Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of enzyme inhibitory and antioxidant activity of some Lamiaceae plants

Yıl 2019, Cilt: 23 Sayı: 4, 749 - 758, 27.06.2025

Öz

Lamiaceae is one of the most widespread families in Turkey. The aim of this study was to determine antialzheimer, antidiabetic, antioxidant and antiobesity activities of ethanol extracts of Lamium purpureum var. purpureum, Origanum onites, Salvia sclarea, S. virgata and Thymus zygioides var. lycaonius. Acetylcholinesterase, butyrylcholinesterase, α-amylase, α-glucosidase, and pancreatic lipase inhibitory activities were tested for the determination of the activity of these extracts. Furthermore, total antioxidant, ferric-reducing antioxidant power, metal chelating and N,N-dimethyl-p-phenylendiamine radical scavenging assays were utilized to screen antioxidant activity. Total phenolic content of the extracts were also calculated. Among the tested extracts, T. zygioides var. lycaonius aerial part extract (85.28 ± 0.89 %) showed the highest inhibitory activity against α-glucosidase. The inhibitory activities of all extracts against α-amylase were lower than 50 %. S. sclarea leaf extract indicated remarkable butyrylcholinesterase inhibition (51.76 ± 1.04 %), but all of the plant extracts were inactive against acetylcholinesterase. The Salvia species showed the highest total antioxidant activity. S. sclarea flower (1.34 ± 0.08) and leaf (1.34 ± 0.08) extracts showed the highest ferric-reducing antioxidant power activities. Our findings indicated that O. onites, S. sclarea, S. virgata, and T. zygioides var. lycaonius extracts showed valuable inhibitory activity and emerged as the sources of possible α-glucosidase inhibitors for future studies.

