Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 26 Sayı: 6, 1805 - 1813, 28.06.2025
https://doi.org/10.29228/jrp.271

Öz

Kaynakça

  • [1] Ministry of Health. Dengue Update: Observing the Journey of Dengue in West Java. 1st ed. Jawa Barat: Indonesian Institute of Sciences (LIPI) Press; 2019. 1–262 p.
  • [2] Abiri R, Abdul-Hamid H, Sytar O, Abiri R, Eduardo Bezerra de Almeida J, Sharma SK, Bulgakov VP, Arroo RRJ, Sonia M. A Brief Overview of Potential Treatments for Viral Diseases. Molecules. 2021;26(3868):1–35. [CrossRef]
  • [3] Brady O, Wilder-Smith A. What Is the Impact of Lockdowns on Dengue? Curr Infect Dis Rep. 2021 Feb 21;23(2):2. [CrossRef]
  • [4] Kronfeld-Schor N, Stevenson TJ, Nickbakhsh S, Schernhammer ES, Dopico XC, Dayan T, Martinez M, Helm B. Drivers of Infectious Disease Seasonality: Potential Implications for COVID-19. J Biol Rhythms. 2021;36(1):35–54. [CrossRef]
  • [5] Bali Health Department. Bali Province Health Profile 2020. Denpasar: Bali Provincial Health Office; 2021. https://diskes.baliprov.go.id/download/profil-kesehatan-provinsi-bali-2020/ (accessed on 13 April 2021).
  • [6] Adnyana IMDM, Sudaryati NLG, Suardana AAK. Blood Smear Profile of Patients With Dengue Hemorrhagic Fever in Bali Royal Hospital. J Vocat Heal Stud. 2021;5(1):39–46. [CrossRef]
  • [7] Widjajanti W, Ayuningtyas RTD, Adnyana NWD. Entomological Index of Dengue Hemorrhagic Fever Vectors in Three Districts in Bali Province. Vektora J Vektor dan Reserv Penyakit. 2019;11(1):11–20. [CrossRef]
  • [8] Adnyana IMDM, Azhari FSS, Sudaryati NLG. Prevalence of Dengue Hemorrhagic Fever In Bali from 2015 to 2020 and During the COVID-19 Pandemic. J Berk Epidemiol. 2022;10(2):169–178. [CrossRef]
  • [9] Feroz A. Efficacy and cytotoxic potential of deltamethrin, essential oils of Cymbopogon citratus and Cinnamomum camphora and their synergistic combinations against stored product pest, Trogoderma granarium (Everts). J Stored Prod Res. 2020;87:101614. [CrossRef]
  • [10] Alam A, Sudarwati S, Lukmanul Hakim DD, Mahdiani S. Case report: Severe COVID-19 and dengue in an Indonesian infant. Am J Trop Med Hyg. 2021;104(4):1456–60. [CrossRef]
  • [11] Vicente CR, Cristina T, Dell L, Pereira A, Miranda AE. Impact of concurrent epidemics of dengue, chikungunya, zika, and COVID-19. J Brazilian Soc Trop Med. 2021;54(e0837):1–7. [CrossRef]
  • [12] Marcombe S, Mathieu RB, Pocquet N, Riaz MA, Poupardin R, Sélior S, Darriet F, Reynaud S, Yébakima A, Corbel V, Jean-Philippe D, Fabrice C. Insecticide resistance in the dengue vector Aedes aegypti from Martinique: Distribution, mechanisms and relations with environmental factors. PLoS One. 2017;7(2):e30989. [CrossRef]
  • [13] Tsou MCM, Lung SCC, Shen YS, Liu CH, Hsieh YH, Chen N, Hwang JS. A community-based study on associations between PM2.5 and PM1 exposure and heart rate variability using wearable low-cost sensing devices. Environ Pollut. 2021;277(116761):1–9. [CrossRef]
  • [14] Mertha Adnyana IMD, Gede Sudaryati NL, Sitepu I. Toxicity of Legiayu incense as Insecticide and Larvicide against Aedes aegypti Mosquitoes Mortality. Indones J Pharm. 2021;32(4):514–21. [CrossRef]
