Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 26 Sayı: 6, 1665 - 1675, 28.06.2025
https://doi.org/10.29228/jrp.257

Öz

Kaynakça

  • [1] Momenimovahed Z, Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer (Dove Med Press). 2019;11:151-164. [CrossRef]
  • [2] Kamińska M, Ciszewski T, Łopacka-Szatan K, Miotła P, Starosławska E. Breast cancer risk factors. Prz Menopauzalny. 2015;14(3):196-202. [CrossRef]
  • [3] Zhang BN, Cao XC, Chen JY, Chen J, Fu L, Hu XC, Jiang ZF, Li HY, Liao N, Liu DG, Tao O, Shao ZM, Sun Q, Wang S, Wang YS, Xu BH, Zhang J. Guidelines on the diagnosis and treatment of breast cancer (2011 edition). Gland Surg. 2012;1(1):39-61. [CrossRef]
  • [4] Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, Jemal A, Kramer JL, Siegel RL. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363-385. [CrossRef]
  • [5] Galanski M, Jakupec MA, Keppler BK. Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches. Curr Med Chem. 2005;12(18):2075-94. [CrossRef]
  • [6] Rottenberg S, Disler C, Perego P. The rediscovery of platinum-based cancer therapy. Nat Rev Cancer. 2021;21(1):37-50. [CrossRef]
  • [7] Shamseddine AI, Farhat FS. Platinum-based compounds for the treatment of metastatic breast cancer. Chemotherapy. 2011;57(6):468-87. [CrossRef]
  • [8] Martin LP, Hamilton TC, Schilder RJ. Platinum resistance: the role of DNA repair pathways. Clin Cancer Res. 2008;14(5):1291-5. [CrossRef]
  • [9] Shiju C, Arish D, Bhuvanesh N, Kumaresan S. Synthesis, characterization, and biological evaluation of Schiff base-platinum(II) complexes. Spectrochim Acta A Mol Biomol Spectrosc. 2015;145:213-222. [CrossRef]
  • [10] Shapiro CL. Highlights of Recent Findings on Quality-of-Life Management for Patients With Cancer and Their Survivors. JAMA Oncol. 2016;2(11):1401-1402. [CrossRef]
  • [11] Coley HM. Mechanisms and consequences of chemotherapy resistance in breast cancer. Eur J Cancer Suppl. 2009;7(1):3–7.
  • [12] Gupta B, Kumari A, Belwal S, Singh RV, Fahmi N. Synthesis, characterization of platinum (II) complexes of Schiff base ligands and evaluation of cytotoxic activity of platinum nanoparticles. Inorg Nano-Metal Chem. 2020;50(10):914-25.
  • [13] Al-Khathami ND, Al-Rashdi KS, Babgi BA, Hussien MA, Arshad MN, Eltayeb NE, Elsilk SE, Lasri J, Basaleh AS, Al-Jahdali M. Spectroscopic and biological properties of platinum complexes derived from 2-pyridyl Schiff bases. J Saudi Chem Soc. 2019;23(7):903–15.
  • [14] Ma ZY, Qiao X, Xie CZ, Shao J, Xu JY, Qiang ZY, Lou JS. Activities of a novel Schiff base copper(II) complex on growth inhibition and apoptosis induction toward MCF-7 human breast cancer cells via mitochondrial pathway. J Inorg Biochem. 2012;117:1-9. [CrossRef]
  • [15] Li LJ, Yan QQ, Liu GJ, Yuan Z, Lv ZH, Fu B, Han YJ, Du JL. Synthesis characterization and cytotoxicity studies of platinum (II) complexes with reduced amino pyridine schiff base and its derivatives as ligands. Biosci Biotechnol Biochem. 2017;81(6):1081-1089. [CrossRef]
  • [16] Proetto M, Liu W, Hagenbach A, Abram U, Gust R. Synthesis, characterization and in vitro antitumour activity of a series of novel platinum (II) complexes bearing Schiff base ligands. Eur J Med Chem. 2012;53:168-75. [CrossRef]
  • [17] Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30(1):87. [CrossRef]
  • [18] Koff JL, Ramachandiran S, Bernal-Mizrachi L. A time to kill: targeting apoptosis in cancer. Int J Mol Sci. 2015;16(2):2942-55. [CrossRef]
  • [19] Yao Q, Chen J, Lv Y, Wang T, Zhang J, Fan J, Wang L. The significance of expression of autophagy-related gene Beclin, Bcl-2, and Bax in breast cancer tissues. Tumour Biol. 2011;32(6):1163-71. [CrossRef]
  • [20] Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999;402(6762):672-6. [CrossRef]
