Araştırma Makalesi
BibTex RIS Kaynak Göster

Electrochemical detection of anticancer drug lumazine and DNA interaction by using carbon nanotube modified electrodes

Yıl 2019, Cilt: 23 Sayı: 4, 682 - 688, 27.06.2025

Öz

The interaction of lumazine (LMZ) with dsDNA was investigated with differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) by using disposable carbon nanotubes-modified pencil graphite electrode (CNTs-PGE). The passive adsorption process was used to modify the electrode surface by CNTs and then dsDNA was immobilized onto the modified PGEs. The performance of CNT-PGEs was studied by examining the optimum analytical conditions with DPV and then impedance method was performed to characterize the modification of CNTs onto the electrode surface.

Kaynakça

  • [1] Wang J. From DNA biosensors to gene chips. Nucl Acids Res. 2000; 28: 3011-3016. [CrossRef]
  • [2] Palecek E, Fojta M. Detecting DNA hybridization and damage. Anal Chem. 2001; 73: 75A-83A. [CrossRef]
  • [3] Erdem A. Nanomaterial-based electrochemical DNA sensing strategies. Talanta. 2007; 74: 318-325. [CrossRef]
  • [4] Kuralay F, Karadeniz H, Muti M, Erdem A. Electrochemical DNA detection using carbon nanotubes. Curr Physical Chem. 2011; 1: 325-333. [CrossRef]
  • [5] Erdem A, Ozsoz M. Electrochemical DNA Biosensors based on DNA‐Drug Interactions. Electroanalysis. 2002; 14: 965-974. [CrossRef]
  • [6] Karadeniz H, Alparslan L, Erdem A, Karasulu E. Electrochemical investigation of interaction between Mitomycin C and DNA in a novel drug-delivery system. J Pharm Biomed Anal. 2007; 45: 322-326. [CrossRef]
  • [7] Wang J, Ozsoz M, Cai X, Rivas G, Shiraishi H, Grant DH, Chicharro M, Fernandes J, Palecek E. Interactions of antitumor drug daunomycin with DNA in solution and at the surface. Bioelectrochem Bioenerg. 1998; 45: 33-40. [CrossRef]
  • [8] Palecek E. From polarography of DNA to microanalysis with nucleic acid-modified electrodes. Electroanalysis. 1996; 8: 7-14. [CrossRef]
  • [9] Marin D, Perez P, Teijeiro C, Palecek E. Interactions of surface-confined DNA with acid-activated mitomycin C. Biophys Chem. 1998; 75: 87-95. [CrossRef]
  • [10] Oliveira Brett AM, Macedo TRA, Raimundo D, Marques MH, Serrano SHP. Voltammetric behaviour of mitoxantrone at a DNA-biosensor. Biosens Bioelectron. 1998; 13: 861-867. [CrossRef]
  • [11] Erdem A, Muti M, Papakonstantinou P, Canavar E, Karadeniz H, Congur G, Sharma S. Graphene oxide integrated sensor for electrochemical monitoring of mitomycin C–DNA interaction. Analyst. 2012; 137: 2129-2135. [CrossRef]
  • [12] Ribeiro JA, Pereira CM, Silva F. Electrochemistry of the interaction between bioactive drugs Daunorubicin and Dopamine and DNA at a water/oil interface. Electrochim Acta. 2015; 180: 687-694. [CrossRef]
  • [13] Shervedani RK, Mirhosseini H, Foroushani MS, Torabi M, Rahsepar FR, Barough LN. Immobilization of methotrexate anticancer drug onto the graphene surface and interaction with calf thymus DNA and 4T1 cancer cells. Bioelectrochemistry. 2018; 119: 1-9. [CrossRef]
  • [14] Erdem A, Ozsoz M. Interaction of the anticancer drug epirubicin with DNA. Anal Chim Acta. 2001; 437: 107-114. [CrossRef]
  • [15] Wang J. Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis. 2005; 17: 7-14. [CrossRef]
  • [16] Iijima S. Helical microtubules of graphitic carbon. Nature. 1991; 354: 56-58. [CrossRef]
  • [17] Erdem A, Papakonstantinou P, Murphy H. Direct DNA hybridization at disposable graphite electrodes modified with carbon nanotubes. Anal Chem. 2006; 78: 6656-6659. [CrossRef]
  • [18] Campidelli S, Klumpp C, Bianco A, Guldi DM, Prato M. Functionalization of CNT: Synthesis and applications in photovoltaics and biology. J Phys Org Chem. 2006; 19: 531-539. [CrossRef]