  • [15] Yamamoto N, Kan-o K, Tatsuta M, Ishii Y, Ogawa T, Shinozaki S, Fukuyama S, Nakanishi Y, Matsumoto K. Incense smoke-induced oxidative stress disrupts tight junctions and bronchial epithelial barrier integrity and induces airway hyperresponsiveness in mouse lungs. Sci Rep. 2021;11(1):1–15. [CrossRef]
  • [16] Guo SE, Chi MC, Lin CM, Yang TM. Contributions of burning incense on indoor air pollution levels and on the health status of patients with chronic obstructive pulmonary disease. PeerJ. 2020;8(e9768):1–17. [CrossRef]
  • [17] Vardoulakis S, Giagloglou E, Steinle S, Davis A, Sleeuwenhoek A, Galea KS, Dixon K, Crawford JO. Indoor exposure to selected air pollutants in the home environment: A systematic review. Int J Environ Res Public Health. 2020;17(23):1–24. [CrossRef]
  • [18] Wang J, Zhang Y, Li B, Zhao Z, Huang C, Zhang X, Deng Q, Lu C, Qian H, Yang X, Sun Y, Sundell J, Norbäck D. Asthma and allergic rhinitis among young parents in China in relation to outdoor air pollution, climate and home environment. Sci Total Environ. 2021;751(2):141734. [CrossRef]
  • [19] Darwin M, Mamondol MR, Sormin SA, Nurhayati Y, Tambunan H, Sylvia D, Adnyana IMDM, Prasetiyo B, Vianitati P, Gebang AA. Quantitative Approach Research Method. 1st ed. Bandung: CV Media Sains Indonesia; 2021. 192 p. [CrossRef]
  • [20] WHOPES. World Health Organization Pesticide Evaluation Scheme. Geneva: World Health Organization; 2018. p. 1–68. https://apps.who.int/iris/handle/10665/66884 (accessed on 13 April 2021).
  • [21] Ministry of Health. Guidelines for the Use of Insecticides (Pesticides) in Vector Control. Vol. 632. Indonesia: Directorate General of Disease Control and Environmental Health Ministry of Health of the Republic of Indonesia; 2012. 1–126 p. [CrossRef]
  • [22] Telaumbanua M, Savitri EA, Shofi AB, Suharyatun S, Wisnu FK, Haryanto A. Plant-based pesticide using citronella (Cymbopogon nardus L.) extract to control insect pests on rice plants. IOP Conf Ser Earth Environ Sci. 2021;739:012071. [CrossRef]
  • [23] Wahyuni MS, Cahyani SD, Azizah R, Diyanah KC. A systematic review on the effectiveness of biological larvaside the vector control efforts in dengue fever disease. Malaysian J Med Heal Sci. 2019;15(3):66–69.
  • [24] Vasantha-Srinivasan P, Thanigaivel A, Edwin ES, Ponsankar A, Senthil-Nathan S, Selin-Rani S, Kalaivani K, Hunter WB, Duraipandiyan V, Al-Dhabi NA. Toxicological effects of chemical constituents from Piper against the environmental burden Aedes aegypti Liston and their impact on non-target toxicity evaluation against biomonitoring aquatic insects. Environ Sci Pollut Res. 2018;25(11):10434–46. [CrossRef]
  • [25] Dewanti N, Sofian F. Pharmacological Activity of Fragrant Pandan Leaf Extract (Pandanus amaryllifolius Roxb.). Farmaka. 2017;15(2):186–94. [CrossRef]
  • [26] Notophanax M, Sebagai S, Marina R, Astuti P. Potency of Pandanus amaryllifolius and Notophanax scutellarium as Aedes albopictus Mosquito Repellent. Aspirator J Vector Borne Dis Stud. 2020;4(2):85–91.