  • [21] Koňariková K, Perdikaris GA, Gbelcová H, Andrezálová L, Švéda M, Ruml T, Laubertová L, Režnáková S, Žitňanová I. Autophagy in MCF-7 cancer cells induced by copper complexes. Pharmacol Rep. 2016;68(6):1221-1224. [CrossRef]
  • [22] Harris AL. Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2(1):38-47. [CrossRef]
  • [23] Schwab LP, Peacock DL, Majumdar D, Ingels JF, Jensen LC, Smith KD, Cushing RC, Seagroves TN. Hypoxia-inducible factor 1α promotes primary tumor growth and tumor-initiating cell activity in breast cancer. Breast Cancer Res. 2012;14(1):R6. [CrossRef]
  • [24] Sandhaus S, Taylor R, Edwards T, Huddleston A, Wooten Y, Venkatraman R, Weber RT, González-Sarrías A, Martin PM, Cagle P, Tse-Dinh YC, Beebe SJ, Seeram N, Holder AA. A novel copper (II) complex identified as a potent drug against colorectal and breast cancer cells and as a poison inhibitor for human topoisomerase IIα. Inorg Chem Commun. 2016;64:45-49. [CrossRef]
  • [25] Delgado JL, Hsieh CM, Chan NL, Hiasa H. Topoisomerases as anticancer targets. Biochem J. 2018;475(2):373-398. [CrossRef]
  • [26] Wheate NJ, Walker S, Craig GE, Oun R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 2010;39(35):8113-27. [CrossRef]
  • [27] Liyanage PY, Hettiarachchi SD, Zhou Y, Ouhtit A, Seven ES, Oztan CY, Celik E, Leblanc RM. Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim Biophys Acta Rev Cancer. 2019;1871(2):419-433. [CrossRef]
  • [28] Hossain MS, Roy PK, Zakaria CM, Kudrat-E-Zahan M. Selected Schiff base coordination complexes and their microbial application: A review. IJCS. 2018;6(1):19–31.
  • [29] Li LJ, Wang C, Tian C, Yang XY, Hua XX, Du JL. Water-soluble platinum (II) complexes of reduced amino acid Schiff bases: synthesis, characterization, and antitumor activity. Res Chem Intermed. 2013;39(2):733–46.
  • [30] Pu X, Storr SJ, Zhang Y, Rakha EA, Green AR, Ellis IO, Martin SG. Caspase-3 and caspase-8 expression in breast cancer: caspase-3 is associated with survival. Apoptosis. 2017;22(3):357-368. [CrossRef]
  • [31] Yamasaki-Miyamoto Y, Yamasaki M, Tachibana H, Yamada K. Fucoidan induces apoptosis through activation of caspase-8 on human breast cancer MCF-7 cells. J Agric Food Chem. 2009;57(18):8677-82. [CrossRef]
  • [32] Yang XH, Sladek TL, Liu X, Butler BR, Froelich CJ, Thor AD. Reconstitution of caspase 3 sensitizes MCF-7 breast cancer cells to doxorubicin- and etoposide-induced apoptosis. Cancer Res. 2001;61(1):348-54.
  • [33] Xiong S, Mu T, Wang G, Jiang X. Mitochondria-mediated apoptosis in mammals. Protein Cell. 2014;5(10):737-49. [CrossRef]
  • [34] Jain K, Paranandi KS, Sridharan S, Basu A. Autophagy in breast cancer and its implications for therapy. Am J Cancer Res. 2013;3(3):251-65.
  • [35] Chimento A, Saturnino C, Iacopetta D, Mazzotta R, Caruso A, Plutino MR, Mariconda A, Ramunno A, Sinicropi MS, Pezzi V, Longo P. Inhibition of human topoisomerase I and II and anti-proliferative effects on MCF-7 cells by new titanocene complexes. Bioorg Med Chem. 2015;23(22):7302-12. [CrossRef]
  • [36] Schoppmann SF, Fenzl A, Schindl M, Bachleitner-Hofmann T, Nagy K, Gnant M, Horvat R, Jakesz R, Birner P. Hypoxia inducible factor-1alpha correlates with VEGF-C expression and lymphangiogenesis in breast cancer. Breast Cancer Res Treat. 2006;99(2):135-41. [CrossRef]
  • [37] Zhang Y, Yan J, Wang L, Dai H, Li N, Hu W, Cai H. HIF-1α Promotes Breast Cancer Cell MCF-7 Proliferation and Invasion Through Regulating miR-210. Cancer Biother Radiopharm. 2017;32(8):297-301. [CrossRef]
  • [38] Zhang T, Guo S, Zhu X, Qiu J, Deng G, Qiu C. Alpinetin inhibits breast cancer growth by ROS/NF-κB/HIF-1α axis. J Cell Mol Med. 2020;24(15):8430-8440. [CrossRef]