  • [19] Britto PJ, Santhanam KSV, Ajayan PM. Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem Bioenerg. 1996; 41: 121-125. [CrossRef]
  • [20] Erdem A, Papakonstantinou P, Murphy H. Direct DNA hybridization at disposable graphite electrodes modified with carbon nanotubes. Anal Chem. 2006; 78: 6656-6659. [CrossRef]
  • [21] Erdem A, Karadeniz H, Caliskan A. Single‐walled carbon nanotubes modified graphite electrodes for electrochemical monitoring of nucleic acids and biomolecular interactions. Electroanalysis. 2009; 21: 464-471. [CrossRef]
  • [22] Caliskan A, Erdem A, Karadeniz H. Direct DNA hybridization on the single‐walled carbon nanotubes modified sensors detected by voltammetry and electrochemical impedance spectroscopy. Electroanalysis. 2009; 21: 2116-2124. [CrossRef]
  • [23] Karadeniz H, Erdem A, Caliskan A. Electrochemical monitoring of DNA hybridization by multi-walled carbon nanotube based screen printed electrodes. Electroanalysis. 2008; 20: 1932-1938. [CrossRef]
  • [24] Willner I, Willner B. Biomolecule-based nanomaterials and nanostructures. Nano Lett. 2010; 10: 3805-3815. [CrossRef]
  • [25] Vega D, Agüi L, Gonzalez-Cortes A, Yanez-Sedeno P, Pingarron JM. Electrochemical detection of phenolic estrogenic compounds at carbon nanotube-modified electrodes. Talanta. 2007; 71: 1031-1038. [CrossRef]
  • [26] Banks CE, Davies TJ, Wildgoose GG, Compton RG. Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem Commun. 2005; 7: 829-841. [CrossRef]
  • [27] Denofrio MP, Thomas AH, Braun AM, Oliveros E, Lorente C. Photochemical and photophysical properties of lumazine in aqueous solutions. J Photochem Photobiol. 2008; 200: 282–286. [CrossRef]
  • [28] Rembold H, Gyure WL. Biochemistry of the pteridines. Angew Chem Int Ed. 1972; 11: 1061–1072. [CrossRef]
  • [29] Faria PA, Chen X, Lombardi JR, Birke RL. A surface-enhanced Raman and ab initio study of spectra of lumazine molecules. Langmuir. 2000; 16: 3984–3992. [CrossRef]
  • [30] Lehnen J, White BM, Kendrick MJ. Electrochemical studies of biologically significant pterin compounds. Inorg Chim Acta. 1990; 167: 257–259. [CrossRef]
  • [31] Nagar-Anthal KR, Worrell VE, Teal R, Nagle DP. The pterin lumazine inhibits growth of methanogens and methane formation. Arch Microbiol. 1996; 166: 136–140. [CrossRef]
  • [32] He RX, Zha DW. Cyclic voltammetry and voltabsorptometry studies of redox mechanism of lumazine. J Electroanal Chem. 2017; 791: 103-108. [CrossRef]
  • [33] Diculescu VC, Militaru A, Shah A, Qureshi R, Tugulea L, Brett AMO. Redox mechanism of lumazine at a glassy carbon electrode. J Electroanal Chem. 2010; 647(1): 1-7. [CrossRef]
  • [34] Ibrahim MS, Shehatta IS, Al-Nayeli AA. Voltammetric studies of the interaction of lumazine with cyclodextrins and DNA. J Pharm Biomed Anal. 2002; 28(2); 217-225. [CrossRef]
  • [35] Ibrahim MS. Phase-selective a.c. adsorptive stripping voltammetry of lumazine on a hanging mercury drop electrode. Fresenius' J Anal Chem. 2000; 367(2); 189-194. [CrossRef]
  • [36] Erdem A, Karadeniz H, Caliskan A. Single-walled carbon nanotubes modified graphite electrodes for electrochemical monitoring of nucleic acids and biomoleculer interactions. Electroanalysis. 2009; 21: 464-471. [CrossRef]
  • [37] Yang K, Zhang C. Simple detection of nucleic acids with a single-walled carbon-nanotubes-based electrochemical biosensor. Biosens Bioelectron. 2011; 28: 257-262. [CrossRef]
  • [38] Karadeniz H, Alparslan L, Erdem A, Karasulu E. Electrochemical investigation of interaction between mitomycin C and DNA in a novel drug-delivery system. J Pharm Biomed Anal. 2007; 45; 322–326. [CrossRef]
Yıl 2019, Cilt: 23 Sayı: 4, 682 - 688, 27.06.2025