  • [27] Garcia G de A, David MR, Martins A de J, Maciel-de-Freitas R, Linss JGB, Araújo SC, Lima JBP, Valle D. The impact of insecticide applications on the dynamics of resistance: The case of four Aedes aegypti populations from different Brazilian regions. PLoS Negl Trop Dis. 2018;12(2):e0006227. [CrossRef]
  • [28] Degu S, Berihun A, Muluye R, Gemeda H, Debebe E, Amano A, Abebe A, Woldkidan S, Tadele A. Medicinal plants that used as repellent, insecticide and larvicide in Ethiopia. Pharm Pharmacol Int J. 2020;8(5):274–83. [CrossRef]
  • [29] Diyana ZN, Jumaidin R, Selamat MZ, Alamjuri RH, Yusof FAM. Extraction and characterization of natural cellulosic fiber from Pandanus amaryllifolius leaves. Polymers (Basel). 2021;13:4172. [CrossRef]
  • [30] Tan MA, Takayama H. Recent Progress in the Chemistry of Pandanus Alkaloids. In: Alkaloids: Chemistry and Biology. 2019;82:1–28. [CrossRef]
  • [31] Astriani Y, Widawati M. Potential Plants in Indonesia as Natural Larvicides for Aedes aegypti. Spirakel. 2017;8(2):37–46. [CrossRef]
  • [32] Widiastuti D, Ikawati B, Hadi UK. Larvicidal effect of mixture of Beauveria bassiana Crude metabolite and chitinase enzyme against Aedes aegypti larvae. Kesmas. 2018;12(4):187–93. [CrossRef]
  • [33] Utami IW, Cahyati WH. Potential of Cambodian Leaf Extract as Insecticide Against Aedes aegypti Mosquitoes. J Public Heal Res Dev. 2017;1(1):22–28. [CrossRef]
  • [34] Chan EWC, Baba S, Chan HT, Kainuma M, Tangah J. Medicinal plants of sandy shores: A short review on Vitex trifolia L. and Ipomoea pes-caprae (L.) R. Br. Env Heal Perspect. 2016;124(9):1487–92. [CrossRef]
  • [35] Susilowati RP, Darmanto W, Aminah NS. The effectiveness of Herbal Mosquito Coils “MORIZENA” Against Aedes aegypti Death. Indones J Trop Infect Dis. 2018;7(2):50. [CrossRef]
  • [36] Ministry of Environment and Forestry. Government Regulation of the Republic of Indonesia Number 22 of 2021 concerning Implementation of Environmental Protection and Management. Jakarta: Ministry of Environment and Forestry of the Republic of Indonesia; 2021. p. 1–109. https://peraturan.bpk.go.id/Home/Details/161852/pp-no-22-tahun-2021 (accessed on 13 April 2021).
  • [37] WHO. Guidelines for laboratory and field testing of mosquito larvicides. Communicable Disease Control, Prevention And Eradication. World Health Organization; 2005. p. 1–41. [CrossRef]
  • [38] WHOPES. WHOPES: Recommended compounds and formulations for control of mosquito larvae. World Health Organization. 2017.
  • [39] Ministry of Health. Regulation of the Minister of Health of the Republic of Indonesia No. 50 of 2017 concerning Environmental Health Quality Standards and Health Requirements for Disease-Carrying Vectors and Animals and Their Control. State Gazette of the Republic of Indonesia. Jakarta: Ministry of Health Republic of Indonesia; 2017. p. 1–83. https://peraturan.bpk.go.id/Home/Details/112145/permenkes-no-50-tahun-2017 (accessed on 13 April 2021).
  • [40] Food and Drug Administration (FDA). Regulation of the Food and Drug Supervisory Agency of the Republic of Indonesia Number 7 of 2014 concerning guidelines for in vivo non-clinical toxicity testing. Jakarta: Food and Drug Administration Republic of Indonesia; 2014. p. 1–165. [CrossRef]