Anti-proliferative impact of three Schiff base platinum (II) complexes against human breast cancer cell line

Yıl 2022, Cilt: 26 Sayı: 6, 1665 - 1675, 28.06.2025
https://doi.org/10.29228/jrp.257

Öz

Treatment approaches for breast cancer (BC) are challenging in terms of tumor recurrence and drug resistance. We investigated the antitumor activity of three platinum (II) complexes bearing Schiff base ligands against breast cancer cells MCF-7. MCF-7 cells were treated with three platinum complexes and drug cytotoxicity was evaluated using an MTT assay. To quantify apoptosis and to confirm the mode of cell death, flowcytometry analysis using annexin V-FITC-PI kit and DNA fragmentation assay was used, respectively. The possible cytotoxic mechanism of action of these platinum compounds was also determined through mRNA expression analysis by the Real time PCR method. All complexes show a dose-dependent inhibitory effect on cell viability. flowcytometry analysis shows that the average percentage of apoptosis in 50 µM concentration of all complexes is 23±3.5% and DNA fragmentation assay confirmed apoptosis. Treatment of cells with complexes significantly decreases mRNA expression of topoisomerase 1 and 2 and Bcl-2 as compared to untreated control cells. Also, our results show that both caspase 6 and 9 genes expression levels were induced at high dose (50 µM) of complexes. Our findings indicate that three Schiff base platinum (II) complexes have potent antiproliferative effect against breast cancer cells and induce apoptosis via the mitochondrial pathway. Also, our data provide evidence for a possible role of Schiff base platinum complexes in inhibition of breast tumor progression through downregulation of HIF-1α, topoisomerase 1 and 2 genes. These data support the idea that these complexes would be promising anti-breast cancer drugs.