Kaynakça

  • [1] American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014; 37 Suppl 1: 81-90. [CrossRef]
  • [2] Muriach M, Flores-Bellver M, Romero FJ, Barcia JM. Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxid Med Cell Longev. 2014; 2014: 102158. [CrossRef]
  • [3] You Q, Chen F, Wang X, Jiang YM, Lin SY. Anti-diabetic activities of phenolic compounds in muscadine against alpha-glucosidase and pancreatic lipase. LWT-Food Sci Technol. 2012; 46(1): 164-168. [CrossRef]
  • [4] Racette SB, Deusinger SS, Deusinger RH. Obesity: overview of prevalence, etiology, and treatment. Phys Ther. 2003; 83(3): 276-288. [CrossRef]
  • [5] Buchholz T, Melzig MF. Polyphenolic compounds as pancreatic lipase inhibitors. Planta Med. 2015; 81(10): 771-783. [CrossRef]
  • [6] Kim GN, et al. Study of antiobesity effect through inhibition of pancreatic lipase activity of Diospyros kaki fruit and Citrus unshiu peel. Biomed Res Int. 2016; 2016: 1723042. [CrossRef]
  • [7] Saedi E, Gheini MR, Faiz F, Arami MA. Diabetes mellitus and cognitive impairments. World J Diabetes. 2016; 7(17): 412-422. [CrossRef]
  • [8] Profenno LA, Porsteinsson AP, Faraone SV. Meta-analysis of Alzheimer's disease risk with obesity, diabetes, and related disorders. Biol Psychiatry. 2010; 67(6): 505-512. [CrossRef]
  • [9] Greig NH, et al. A new therapeutic target in Alzheimer's disease treatment: Attention to butyrylcholinesterase. Curr Med Res Opin. 2001; 17(3): 159-165. [CrossRef]
  • [10] Davis PH. Flora of Turkey and the East Aegean Islands. Edinburgh University Press, Edinburgh, 1965.
  • [11] Gurdal B, Kultur S. An ethnobotanical study of medicinal plants in Marmaris (Mugla, Turkey). J Ethnopharmacol. 2013; 146(1): 113-126. [CrossRef]
  • [12] Karaman Ö, Elgin Cebe G. Diyabet ve Türkiye’de antidiyabetik olarak kullanılan bitkiler. J Fac Pharm Ankara. 40(3): 47-61. [CrossRef]
  • [13] Honda G, et al. Traditional medicine in Turkey VI. Folk medicine in West Anatolia: Afyon, Kütahya, Denizli, Muğla, Aydin provinces. J Ethnopharmacol. 1996; 53(2): 75-87. [CrossRef]
  • [14] Perry NS, et al. In-vitro inhibition of human erythrocyte acetylcholinesterase by Salvia lavandulaefolia essential oil and constituent terpenes. J Pharm Pharmacol. 2000; 52(7): 895-902. [CrossRef]
  • [15] Mehran MM, et al. Lamium album or Urtica dioica? Which is more effective in decreasing serum glucose, lipid and hepatic enzymes in streptozotocin induced diabetic rats: A comparative study. Afr J Tradit Complement Altern Med. 2015; 12(5): 84-88. [CrossRef]
  • [16] Çam ME, et al. Antidiabetic effects of Salvia triloba and Thymus praecox subsp. skorpilii var. skorpilii in a rat model of streptozotocin/nicotinamide-induced diabetes. Marmara Pharm J. 2017; 21(4): 818-827. [CrossRef]
  • [17] Şenol FS, et al. Survey of 55 Turkish Salvia taxa for their acetylcholinesterase inhibitory and antioxidant activities. Food Chem. 2010; 120(1): 34-43. [CrossRef]
  • [18] Kindl M, et al. Antioxidant and anticholinesterase potential of six Thymus species. Evid Based Complement Alternat Med. 2015; 2015: 1-10. [CrossRef]
  • [19] Chung YK, et al. Inhibitory effect of ursolic acid purified from Origanum majorana L. on the acetylcholinesterase. Mol Cells. 2001; 11(2): 137-143.
  • [20] Iauk L, et al. Antibacterial, antioxidant and hypoglycaemic effects of Thymus capitatus (L.) Hoffmanns. et Link leaves' fractions. J Enzyme Inhib Med Chem. 2014; 30(3): 360-365. [CrossRef]
  • [21] Kabbaoui ME, et al. Antidiabetic effect of Thymus satureioides aqueous extract in streptozotocin-induced diabetic rats. Int J Pharm Pharm Sci. 2016; 8(9): 140-145. [CrossRef]
  • [22] Ekoh SN, et al. Anti-hyperglycemic and anti-hyperlipidemic effect of spices in alloxan-induced diabetic rats. Int J Biosci. 2014; 4(2): 179-187. [CrossRef]
  • [23] Perez Gutierrez RM. Inhibition of advanced glycation end-product formation by Origanum majorana in vitro and in streptozotocin-induced diabetic rats. Evid Based Complement Alternat Med. 2012; 2012:598638. [CrossRef]
