Araştırma Makalesi
BibTex RIS Kaynak Göster

n vivo wound-healing and in vitro antibacterial and antioxidant properties of Carduus adpressus extract

Yıl 2023, Cilt: 27 Sayı: 2, 665 - 676, 27.06.2025

Öz

Carduus adpressus has been used for its anti-hair loss effect in traditional folk medicine. The plant species
is mainly distributed in Türkiye, Bulgaria, and the Western Caucasus. The studies on this specific plant in the genus
Carduus is limited which remarks the significance of the current study. This study aims to investigate the antibacterial,
antioxidant, and wound-healing properties of the methanolic extract of Carduus adpressus. Extract was obtained by
maceration. The broth microdilution assay was performed on Staphylococcus aureus, Enterococcus faecalis, Pseudomonas
aeruginosa, and Escherichia coli. DPPH and ABTS radical scavenging assays were performed to detect the antioxidant
capacity. Wound-healing activity was tested using alloxan-induced diabetic BALB-c mice. 4 groups, control, vehicle,
CAE and Carduus adpressus groups were treated with the relative agent for 10 days. Extract demonstrated 62.5 μg/mL
MIC against S. aureus and E. faecalis, and 125 μg/mL MIC against P. aeruginosa and E. coli. ABTS assay showed higher
antioxidant activity compared to the DPPH assay. Carduus adpressus group demonstrated strong regeneration,
epithelisation, and angiogenesis compared to the control group on day 10. Additionally, expression of PDGF, VEGF,
and collagen formation was increased in the Carduus adpressus group compared to the control group on day 10. Extract
demonstrated strong antibacterial, antioxidant, and wound-healing activities which indicate that it could be a source in
developing wound-healing agents.