Efficacy and Toxicity of Parasayu incense ash as a Larvicide for the Eradication of Aedes aegypti (Diptera: Culicidae) Mosquito Larvae

Yıl 2022, Cilt: 26 Sayı: 6, 1805 - 1813, 28.06.2025
https://doi.org/10.29228/jrp.271

Öz

Long-term control of Aedes aegypti larvae with temephos has led to resistance and side effects. Therefore, natural agents have been developed to eradicate the vector that causes dengue fever. Therefore, the aim of this study is to evaluate the efficacy and toxicity of Parasayu incense ash as a larvicide to eradicate Aedes aegypti mosquito larvae. In this experimental study, a completely randomized design was used and the test was conducted by exposing 25 fourth instar larvae to Parasayu incense ash for two, four, six, eight and 24 hours, with five replicates for a total sample of 875 tails in the Entomology and Parasitology Laboratory for three months. Data were analyzed using one-way ANOVA and a probit test. One test showed that different exposure times to Parasayu incense ash significantly affected the death of Aedes aegypti mosquito larvae at p = 0.000 (p< 0.01). The ash toxicity test yielded a lethal time (LT50) value of 57.4539, which is 5 h, 37 min, and 32 s in the extremely hazardous category. In addition, the LT90 value was 4.632736, which is 3 h, 21 min, and 48 s in the super toxic category. The coefficient of determination (R2) was 0.9552 (95.52%), and the correlation coefficient (r) was 0.9773 (97.73%). Therefore, to eradicate the vector causing dengue virus infection, Parasayu incense ash should be used, which has been shown to be effective, efficient, and toxic to Aedes aegypti mosquito larvae at exposure times of 2, 4, 6, 8, and 24 hours.