  • [24] Vujicic M, et al. Ethyl acetate extract of Origanum vulgare L. ssp. hirtum prevents streptozotocin-induced diabetes in C57BL/6 mice. J Food Sci. 2016; 81(7): H1846-H1853. [CrossRef]
  • [25] Huang M, et al. Biological activities of salvianolic acid B from Salvia miltiorrhiza on type 2 diabetes. Pharm Biol. 2015; 53(7): 1058-1065. [CrossRef]
  • [26] Perfumi M, Arnold N, Tacconi R. Hypoglycemic activity of Salvia fruticosa Mill. from Cyprus. J Ethnopharmacol. 1991; 34(2-3): 135-140. [CrossRef]
  • [27] Jimenez J, et al. Hypoglycemic activity of Salvia lavandulifolia. Planta Med. 1986; 52(4): 260-262.
  • [28] Kianbakht S, Dabaghian FH. Improved glycemic control in type 2 diabetic patients consuming Salvia officinalis L. extract: A randomized placebo-controlled trial. Complement Ther Med. 2013; 21(5): 441-446. [CrossRef]
  • [29] Eidi A, Eidi M. Antidiabetic effects of sage leaves in normal and diabetic rats. Diabetes Metab Syndr: Clin Res Rev. 2009; 3(1): 40-44. [CrossRef]
  • [30] Vuksan V, et al. Reduction in postprandial glucose and prolongation of satiety by Salba (Salvia hispanica L.). Eur J Clin Nutr. 2010; 64(4): 436-438. [CrossRef]
  • [31] Nickavar B, Abolhasani L. Bioactivity-guided separation of an α-amylase inhibitor from Salvia virgata. Iran J Pharm Res. 2013; 12(1): 57-61.
  • [32] Khan T, et al. Pharmacological activities of crude extract and constituents of Salvia moorcraftiana. Phytomedicine. 2002; 9(8): 749-752. [CrossRef]
  • [33] Flores-Bocanegra L, et al. α-Glucosidase inhibitors from Salvia circinata. J Nat Prod. 2017; 80(5): 1584-1593. [CrossRef]
  • [34] Asghari B, et al. Flavonoids from Salvia chloroleuca with α-amylase and α-glucosidase inhibitory effects. Iran J Pharm Res. 2015; 14(2): 609-615.
  • [35] Bisio A, et al. Antibacterial and hypoglycemic diterpenoids from Salvia chamaedryoides. J Nat Prod. 2017; 80(2): 503-514. [CrossRef]
  • [36] Colombo G, et al. Hypoglycemic effects of a standardized extract of Salvia miltiorrhiza roots. Pharmacogn Mag. 2015; 11(44): S545–S549. [CrossRef]
  • [37] Huang M, et al. Antidiabetic effect of total polyphenolic acids from Salvia miltiorrhiza in diabetic rats. Phytother Res. 2012; 26(6): 944-948. [CrossRef]
  • [38] Cai H, et al. Protective effects of Salvia miltiorrhiza against cognitive impairments in diabetic rats. Exp Ther Med. 2014; 8(4): 1127-1130. [CrossRef]
  • [39] Hasanein P, et al. Preventive effects of Salvia officinalis on memory deficits in diabetic rats. Neurosci Lett. 2016; 622: 72-77. [CrossRef]
  • [40] Kleinschnitz C, et al. Carvacrol provides neuroprotection on cerebral ischemia/reperfusion injury in mice. PLoS One. 2012; 7(3): 1-8. [CrossRef]
  • [41] Topçu G, et al. Terpenoids and biological activities of Anatolian Salvia fruticosa. Turk J Chem. 2013; 37: 619-632. [CrossRef]
  • [42] Orhan I, et al. Activity of essential oils against acetyl- and butyrylcholinesterase. Z Naturforsch C. 2008; 63(7-8): 547-553. [CrossRef]
  • [43] Ellman GL, et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961; 7: 88-95. [CrossRef]
  • [44] Ali H, et al. α-Amylase inhibitory activity of Malaysian plants used for diabetes. J Ethnopharmacol. 2006; 107(3): 449-455. [CrossRef]
  • [45] Lam SH, et al. α-Glucosidase inhibitors from seeds of Syagrus romanzoffiana. Phytochemistry. 2008; 69(5): 1173-1178. [CrossRef]
  • [46] Lee YM, et al. Inhibitory activities of pancreatic lipase from Korean medicinal plants. Phytother Res. 2012; 26(5): 778-782. [CrossRef]
  • [47] Prieto P, et al. Spectrophotometric quantitation of antioxidant capacity. Anal Biochem. 1999; 269(2): 337-341. [CrossRef]
  • [48] Schlesier K, et al. Assessment of antioxidant activity by in vitro methods. Free Radic Res. 2002; 36(2): 177-187. [CrossRef]
  • [49] Chua MT, et al. Antioxidant activities of extracts from Cinnamomum osmophloeum. Bioresour Technol. 2008; 99(6): 1918-1925. [CrossRef]
  • [50] Oyaizu M. Studies on products of browning reaction. Jpn J Nutr Diet. 1986; 44(6): 307-315. [CrossRef]
  • [51] Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 1965; 16(3): 144-158.
Yıl 2019, Cilt: 23 Sayı: 4, 749 - 758, 27.06.2025