Kaynakça

  • Davis P. Flora of turkey and the east aegean islands. Vol. 5. Edinburgh University Press; 1975. Güneş F, Özhatay N. An ethnobotanical study from kars eastern turkey. Biyolojik Çeşitlilik Ve Koruma. 2011 Apr 15;4(1):30–41.
  • Acet T. A study on antioxidant properties and antimicrobial activity of various extracts of carduus adpressus. J Anatol Environ Anim Sci. 2019 Dec 30;4(3):409–13. [CrossRef]
  • Dimitrova-Dyulgerova I, Zhelev I, Mihaylova D. Phenolic profile and in vitro antioxidant activity of endemic bulgarian carduus species. Pharmacogn Mag. 2015;11(44):575. [CrossRef]
  • Al-Shammari LA, Hassan WHB, Al-Youssef HM. Phytochemical and biological studies of carduus pycnocephalus l. J Saudi Chem Soc. 2015 Jul;19(4):410–6. [CrossRef]
  • Özcan K. Determination of biological activity of carduus lanuginosus : an endemic plant in turkey. Int J Environ Health Res. 2021 Jan 2;31(1):45–53. [CrossRef]
  • Abu-Al-Basal MA. Healing potential of rosmarinus officinalis l. on full-thickness excision cutaneous wounds in alloxan-induced-diabetic balb/c mice. J Ethnopharmacol. 2010 Sep;131(2):443–50. [CrossRef]
  • Devalliere J, Dooley K, Hu Y, Kelangi SS, Uygun BE, Yarmush ML. Co-delivery of a growth factor and a tissue- protective molecule using elastin biopolymers accelerates wound healing in diabetic mice. Biomaterials. 2017 Oct;141:149–60. [CrossRef]
  • Golob M, Pate M, Kušar D, Dermota U, Avberšek J, Papić B, et al. Antimicrobial resistance and virulence genes in enterococcus faecium and enterococcus faecalis from humans and retail red meat. BioMed Res Int. 2019 May 9;2019:1–12. [CrossRef]
  • Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD, Pitout JDD. Global extraintestinal pathogenic escherichia coli (expec) lineages. Clin Microbiol Rev [Internet]. 2019 Jun 19 [cited 2021 Dec 20];32(3). Available from: https://journals.asm.org/doi/10.1128/CMR.00135-18 [CrossRef]
  • Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019 Jan;37(1):177–92. [CrossRef]
  • Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, et al. Methicillin-resistant staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol. 2019 Apr;17(4):203–18. [CrossRef] Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018 Oct. [CrossRef]
  • Chassagne F, Samarakoon T, Porras G, Lyles JT, Dettweiler M, Marquez L, et al. A systematic review of plants with antibacterial activities: a taxonomic and phylogenetic perspective. Front Pharmacol. 2021 Jan 8;11:586548. [CrossRef]
  • Liu WY, Tzeng TF, Liu IM. Healing potential of zerumbone ointment on experimental full-thickness excision cutaneous wounds in rat. J Tissue Viability. 2017 Aug;26(3):202–7. [CrossRef]
  • Kandhare AD, Ghosh P, Bodhankar SL. Naringin, a flavanone glycoside, promotes angiogenesis and inhibits endothelial apoptosis through modulation of inflammatory and growth factor expression in diabetic foot ulcer in rats. Chem Biol Interact. 2014 Aug;219:101–12. [CrossRef]
  • Suriyamoorthy S, Subramaniam K, Jeevan Raj Durai S, Wahaab F, Pemila Edith Chitraselvi R. Evaluation of wound healing activity of acacia caesia in rats. Wound Med. 2014 Dec;7:1–7. [CrossRef]
  • Cho H, Blatchley MR, Duh EJ, Gerecht S. Acellular and cellular approaches to improve diabetic wound healing. Adv Drug Deliv Rev. 2019 Jun;146:267–88. [CrossRef]
  • Guo S, DiPietro LA. Factors affecting wound healing. J Dent Res. 2010 Mar;89(3):219–29. [CrossRef]
  • Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J Clin Invest. 2007 May 1;117(5):1219–22. [CrossRef]
  • Tandara AA, Mustoe TA. Oxygen in wound healing: more than a nutrient. World J Surg. 2004 Mar 1;28(3):294–300. [CrossRef]
  • Shah SA, Sohail M, Khan S, Minhas MU, de Matas M, Sikstone V, et al. Biopolymer-based biomaterials for accelerated diabetic wound healing: a critical review. Int J Biol Macromol. 2019 Oct;139:975–93. [CrossRef]
  • Woo K, Ayello EA, Sibbald RG. The edge effect: current therapeutic options to advance the wound edge. Adv Skin Wound Care. 2007 Feb;20(2):99–117. [CrossRef]
  • Loots MAM, Lamme EN, Zeegelaar J, Mekkes JR, Bos JD, Middelkoop E. Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. J Invest Dermatol. 1998 Nov;111(5):850–7. [CrossRef]
  • Gallagher KA, Liu ZJ, Xiao M, Chen H, Goldstein LJ, Buerk DG, et al. Diabetic impairments in no-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α. J Clin Invest. 2007 May 1;117(5):1249–59. [CrossRef]
  • Quattrini C, Jeziorska M, Boulton AJM, Malik RA. Reduced vascular endothelial growth factor expression and intra- epidermal nerve fiber loss in human diabetic neuropathy. Diabetes Care. 2008 Jan 1;31(1):140–5. [CrossRef]
  • Galiano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N, et al. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol. 2004 Jun;164(6):1935–47. [CrossRef]
  • Kirchner LM, Meerbaum SO, Gruber BS, Knoll AK, Bulgrin J, Taylor RAJ, et al. Effects of vascular endothelial growth factor on wound closure rates in the genetically diabetic mouse model. Wound Repair Regen. 2003 Mar;11(2):127–31. [CrossRef]
  • Gonzalez AC de O, Costa TF, Andrade Z de A, Medrado ARAP. Wound healing - a literature review. An Bras Dermatol. 2016 Oct;91(5):614–20. [CrossRef]
  • Kandhare AD, Alam J, Patil MVK, Sinha A, Bodhankar SL. Wound healing potential of naringin ointment formulation via regulating the expression of inflammatory, apoptotic and growth mediators in experimental rats. Pharm Biol. 2016 Mar 3;54(3):419–32. [CrossRef]
  • Patel S, Srivastava S, Singh MR, Singh D. Mechanistic insight into diabetic wounds: pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother. 2019 Apr;112:108615. [CrossRef] Wikler MA. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. CLSI NCCLS. 2006;26(2),15-35.
  • Karakaş N, Karadağ AE, Yilmaz R, Demirci F, Okur ME. In vitro cytotoxicity evaluation of marrubium vulgare l. methanol extract. J. Res. Pharm. 2019 Jul; 23(4):711–718. [CrossRef]
  • Okur ME, Ayla Ş, Karadağ AE, Çiçek Polat D, Demirci S, Seçkin İ. Opuntia ficus indica fruits ameliorate cisplatin- induced nephrotoxicity in mice. Biol. Pharm. Bull. 2020 May; 43(5):831–838. [CrossRef]
  • Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958 Apr;181(4617):1199–200. [CrossRef]
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved abts radical cation decolorization assay. Free Radic Biol Med. 1999 May;26(9–10):1231–7. [CrossRef]
  • Okur ME, Polat DC, Ozbek H, Yilmaz S, Yoltas A, Arslan R. Evaluation of the antidiabetic property of capparis ovata desf. var. palaestina zoh. extracts using in vivo and in vitro approaches. Endocr Metab Immune Disord - Drug Targets. 2018 Aug 28;18(5):489–501. [CrossRef]
  • Okur ME, Ayla Ş, Çiçek Polat D, Günal MY, Yoltaş A, Biçeroğlu Ö. Novel insight into wound healing properties of methanol extract of capparis ovata desf. var. palaestina zohary fruits. J Pharm Pharmacol. 2018 Sep 6;70(10):1401–13. [CrossRef]
  • Galeano M, Altavilla D, Bitto A, Minutoli L, Calò M, Cascio PL, et al. Recombinant human erythropoietin improves angiogenesis and wound healing in experimental burn wounds*: Crit Care Med. 2006 Apr;34(4):1139–46. [CrossRef]
Yıl 2023, Cilt: 27 Sayı: 2, 665 - 676, 27.06.2025