Kaynakça

  • [1] Ministry of Health. Dengue Update: Observing the Journey of Dengue in West Java. 1st ed. Jawa Barat: Indonesian Institute of Sciences (LIPI) Press; 2019. 1–262 p.
  • [2] Abiri R, Abdul-Hamid H, Sytar O, Abiri R, Eduardo Bezerra de Almeida J, Sharma SK, Bulgakov VP, Arroo RRJ, Sonia M. A Brief Overview of Potential Treatments for Viral Diseases. Molecules. 2021;26(3868):1–35. [CrossRef]
  • [3] Brady O, Wilder-Smith A. What Is the Impact of Lockdowns on Dengue? Curr Infect Dis Rep. 2021 Feb 21;23(2):2. [CrossRef]
  • [4] Kronfeld-Schor N, Stevenson TJ, Nickbakhsh S, Schernhammer ES, Dopico XC, Dayan T, Martinez M, Helm B. Drivers of Infectious Disease Seasonality: Potential Implications for COVID-19. J Biol Rhythms. 2021;36(1):35–54. [CrossRef]
  • [5] Bali Health Department. Bali Province Health Profile 2020. Denpasar: Bali Provincial Health Office; 2021. https://diskes.baliprov.go.id/download/profil-kesehatan-provinsi-bali-2020/ (accessed on 13 April 2021).
  • [6] Adnyana IMDM, Sudaryati NLG, Suardana AAK. Blood Smear Profile of Patients With Dengue Hemorrhagic Fever in Bali Royal Hospital. J Vocat Heal Stud. 2021;5(1):39–46. [CrossRef]
  • [7] Widjajanti W, Ayuningtyas RTD, Adnyana NWD. Entomological Index of Dengue Hemorrhagic Fever Vectors in Three Districts in Bali Province. Vektora J Vektor dan Reserv Penyakit. 2019;11(1):11–20. [CrossRef]
  • [8] Adnyana IMDM, Azhari FSS, Sudaryati NLG. Prevalence of Dengue Hemorrhagic Fever In Bali from 2015 to 2020 and During the COVID-19 Pandemic. J Berk Epidemiol. 2022;10(2):169–178. [CrossRef]
  • [9] Feroz A. Efficacy and cytotoxic potential of deltamethrin, essential oils of Cymbopogon citratus and Cinnamomum camphora and their synergistic combinations against stored product pest, Trogoderma granarium (Everts). J Stored Prod Res. 2020;87:101614. [CrossRef]
  • [10] Alam A, Sudarwati S, Lukmanul Hakim DD, Mahdiani S. Case report: Severe COVID-19 and dengue in an Indonesian infant. Am J Trop Med Hyg. 2021;104(4):1456–60. [CrossRef]
  • [11] Vicente CR, Cristina T, Dell L, Pereira A, Miranda AE. Impact of concurrent epidemics of dengue, chikungunya, zika, and COVID-19. J Brazilian Soc Trop Med. 2021;54(e0837):1–7. [CrossRef]
  • [12] Marcombe S, Mathieu RB, Pocquet N, Riaz MA, Poupardin R, Sélior S, Darriet F, Reynaud S, Yébakima A, Corbel V, Jean-Philippe D, Fabrice C. Insecticide resistance in the dengue vector Aedes aegypti from Martinique: Distribution, mechanisms and relations with environmental factors. PLoS One. 2017;7(2):e30989. [CrossRef]
  • [13] Tsou MCM, Lung SCC, Shen YS, Liu CH, Hsieh YH, Chen N, Hwang JS. A community-based study on associations between PM2.5 and PM1 exposure and heart rate variability using wearable low-cost sensing devices. Environ Pollut. 2021;277(116761):1–9. [CrossRef]
  • [14] Mertha Adnyana IMD, Gede Sudaryati NL, Sitepu I. Toxicity of Legiayu incense as Insecticide and Larvicide against Aedes aegypti Mosquitoes Mortality. Indones J Pharm. 2021;32(4):514–21. [CrossRef]
  • [15] Yamamoto N, Kan-o K, Tatsuta M, Ishii Y, Ogawa T, Shinozaki S, Fukuyama S, Nakanishi Y, Matsumoto K. Incense smoke-induced oxidative stress disrupts tight junctions and bronchial epithelial barrier integrity and induces airway hyperresponsiveness in mouse lungs. Sci Rep. 2021;11(1):1–15. [CrossRef]
  • [16] Guo SE, Chi MC, Lin CM, Yang TM. Contributions of burning incense on indoor air pollution levels and on the health status of patients with chronic obstructive pulmonary disease. PeerJ. 2020;8(e9768):1–17. [CrossRef]
  • [17] Vardoulakis S, Giagloglou E, Steinle S, Davis A, Sleeuwenhoek A, Galea KS, Dixon K, Crawford JO. Indoor exposure to selected air pollutants in the home environment: A systematic review. Int J Environ Res Public Health. 2020;17(23):1–24. [CrossRef]
  • [18] Wang J, Zhang Y, Li B, Zhao Z, Huang C, Zhang X, Deng Q, Lu C, Qian H, Yang X, Sun Y, Sundell J, Norbäck D. Asthma and allergic rhinitis among young parents in China in relation to outdoor air pollution, climate and home environment. Sci Total Environ. 2021;751(2):141734. [CrossRef]
  • [19] Darwin M, Mamondol MR, Sormin SA, Nurhayati Y, Tambunan H, Sylvia D, Adnyana IMDM, Prasetiyo B, Vianitati P, Gebang AA. Quantitative Approach Research Method. 1st ed. Bandung: CV Media Sains Indonesia; 2021. 192 p. [CrossRef]
  • [20] WHOPES. World Health Organization Pesticide Evaluation Scheme. Geneva: World Health Organization; 2018. p. 1–68. https://apps.who.int/iris/handle/10665/66884 (accessed on 13 April 2021).
  • [21] Ministry of Health. Guidelines for the Use of Insecticides (Pesticides) in Vector Control. Vol. 632. Indonesia: Directorate General of Disease Control and Environmental Health Ministry of Health of the Republic of Indonesia; 2012. 1–126 p. [CrossRef]
