of Research in Pharmacy 23 4 608–616.
IEEE H. E. Sellitepe, İ. S. Doğan, G. Eroğlu, B. Barut, ve A. Özel, “Synthesis, characterization Research Article www.jrespharm.com and investigation of cholinesterase enzyme inhibition and antioxidant activities of some 4-aryl-1,4-dihydropyridine derivatives”, J. Res. Pharm., c. 23, sy. 4, ss. 608–616, 2025.
ISNAD Sellitepe, Hasan Erdinç vd. “Synthesis, Characterization Research Article www.jrespharm.Com and Investigation of Cholinesterase Enzyme Inhibition and Antioxidant Activities of Some 4-Aryl-1,4-Dihydropyridine Derivatives”. Journal of Research in Pharmacy 23/4 (Haziran 2025), 608-616.
JAMA Sellitepe HE, Doğan İS, Eroğlu G, Barut B, Özel A. Synthesis, characterization Research Article www.jrespharm.com and investigation of cholinesterase enzyme inhibition and antioxidant activities of some 4-aryl-1,4-dihydropyridine derivatives. J. Res. Pharm. 2025;23:608–616.
MLA Sellitepe, Hasan Erdinç vd. “Synthesis, Characterization Research Article www.jrespharm.Com and Investigation of Cholinesterase Enzyme Inhibition and Antioxidant Activities of Some 4-Aryl-1,4-Dihydropyridine Derivatives”. Journal of Research in Pharmacy, c. 23, sy. 4, 2025, ss. 608-16.
Vancouver Sellitepe HE, Doğan İS, Eroğlu G, Barut B, Özel A. Synthesis, characterization Research Article www.jrespharm.com and investigation of cholinesterase enzyme inhibition and antioxidant activities of some 4-aryl-1,4-dihydropyridine derivatives. J. Res. Pharm. 2025;23(4):608-16.