Kaynakça

  • [1] Momenimovahed Z, Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer (Dove Med Press). 2019;11:151-164. [CrossRef]
  • [2] Kamińska M, Ciszewski T, Łopacka-Szatan K, Miotła P, Starosławska E. Breast cancer risk factors. Prz Menopauzalny. 2015;14(3):196-202. [CrossRef]
  • [3] Zhang BN, Cao XC, Chen JY, Chen J, Fu L, Hu XC, Jiang ZF, Li HY, Liao N, Liu DG, Tao O, Shao ZM, Sun Q, Wang S, Wang YS, Xu BH, Zhang J. Guidelines on the diagnosis and treatment of breast cancer (2011 edition). Gland Surg. 2012;1(1):39-61. [CrossRef]
  • [4] Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, Jemal A, Kramer JL, Siegel RL. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363-385. [CrossRef]
  • [5] Galanski M, Jakupec MA, Keppler BK. Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches. Curr Med Chem. 2005;12(18):2075-94. [CrossRef]
  • [6] Rottenberg S, Disler C, Perego P. The rediscovery of platinum-based cancer therapy. Nat Rev Cancer. 2021;21(1):37-50. [CrossRef]
  • [7] Shamseddine AI, Farhat FS. Platinum-based compounds for the treatment of metastatic breast cancer. Chemotherapy. 2011;57(6):468-87. [CrossRef]
  • [8] Martin LP, Hamilton TC, Schilder RJ. Platinum resistance: the role of DNA repair pathways. Clin Cancer Res. 2008;14(5):1291-5. [CrossRef]
  • [9] Shiju C, Arish D, Bhuvanesh N, Kumaresan S. Synthesis, characterization, and biological evaluation of Schiff base-platinum(II) complexes. Spectrochim Acta A Mol Biomol Spectrosc. 2015;145:213-222. [CrossRef]
  • [10] Shapiro CL. Highlights of Recent Findings on Quality-of-Life Management for Patients With Cancer and Their Survivors. JAMA Oncol. 2016;2(11):1401-1402. [CrossRef]
  • [11] Coley HM. Mechanisms and consequences of chemotherapy resistance in breast cancer. Eur J Cancer Suppl. 2009;7(1):3–7.
  • [12] Gupta B, Kumari A, Belwal S, Singh RV, Fahmi N. Synthesis, characterization of platinum (II) complexes of Schiff base ligands and evaluation of cytotoxic activity of platinum nanoparticles. Inorg Nano-Metal Chem. 2020;50(10):914-25.
  • [13] Al-Khathami ND, Al-Rashdi KS, Babgi BA, Hussien MA, Arshad MN, Eltayeb NE, Elsilk SE, Lasri J, Basaleh AS, Al-Jahdali M. Spectroscopic and biological properties of platinum complexes derived from 2-pyridyl Schiff bases. J Saudi Chem Soc. 2019;23(7):903–15.
  • [14] Ma ZY, Qiao X, Xie CZ, Shao J, Xu JY, Qiang ZY, Lou JS. Activities of a novel Schiff base copper(II) complex on growth inhibition and apoptosis induction toward MCF-7 human breast cancer cells via mitochondrial pathway. J Inorg Biochem. 2012;117:1-9. [CrossRef]
  • [15] Li LJ, Yan QQ, Liu GJ, Yuan Z, Lv ZH, Fu B, Han YJ, Du JL. Synthesis characterization and cytotoxicity studies of platinum (II) complexes with reduced amino pyridine schiff base and its derivatives as ligands. Biosci Biotechnol Biochem. 2017;81(6):1081-1089. [CrossRef]
  • [16] Proetto M, Liu W, Hagenbach A, Abram U, Gust R. Synthesis, characterization and in vitro antitumour activity of a series of novel platinum (II) complexes bearing Schiff base ligands. Eur J Med Chem. 2012;53:168-75. [CrossRef]
  • [17] Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30(1):87. [CrossRef]
  • [18] Koff JL, Ramachandiran S, Bernal-Mizrachi L. A time to kill: targeting apoptosis in cancer. Int J Mol Sci. 2015;16(2):2942-55. [CrossRef]
  • [19] Yao Q, Chen J, Lv Y, Wang T, Zhang J, Fan J, Wang L. The significance of expression of autophagy-related gene Beclin, Bcl-2, and Bax in breast cancer tissues. Tumour Biol. 2011;32(6):1163-71. [CrossRef]
  • [20] Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999;402(6762):672-6. [CrossRef]