  • [22] Telaumbanua M, Savitri EA, Shofi AB, Suharyatun S, Wisnu FK, Haryanto A. Plant-based pesticide using citronella (Cymbopogon nardus L.) extract to control insect pests on rice plants. IOP Conf Ser Earth Environ Sci. 2021;739:012071. [CrossRef]
  • [23] Wahyuni MS, Cahyani SD, Azizah R, Diyanah KC. A systematic review on the effectiveness of biological larvaside the vector control efforts in dengue fever disease. Malaysian J Med Heal Sci. 2019;15(3):66–69.
  • [24] Vasantha-Srinivasan P, Thanigaivel A, Edwin ES, Ponsankar A, Senthil-Nathan S, Selin-Rani S, Kalaivani K, Hunter WB, Duraipandiyan V, Al-Dhabi NA. Toxicological effects of chemical constituents from Piper against the environmental burden Aedes aegypti Liston and their impact on non-target toxicity evaluation against biomonitoring aquatic insects. Environ Sci Pollut Res. 2018;25(11):10434–46. [CrossRef]
  • [25] Dewanti N, Sofian F. Pharmacological Activity of Fragrant Pandan Leaf Extract (Pandanus amaryllifolius Roxb.). Farmaka. 2017;15(2):186–94. [CrossRef]
  • [26] Notophanax M, Sebagai S, Marina R, Astuti P. Potency of Pandanus amaryllifolius and Notophanax scutellarium as Aedes albopictus Mosquito Repellent. Aspirator J Vector Borne Dis Stud. 2020;4(2):85–91.
  • [27] Garcia G de A, David MR, Martins A de J, Maciel-de-Freitas R, Linss JGB, Araújo SC, Lima JBP, Valle D. The impact of insecticide applications on the dynamics of resistance: The case of four Aedes aegypti populations from different Brazilian regions. PLoS Negl Trop Dis. 2018;12(2):e0006227. [CrossRef]
  • [28] Degu S, Berihun A, Muluye R, Gemeda H, Debebe E, Amano A, Abebe A, Woldkidan S, Tadele A. Medicinal plants that used as repellent, insecticide and larvicide in Ethiopia. Pharm Pharmacol Int J. 2020;8(5):274–83. [CrossRef]
  • [29] Diyana ZN, Jumaidin R, Selamat MZ, Alamjuri RH, Yusof FAM. Extraction and characterization of natural cellulosic fiber from Pandanus amaryllifolius leaves. Polymers (Basel). 2021;13:4172. [CrossRef]
  • [30] Tan MA, Takayama H. Recent Progress in the Chemistry of Pandanus Alkaloids. In: Alkaloids: Chemistry and Biology. 2019;82:1–28. [CrossRef]
  • [31] Astriani Y, Widawati M. Potential Plants in Indonesia as Natural Larvicides for Aedes aegypti. Spirakel. 2017;8(2):37–46. [CrossRef]
  • [32] Widiastuti D, Ikawati B, Hadi UK. Larvicidal effect of mixture of Beauveria bassiana Crude metabolite and chitinase enzyme against Aedes aegypti larvae. Kesmas. 2018;12(4):187–93. [CrossRef]
  • [33] Utami IW, Cahyati WH. Potential of Cambodian Leaf Extract as Insecticide Against Aedes aegypti Mosquitoes. J Public Heal Res Dev. 2017;1(1):22–28. [CrossRef]
  • [34] Chan EWC, Baba S, Chan HT, Kainuma M, Tangah J. Medicinal plants of sandy shores: A short review on Vitex trifolia L. and Ipomoea pes-caprae (L.) R. Br. Env Heal Perspect. 2016;124(9):1487–92. [CrossRef]
  • [35] Susilowati RP, Darmanto W, Aminah NS. The effectiveness of Herbal Mosquito Coils “MORIZENA” Against Aedes aegypti Death. Indones J Trop Infect Dis. 2018;7(2):50. [CrossRef]
  • [36] Ministry of Environment and Forestry. Government Regulation of the Republic of Indonesia Number 22 of 2021 concerning Implementation of Environmental Protection and Management. Jakarta: Ministry of Environment and Forestry of the Republic of Indonesia; 2021. p. 1–109. https://peraturan.bpk.go.id/Home/Details/161852/pp-no-22-tahun-2021 (accessed on 13 April 2021).
  • [37] WHO. Guidelines for laboratory and field testing of mosquito larvicides. Communicable Disease Control, Prevention And Eradication. World Health Organization; 2005. p. 1–41. [CrossRef]
  • [38] WHOPES. WHOPES: Recommended compounds and formulations for control of mosquito larvae. World Health Organization. 2017.
  • [39] Ministry of Health. Regulation of the Minister of Health of the Republic of Indonesia No. 50 of 2017 concerning Environmental Health Quality Standards and Health Requirements for Disease-Carrying Vectors and Animals and Their Control. State Gazette of the Republic of Indonesia. Jakarta: Ministry of Health Republic of Indonesia; 2017. p. 1–83. https://peraturan.bpk.go.id/Home/Details/112145/permenkes-no-50-tahun-2017 (accessed on 13 April 2021).
  • [40] Food and Drug Administration (FDA). Regulation of the Food and Drug Supervisory Agency of the Republic of Indonesia Number 7 of 2014 concerning guidelines for in vivo non-clinical toxicity testing. Jakarta: Food and Drug Administration Republic of Indonesia; 2014. p. 1–165. [CrossRef]
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Farmasotik Mikrobiyoloji, Farmasotik Toksikoloji
Bölüm Articles
Yazarlar