Öz

Kaynakça

  • [1] Wang J. From DNA biosensors to gene chips. Nucl Acids Res. 2000; 28: 3011-3016. [CrossRef]
  • [2] Palecek E, Fojta M. Detecting DNA hybridization and damage. Anal Chem. 2001; 73: 75A-83A. [CrossRef]
  • [3] Erdem A. Nanomaterial-based electrochemical DNA sensing strategies. Talanta. 2007; 74: 318-325. [CrossRef]
  • [4] Kuralay F, Karadeniz H, Muti M, Erdem A. Electrochemical DNA detection using carbon nanotubes. Curr Physical Chem. 2011; 1: 325-333. [CrossRef]
  • [5] Erdem A, Ozsoz M. Electrochemical DNA Biosensors based on DNA‐Drug Interactions. Electroanalysis. 2002; 14: 965-974. [CrossRef]
  • [6] Karadeniz H, Alparslan L, Erdem A, Karasulu E. Electrochemical investigation of interaction between Mitomycin C and DNA in a novel drug-delivery system. J Pharm Biomed Anal. 2007; 45: 322-326. [CrossRef]
  • [7] Wang J, Ozsoz M, Cai X, Rivas G, Shiraishi H, Grant DH, Chicharro M, Fernandes J, Palecek E. Interactions of antitumor drug daunomycin with DNA in solution and at the surface. Bioelectrochem Bioenerg. 1998; 45: 33-40. [CrossRef]
  • [8] Palecek E. From polarography of DNA to microanalysis with nucleic acid-modified electrodes. Electroanalysis. 1996; 8: 7-14. [CrossRef]
  • [9] Marin D, Perez P, Teijeiro C, Palecek E. Interactions of surface-confined DNA with acid-activated mitomycin C. Biophys Chem. 1998; 75: 87-95. [CrossRef]
  • [10] Oliveira Brett AM, Macedo TRA, Raimundo D, Marques MH, Serrano SHP. Voltammetric behaviour of mitoxantrone at a DNA-biosensor. Biosens Bioelectron. 1998; 13: 861-867. [CrossRef]
  • [11] Erdem A, Muti M, Papakonstantinou P, Canavar E, Karadeniz H, Congur G, Sharma S. Graphene oxide integrated sensor for electrochemical monitoring of mitomycin C–DNA interaction. Analyst. 2012; 137: 2129-2135. [CrossRef]
  • [12] Ribeiro JA, Pereira CM, Silva F. Electrochemistry of the interaction between bioactive drugs Daunorubicin and Dopamine and DNA at a water/oil interface. Electrochim Acta. 2015; 180: 687-694. [CrossRef]
  • [13] Shervedani RK, Mirhosseini H, Foroushani MS, Torabi M, Rahsepar FR, Barough LN. Immobilization of methotrexate anticancer drug onto the graphene surface and interaction with calf thymus DNA and 4T1 cancer cells. Bioelectrochemistry. 2018; 119: 1-9. [CrossRef]
  • [14] Erdem A, Ozsoz M. Interaction of the anticancer drug epirubicin with DNA. Anal Chim Acta. 2001; 437: 107-114. [CrossRef]
  • [15] Wang J. Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis. 2005; 17: 7-14. [CrossRef]
  • [16] Iijima S. Helical microtubules of graphitic carbon. Nature. 1991; 354: 56-58. [CrossRef]
  • [17] Erdem A, Papakonstantinou P, Murphy H. Direct DNA hybridization at disposable graphite electrodes modified with carbon nanotubes. Anal Chem. 2006; 78: 6656-6659. [CrossRef]
  • [18] Campidelli S, Klumpp C, Bianco A, Guldi DM, Prato M. Functionalization of CNT: Synthesis and applications in photovoltaics and biology. J Phys Org Chem. 2006; 19: 531-539. [CrossRef]
  • [19] Britto PJ, Santhanam KSV, Ajayan PM. Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem Bioenerg. 1996; 41: 121-125. [CrossRef]
  • [20] Erdem A, Papakonstantinou P, Murphy H. Direct DNA hybridization at disposable graphite electrodes modified with carbon nanotubes. Anal Chem. 2006; 78: 6656-6659. [CrossRef]