  • [21] Koňariková K, Perdikaris GA, Gbelcová H, Andrezálová L, Švéda M, Ruml T, Laubertová L, Režnáková S, Žitňanová I. Autophagy in MCF-7 cancer cells induced by copper complexes. Pharmacol Rep. 2016;68(6):1221-1224. [CrossRef]
  • [22] Harris AL. Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2(1):38-47. [CrossRef]
  • [23] Schwab LP, Peacock DL, Majumdar D, Ingels JF, Jensen LC, Smith KD, Cushing RC, Seagroves TN. Hypoxia-inducible factor 1α promotes primary tumor growth and tumor-initiating cell activity in breast cancer. Breast Cancer Res. 2012;14(1):R6. [CrossRef]
  • [24] Sandhaus S, Taylor R, Edwards T, Huddleston A, Wooten Y, Venkatraman R, Weber RT, González-Sarrías A, Martin PM, Cagle P, Tse-Dinh YC, Beebe SJ, Seeram N, Holder AA. A novel copper (II) complex identified as a potent drug against colorectal and breast cancer cells and as a poison inhibitor for human topoisomerase IIα. Inorg Chem Commun. 2016;64:45-49. [CrossRef]
  • [25] Delgado JL, Hsieh CM, Chan NL, Hiasa H. Topoisomerases as anticancer targets. Biochem J. 2018;475(2):373-398. [CrossRef]
  • [26] Wheate NJ, Walker S, Craig GE, Oun R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 2010;39(35):8113-27. [CrossRef]
  • [27] Liyanage PY, Hettiarachchi SD, Zhou Y, Ouhtit A, Seven ES, Oztan CY, Celik E, Leblanc RM. Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim Biophys Acta Rev Cancer. 2019;1871(2):419-433. [CrossRef]
  • [28] Hossain MS, Roy PK, Zakaria CM, Kudrat-E-Zahan M. Selected Schiff base coordination complexes and their microbial application: A review. IJCS. 2018;6(1):19–31.
  • [29] Li LJ, Wang C, Tian C, Yang XY, Hua XX, Du JL. Water-soluble platinum (II) complexes of reduced amino acid Schiff bases: synthesis, characterization, and antitumor activity. Res Chem Intermed. 2013;39(2):733–46.
  • [30] Pu X, Storr SJ, Zhang Y, Rakha EA, Green AR, Ellis IO, Martin SG. Caspase-3 and caspase-8 expression in breast cancer: caspase-3 is associated with survival. Apoptosis. 2017;22(3):357-368. [CrossRef]
  • [31] Yamasaki-Miyamoto Y, Yamasaki M, Tachibana H, Yamada K. Fucoidan induces apoptosis through activation of caspase-8 on human breast cancer MCF-7 cells. J Agric Food Chem. 2009;57(18):8677-82. [CrossRef]
  • [32] Yang XH, Sladek TL, Liu X, Butler BR, Froelich CJ, Thor AD. Reconstitution of caspase 3 sensitizes MCF-7 breast cancer cells to doxorubicin- and etoposide-induced apoptosis. Cancer Res. 2001;61(1):348-54.
  • [33] Xiong S, Mu T, Wang G, Jiang X. Mitochondria-mediated apoptosis in mammals. Protein Cell. 2014;5(10):737-49. [CrossRef]
  • [34] Jain K, Paranandi KS, Sridharan S, Basu A. Autophagy in breast cancer and its implications for therapy. Am J Cancer Res. 2013;3(3):251-65.
  • [35] Chimento A, Saturnino C, Iacopetta D, Mazzotta R, Caruso A, Plutino MR, Mariconda A, Ramunno A, Sinicropi MS, Pezzi V, Longo P. Inhibition of human topoisomerase I and II and anti-proliferative effects on MCF-7 cells by new titanocene complexes. Bioorg Med Chem. 2015;23(22):7302-12. [CrossRef]
  • [36] Schoppmann SF, Fenzl A, Schindl M, Bachleitner-Hofmann T, Nagy K, Gnant M, Horvat R, Jakesz R, Birner P. Hypoxia inducible factor-1alpha correlates with VEGF-C expression and lymphangiogenesis in breast cancer. Breast Cancer Res Treat. 2006;99(2):135-41. [CrossRef]
  • [37] Zhang Y, Yan J, Wang L, Dai H, Li N, Hu W, Cai H. HIF-1α Promotes Breast Cancer Cell MCF-7 Proliferation and Invasion Through Regulating miR-210. Cancer Biother Radiopharm. 2017;32(8):297-301. [CrossRef]
  • [38] Zhang T, Guo S, Zhu X, Qiu J, Deng G, Qiu C. Alpinetin inhibits breast cancer growth by ROS/NF-κB/HIF-1α axis. J Cell Mol Med. 2020;24(15):8430-8440. [CrossRef]
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Farmasotik Kimya
Bölüm Articles
Yazarlar