Öz

Kaynakça

  • [1] American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014; 37 Suppl 1: 81-90. [CrossRef]
  • [2] Muriach M, Flores-Bellver M, Romero FJ, Barcia JM. Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxid Med Cell Longev. 2014; 2014: 102158. [CrossRef]
  • [3] You Q, Chen F, Wang X, Jiang YM, Lin SY. Anti-diabetic activities of phenolic compounds in muscadine against alpha-glucosidase and pancreatic lipase. LWT-Food Sci Technol. 2012; 46(1): 164-168. [CrossRef]
  • [4] Racette SB, Deusinger SS, Deusinger RH. Obesity: overview of prevalence, etiology, and treatment. Phys Ther. 2003; 83(3): 276-288. [CrossRef]
  • [5] Buchholz T, Melzig MF. Polyphenolic compounds as pancreatic lipase inhibitors. Planta Med. 2015; 81(10): 771-783. [CrossRef]
  • [6] Kim GN, et al. Study of antiobesity effect through inhibition of pancreatic lipase activity of Diospyros kaki fruit and Citrus unshiu peel. Biomed Res Int. 2016; 2016: 1723042. [CrossRef]
  • [7] Saedi E, Gheini MR, Faiz F, Arami MA. Diabetes mellitus and cognitive impairments. World J Diabetes. 2016; 7(17): 412-422. [CrossRef]
  • [8] Profenno LA, Porsteinsson AP, Faraone SV. Meta-analysis of Alzheimer's disease risk with obesity, diabetes, and related disorders. Biol Psychiatry. 2010; 67(6): 505-512. [CrossRef]
  • [9] Greig NH, et al. A new therapeutic target in Alzheimer's disease treatment: Attention to butyrylcholinesterase. Curr Med Res Opin. 2001; 17(3): 159-165. [CrossRef]
  • [10] Davis PH. Flora of Turkey and the East Aegean Islands. Edinburgh University Press, Edinburgh, 1965.
  • [11] Gurdal B, Kultur S. An ethnobotanical study of medicinal plants in Marmaris (Mugla, Turkey). J Ethnopharmacol. 2013; 146(1): 113-126. [CrossRef]
  • [12] Karaman Ö, Elgin Cebe G. Diyabet ve Türkiye’de antidiyabetik olarak kullanılan bitkiler. J Fac Pharm Ankara. 40(3): 47-61. [CrossRef]
  • [13] Honda G, et al. Traditional medicine in Turkey VI. Folk medicine in West Anatolia: Afyon, Kütahya, Denizli, Muğla, Aydin provinces. J Ethnopharmacol. 1996; 53(2): 75-87. [CrossRef]
  • [14] Perry NS, et al. In-vitro inhibition of human erythrocyte acetylcholinesterase by Salvia lavandulaefolia essential oil and constituent terpenes. J Pharm Pharmacol. 2000; 52(7): 895-902. [CrossRef]
  • [15] Mehran MM, et al. Lamium album or Urtica dioica? Which is more effective in decreasing serum glucose, lipid and hepatic enzymes in streptozotocin induced diabetic rats: A comparative study. Afr J Tradit Complement Altern Med. 2015; 12(5): 84-88. [CrossRef]
  • [16] Çam ME, et al. Antidiabetic effects of Salvia triloba and Thymus praecox subsp. skorpilii var. skorpilii in a rat model of streptozotocin/nicotinamide-induced diabetes. Marmara Pharm J. 2017; 21(4): 818-827. [CrossRef]
  • [17] Şenol FS, et al. Survey of 55 Turkish Salvia taxa for their acetylcholinesterase inhibitory and antioxidant activities. Food Chem. 2010; 120(1): 34-43. [CrossRef]
  • [18] Kindl M, et al. Antioxidant and anticholinesterase potential of six Thymus species. Evid Based Complement Alternat Med. 2015; 2015: 1-10. [CrossRef]
  • [19] Chung YK, et al. Inhibitory effect of ursolic acid purified from Origanum majorana L. on the acetylcholinesterase. Mol Cells. 2001; 11(2): 137-143.
  • [20] Iauk L, et al. Antibacterial, antioxidant and hypoglycaemic effects of Thymus capitatus (L.) Hoffmanns. et Link leaves' fractions. J Enzyme Inhib Med Chem. 2014; 30(3): 360-365. [CrossRef]
  • [21] Kabbaoui ME, et al. Antidiabetic effect of Thymus satureioides aqueous extract in streptozotocin-induced diabetic rats. Int J Pharm Pharm Sci. 2016; 8(9): 140-145. [CrossRef]
  • [22] Ekoh SN, et al. Anti-hyperglycemic and anti-hyperlipidemic effect of spices in alloxan-induced diabetic rats. Int J Biosci. 2014; 4(2): 179-187. [CrossRef]
  • [23] Perez Gutierrez RM. Inhibition of advanced glycation end-product formation by Origanum majorana in vitro and in streptozotocin-induced diabetic rats. Evid Based Complement Alternat Med. 2012; 2012:598638. [CrossRef]