  • [21] Erdem A, Karadeniz H, Caliskan A. Single‐walled carbon nanotubes modified graphite electrodes for electrochemical monitoring of nucleic acids and biomolecular interactions. Electroanalysis. 2009; 21: 464-471. [CrossRef]
  • [22] Caliskan A, Erdem A, Karadeniz H. Direct DNA hybridization on the single‐walled carbon nanotubes modified sensors detected by voltammetry and electrochemical impedance spectroscopy. Electroanalysis. 2009; 21: 2116-2124. [CrossRef]
  • [23] Karadeniz H, Erdem A, Caliskan A. Electrochemical monitoring of DNA hybridization by multi-walled carbon nanotube based screen printed electrodes. Electroanalysis. 2008; 20: 1932-1938. [CrossRef]
  • [24] Willner I, Willner B. Biomolecule-based nanomaterials and nanostructures. Nano Lett. 2010; 10: 3805-3815. [CrossRef]
  • [25] Vega D, Agüi L, Gonzalez-Cortes A, Yanez-Sedeno P, Pingarron JM. Electrochemical detection of phenolic estrogenic compounds at carbon nanotube-modified electrodes. Talanta. 2007; 71: 1031-1038. [CrossRef]
  • [26] Banks CE, Davies TJ, Wildgoose GG, Compton RG. Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem Commun. 2005; 7: 829-841. [CrossRef]
  • [27] Denofrio MP, Thomas AH, Braun AM, Oliveros E, Lorente C. Photochemical and photophysical properties of lumazine in aqueous solutions. J Photochem Photobiol. 2008; 200: 282–286. [CrossRef]
  • [28] Rembold H, Gyure WL. Biochemistry of the pteridines. Angew Chem Int Ed. 1972; 11: 1061–1072. [CrossRef]
  • [29] Faria PA, Chen X, Lombardi JR, Birke RL. A surface-enhanced Raman and ab initio study of spectra of lumazine molecules. Langmuir. 2000; 16: 3984–3992. [CrossRef]
  • [30] Lehnen J, White BM, Kendrick MJ. Electrochemical studies of biologically significant pterin compounds. Inorg Chim Acta. 1990; 167: 257–259. [CrossRef]
  • [31] Nagar-Anthal KR, Worrell VE, Teal R, Nagle DP. The pterin lumazine inhibits growth of methanogens and methane formation. Arch Microbiol. 1996; 166: 136–140. [CrossRef]
  • [32] He RX, Zha DW. Cyclic voltammetry and voltabsorptometry studies of redox mechanism of lumazine. J Electroanal Chem. 2017; 791: 103-108. [CrossRef]
  • [33] Diculescu VC, Militaru A, Shah A, Qureshi R, Tugulea L, Brett AMO. Redox mechanism of lumazine at a glassy carbon electrode. J Electroanal Chem. 2010; 647(1): 1-7. [CrossRef]
  • [34] Ibrahim MS, Shehatta IS, Al-Nayeli AA. Voltammetric studies of the interaction of lumazine with cyclodextrins and DNA. J Pharm Biomed Anal. 2002; 28(2); 217-225. [CrossRef]
  • [35] Ibrahim MS. Phase-selective a.c. adsorptive stripping voltammetry of lumazine on a hanging mercury drop electrode. Fresenius' J Anal Chem. 2000; 367(2); 189-194. [CrossRef]
  • [36] Erdem A, Karadeniz H, Caliskan A. Single-walled carbon nanotubes modified graphite electrodes for electrochemical monitoring of nucleic acids and biomoleculer interactions. Electroanalysis. 2009; 21: 464-471. [CrossRef]
  • [37] Yang K, Zhang C. Simple detection of nucleic acids with a single-walled carbon-nanotubes-based electrochemical biosensor. Biosens Bioelectron. 2011; 28: 257-262. [CrossRef]
  • [38] Karadeniz H, Alparslan L, Erdem A, Karasulu E. Electrochemical investigation of interaction between mitomycin C and DNA in a novel drug-delivery system. J Pharm Biomed Anal. 2007; 45; 322–326. [CrossRef]
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılıkta Analitik Kimya
Bölüm Articles
Yazarlar