Parisa Bazsefidpar

Samaneh Zolghadri

Amin Reza Nikpoor

Ebrahim Eftekhar

Mohammad Zareian Jahromi

Yayımlanma Tarihi 28 Haziran 2025
Yayımlandığı Sayı Yıl 2022 Cilt: 26 Sayı: 6

Kaynak Göster

APA Bazsefidpar, P., Zolghadri, S., Nikpoor, A. R., Eftekhar, E., vd. (2025). Anti-proliferative impact of three Schiff base platinum (II) complexes against human breast cancer cell line. Journal of Research in Pharmacy, 26(6), 1665-1675. https://doi.org/10.29228/jrp.257
AMA Bazsefidpar P, Zolghadri S, Nikpoor AR, Eftekhar E, Zareian Jahromi M. Anti-proliferative impact of three Schiff base platinum (II) complexes against human breast cancer cell line. J. Res. Pharm. Haziran 2025;26(6):1665-1675. doi:10.29228/jrp.257
Chicago Bazsefidpar, Parisa, Samaneh Zolghadri, Amin Reza Nikpoor, Ebrahim Eftekhar, ve Mohammad Zareian Jahromi. “Anti-Proliferative Impact of Three Schiff Base Platinum (II) Complexes Against Human Breast Cancer Cell Line”. Journal of Research in Pharmacy 26, sy. 6 (Haziran 2025): 1665-75. https://doi.org/10.29228/jrp.257.
EndNote Bazsefidpar P, Zolghadri S, Nikpoor AR, Eftekhar E, Zareian Jahromi M (01 Haziran 2025) Anti-proliferative impact of three Schiff base platinum (II) complexes against human breast cancer cell line. Journal of Research in Pharmacy 26 6 1665–1675.
IEEE P. Bazsefidpar, S. Zolghadri, A. R. Nikpoor, E. Eftekhar, ve M. Zareian Jahromi, “Anti-proliferative impact of three Schiff base platinum (II) complexes against human breast cancer cell line”, J. Res. Pharm., c. 26, sy. 6, ss. 1665–1675, 2025, doi: 10.29228/jrp.257.
ISNAD Bazsefidpar, Parisa vd. “Anti-Proliferative Impact of Three Schiff Base Platinum (II) Complexes Against Human Breast Cancer Cell Line”. Journal of Research in Pharmacy 26/6 (Haziran 2025), 1665-1675. https://doi.org/10.29228/jrp.257.
JAMA Bazsefidpar P, Zolghadri S, Nikpoor AR, Eftekhar E, Zareian Jahromi M. Anti-proliferative impact of three Schiff base platinum (II) complexes against human breast cancer cell line. J. Res. Pharm. 2025;26:1665–1675.
MLA Bazsefidpar, Parisa vd. “Anti-Proliferative Impact of Three Schiff Base Platinum (II) Complexes Against Human Breast Cancer Cell Line”. Journal of Research in Pharmacy, c. 26, sy. 6, 2025, ss. 1665-7, doi:10.29228/jrp.257.
Vancouver Bazsefidpar P, Zolghadri S, Nikpoor AR, Eftekhar E, Zareian Jahromi M. Anti-proliferative impact of three Schiff base platinum (II) complexes against human breast cancer cell line. J. Res. Pharm. 2025;26(6):1665-7.