I Made Dwi Mertha Adnyana

I Made Sumarya

Ni Luh Gede Sudaryati

Yayımlanma Tarihi 28 Haziran 2025
Yayımlandığı Sayı Yıl 2022 Cilt: 26 Sayı: 6

Kaynak Göster

APA Adnyana, I. M. D. M., Sumarya, I. M., & Sudaryati, N. L. G. (2025). Efficacy and Toxicity of Parasayu incense ash as a Larvicide for the Eradication of Aedes aegypti (Diptera: Culicidae) Mosquito Larvae. Journal of Research in Pharmacy, 26(6), 1805-1813. https://doi.org/10.29228/jrp.271
AMA Adnyana IMDM, Sumarya IM, Sudaryati NLG. Efficacy and Toxicity of Parasayu incense ash as a Larvicide for the Eradication of Aedes aegypti (Diptera: Culicidae) Mosquito Larvae. J. Res. Pharm. Haziran 2025;26(6):1805-1813. doi:10.29228/jrp.271
Chicago Adnyana, I Made Dwi Mertha, I Made Sumarya, ve Ni Luh Gede Sudaryati. “Efficacy and Toxicity of Parasayu Incense Ash As a Larvicide for the Eradication of Aedes Aegypti (Diptera: Culicidae) Mosquito Larvae”. Journal of Research in Pharmacy 26, sy. 6 (Haziran 2025): 1805-13. https://doi.org/10.29228/jrp.271.
EndNote Adnyana IMDM, Sumarya IM, Sudaryati NLG (01 Haziran 2025) Efficacy and Toxicity of Parasayu incense ash as a Larvicide for the Eradication of Aedes aegypti (Diptera: Culicidae) Mosquito Larvae. Journal of Research in Pharmacy 26 6 1805–1813.
IEEE I. M. D. M. Adnyana, I. M. Sumarya, ve N. L. G. Sudaryati, “Efficacy and Toxicity of Parasayu incense ash as a Larvicide for the Eradication of Aedes aegypti (Diptera: Culicidae) Mosquito Larvae”, J. Res. Pharm., c. 26, sy. 6, ss. 1805–1813, 2025, doi: 10.29228/jrp.271.
ISNAD Adnyana, I Made Dwi Mertha vd. “Efficacy and Toxicity of Parasayu Incense Ash As a Larvicide for the Eradication of Aedes Aegypti (Diptera: Culicidae) Mosquito Larvae”. Journal of Research in Pharmacy 26/6 (Haziran 2025), 1805-1813. https://doi.org/10.29228/jrp.271.
JAMA Adnyana IMDM, Sumarya IM, Sudaryati NLG. Efficacy and Toxicity of Parasayu incense ash as a Larvicide for the Eradication of Aedes aegypti (Diptera: Culicidae) Mosquito Larvae. J. Res. Pharm. 2025;26:1805–1813.
MLA Adnyana, I Made Dwi Mertha vd. “Efficacy and Toxicity of Parasayu Incense Ash As a Larvicide for the Eradication of Aedes Aegypti (Diptera: Culicidae) Mosquito Larvae”. Journal of Research in Pharmacy, c. 26, sy. 6, 2025, ss. 1805-13, doi:10.29228/jrp.271.
Vancouver Adnyana IMDM, Sumarya IM, Sudaryati NLG. Efficacy and Toxicity of Parasayu incense ash as a Larvicide for the Eradication of Aedes aegypti (Diptera: Culicidae) Mosquito Larvae. J. Res. Pharm. 2025;26(6):1805-13.