  • [24] Vujicic M, et al. Ethyl acetate extract of Origanum vulgare L. ssp. hirtum prevents streptozotocin-induced diabetes in C57BL/6 mice. J Food Sci. 2016; 81(7): H1846-H1853. [CrossRef]
  • [25] Huang M, et al. Biological activities of salvianolic acid B from Salvia miltiorrhiza on type 2 diabetes. Pharm Biol. 2015; 53(7): 1058-1065. [CrossRef]
  • [26] Perfumi M, Arnold N, Tacconi R. Hypoglycemic activity of Salvia fruticosa Mill. from Cyprus. J Ethnopharmacol. 1991; 34(2-3): 135-140. [CrossRef]
  • [27] Jimenez J, et al. Hypoglycemic activity of Salvia lavandulifolia. Planta Med. 1986; 52(4): 260-262.
  • [28] Kianbakht S, Dabaghian FH. Improved glycemic control in type 2 diabetic patients consuming Salvia officinalis L. extract: A randomized placebo-controlled trial. Complement Ther Med. 2013; 21(5): 441-446. [CrossRef]
  • [29] Eidi A, Eidi M. Antidiabetic effects of sage leaves in normal and diabetic rats. Diabetes Metab Syndr: Clin Res Rev. 2009; 3(1): 40-44. [CrossRef]
  • [30] Vuksan V, et al. Reduction in postprandial glucose and prolongation of satiety by Salba (Salvia hispanica L.). Eur J Clin Nutr. 2010; 64(4): 436-438. [CrossRef]
  • [31] Nickavar B, Abolhasani L. Bioactivity-guided separation of an α-amylase inhibitor from Salvia virgata. Iran J Pharm Res. 2013; 12(1): 57-61.
  • [32] Khan T, et al. Pharmacological activities of crude extract and constituents of Salvia moorcraftiana. Phytomedicine. 2002; 9(8): 749-752. [CrossRef]
  • [33] Flores-Bocanegra L, et al. α-Glucosidase inhibitors from Salvia circinata. J Nat Prod. 2017; 80(5): 1584-1593. [CrossRef]
  • [34] Asghari B, et al. Flavonoids from Salvia chloroleuca with α-amylase and α-glucosidase inhibitory effects. Iran J Pharm Res. 2015; 14(2): 609-615.
  • [35] Bisio A, et al. Antibacterial and hypoglycemic diterpenoids from Salvia chamaedryoides. J Nat Prod. 2017; 80(2): 503-514. [CrossRef]
  • [36] Colombo G, et al. Hypoglycemic effects of a standardized extract of Salvia miltiorrhiza roots. Pharmacogn Mag. 2015; 11(44): S545–S549. [CrossRef]
  • [37] Huang M, et al. Antidiabetic effect of total polyphenolic acids from Salvia miltiorrhiza in diabetic rats. Phytother Res. 2012; 26(6): 944-948. [CrossRef]
  • [38] Cai H, et al. Protective effects of Salvia miltiorrhiza against cognitive impairments in diabetic rats. Exp Ther Med. 2014; 8(4): 1127-1130. [CrossRef]
  • [39] Hasanein P, et al. Preventive effects of Salvia officinalis on memory deficits in diabetic rats. Neurosci Lett. 2016; 622: 72-77. [CrossRef]
  • [40] Kleinschnitz C, et al. Carvacrol provides neuroprotection on cerebral ischemia/reperfusion injury in mice. PLoS One. 2012; 7(3): 1-8. [CrossRef]
  • [41] Topçu G, et al. Terpenoids and biological activities of Anatolian Salvia fruticosa. Turk J Chem. 2013; 37: 619-632. [CrossRef]
  • [42] Orhan I, et al. Activity of essential oils against acetyl- and butyrylcholinesterase. Z Naturforsch C. 2008; 63(7-8): 547-553. [CrossRef]
  • [43] Ellman GL, et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961; 7: 88-95. [CrossRef]
  • [44] Ali H, et al. α-Amylase inhibitory activity of Malaysian plants used for diabetes. J Ethnopharmacol. 2006; 107(3): 449-455. [CrossRef]
  • [45] Lam SH, et al. α-Glucosidase inhibitors from seeds of Syagrus romanzoffiana. Phytochemistry. 2008; 69(5): 1173-1178. [CrossRef]
  • [46] Lee YM, et al. Inhibitory activities of pancreatic lipase from Korean medicinal plants. Phytother Res. 2012; 26(5): 778-782. [CrossRef]
  • [47] Prieto P, et al. Spectrophotometric quantitation of antioxidant capacity. Anal Biochem. 1999; 269(2): 337-341. [CrossRef]
  • [48] Schlesier K, et al. Assessment of antioxidant activity by in vitro methods. Free Radic Res. 2002; 36(2): 177-187. [CrossRef]
  • [49] Chua MT, et al. Antioxidant activities of extracts from Cinnamomum osmophloeum. Bioresour Technol. 2008; 99(6): 1918-1925. [CrossRef]
  • [50] Oyaizu M. Studies on products of browning reaction. Jpn J Nutr Diet. 1986; 44(6): 307-315. [CrossRef]
  • [51] Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 1965; 16(3): 144-158.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Farmakognozi
Bölüm Articles
Yazarlar