Hakan Karadeniz

Ece Ekşin

Arzum Erdem

Yayımlanma Tarihi 27 Haziran 2025
Yayımlandığı Sayı Yıl 2019 Cilt: 23 Sayı: 4

Kaynak Göster

APA Karadeniz, H., Ekşin, E., & Erdem, A. (2025). Electrochemical detection of anticancer drug lumazine and DNA interaction by using carbon nanotube modified electrodes. Journal of Research in Pharmacy, 23(4), 682-688.
AMA Karadeniz H, Ekşin E, Erdem A. Electrochemical detection of anticancer drug lumazine and DNA interaction by using carbon nanotube modified electrodes. J. Res. Pharm. Haziran 2025;23(4):682-688.
Chicago Karadeniz, Hakan, Ece Ekşin, ve Arzum Erdem. “Electrochemical Detection of Anticancer Drug Lumazine and DNA Interaction by Using Carbon Nanotube Modified Electrodes”. Journal of Research in Pharmacy 23, sy. 4 (Haziran 2025): 682-88.
EndNote Karadeniz H, Ekşin E, Erdem A (01 Haziran 2025) Electrochemical detection of anticancer drug lumazine and DNA interaction by using carbon nanotube modified electrodes. Journal of Research in Pharmacy 23 4 682–688.
IEEE H. Karadeniz, E. Ekşin, ve A. Erdem, “Electrochemical detection of anticancer drug lumazine and DNA interaction by using carbon nanotube modified electrodes”, J. Res. Pharm., c. 23, sy. 4, ss. 682–688, 2025.
ISNAD Karadeniz, Hakan vd. “Electrochemical Detection of Anticancer Drug Lumazine and DNA Interaction by Using Carbon Nanotube Modified Electrodes”. Journal of Research in Pharmacy 23/4 (Haziran 2025), 682-688.
JAMA Karadeniz H, Ekşin E, Erdem A. Electrochemical detection of anticancer drug lumazine and DNA interaction by using carbon nanotube modified electrodes. J. Res. Pharm. 2025;23:682–688.
MLA Karadeniz, Hakan vd. “Electrochemical Detection of Anticancer Drug Lumazine and DNA Interaction by Using Carbon Nanotube Modified Electrodes”. Journal of Research in Pharmacy, c. 23, sy. 4, 2025, ss. 682-8.
Vancouver Karadeniz H, Ekşin E, Erdem A. Electrochemical detection of anticancer drug lumazine and DNA interaction by using carbon nanotube modified electrodes. J. Res. Pharm. 2025;23(4):682-8.