Hasya Nazlı Gök

Didem Deliorman Orhan

İlkay Erdoğan Orhan

Nilüfer Orhan

Mustafa Aslan

Yayımlanma Tarihi 27 Haziran 2025
Yayımlandığı Sayı Yıl 2019 Cilt: 23 Sayı: 4

Kaynak Göster

APA Gök, H. N., Deliorman Orhan, D., Erdoğan Orhan, İ., Orhan, N., vd. (2025). Evaluation of enzyme inhibitory and antioxidant activity of some Lamiaceae plants. Journal of Research in Pharmacy, 23(4), 749-758.
AMA Gök HN, Deliorman Orhan D, Erdoğan Orhan İ, Orhan N, Aslan M. Evaluation of enzyme inhibitory and antioxidant activity of some Lamiaceae plants. J. Res. Pharm. Haziran 2025;23(4):749-758.
Chicago Gök, Hasya Nazlı, Didem Deliorman Orhan, İlkay Erdoğan Orhan, Nilüfer Orhan, ve Mustafa Aslan. “Evaluation of Enzyme Inhibitory and Antioxidant Activity of Some Lamiaceae Plants”. Journal of Research in Pharmacy 23, sy. 4 (Haziran 2025): 749-58.
EndNote Gök HN, Deliorman Orhan D, Erdoğan Orhan İ, Orhan N, Aslan M (01 Haziran 2025) Evaluation of enzyme inhibitory and antioxidant activity of some Lamiaceae plants. Journal of Research in Pharmacy 23 4 749–758.
IEEE H. N. Gök, D. Deliorman Orhan, İ. Erdoğan Orhan, N. Orhan, ve M. Aslan, “Evaluation of enzyme inhibitory and antioxidant activity of some Lamiaceae plants”, J. Res. Pharm., c. 23, sy. 4, ss. 749–758, 2025.
ISNAD Gök, Hasya Nazlı vd. “Evaluation of Enzyme Inhibitory and Antioxidant Activity of Some Lamiaceae Plants”. Journal of Research in Pharmacy 23/4 (Haziran 2025), 749-758.
JAMA Gök HN, Deliorman Orhan D, Erdoğan Orhan İ, Orhan N, Aslan M. Evaluation of enzyme inhibitory and antioxidant activity of some Lamiaceae plants. J. Res. Pharm. 2025;23:749–758.
MLA Gök, Hasya Nazlı vd. “Evaluation of Enzyme Inhibitory and Antioxidant Activity of Some Lamiaceae Plants”. Journal of Research in Pharmacy, c. 23, sy. 4, 2025, ss. 749-58.
Vancouver Gök HN, Deliorman Orhan D, Erdoğan Orhan İ, Orhan N, Aslan M. Evaluation of enzyme inhibitory and antioxidant activity of some Lamiaceae plants. J. Res. Pharm. 2025;23(4):749-58.