Öz

Kaynakça

  • Davis P. Flora of turkey and the east aegean islands. Vol. 5. Edinburgh University Press; 1975. Güneş F, Özhatay N. An ethnobotanical study from kars eastern turkey. Biyolojik Çeşitlilik Ve Koruma. 2011 Apr 15;4(1):30–41.
  • Acet T. A study on antioxidant properties and antimicrobial activity of various extracts of carduus adpressus. J Anatol Environ Anim Sci. 2019 Dec 30;4(3):409–13. [CrossRef]
  • Dimitrova-Dyulgerova I, Zhelev I, Mihaylova D. Phenolic profile and in vitro antioxidant activity of endemic bulgarian carduus species. Pharmacogn Mag. 2015;11(44):575. [CrossRef]
  • Al-Shammari LA, Hassan WHB, Al-Youssef HM. Phytochemical and biological studies of carduus pycnocephalus l. J Saudi Chem Soc. 2015 Jul;19(4):410–6. [CrossRef]
  • Özcan K. Determination of biological activity of carduus lanuginosus : an endemic plant in turkey. Int J Environ Health Res. 2021 Jan 2;31(1):45–53. [CrossRef]
  • Abu-Al-Basal MA. Healing potential of rosmarinus officinalis l. on full-thickness excision cutaneous wounds in alloxan-induced-diabetic balb/c mice. J Ethnopharmacol. 2010 Sep;131(2):443–50. [CrossRef]
  • Devalliere J, Dooley K, Hu Y, Kelangi SS, Uygun BE, Yarmush ML. Co-delivery of a growth factor and a tissue- protective molecule using elastin biopolymers accelerates wound healing in diabetic mice. Biomaterials. 2017 Oct;141:149–60. [CrossRef]
  • Golob M, Pate M, Kušar D, Dermota U, Avberšek J, Papić B, et al. Antimicrobial resistance and virulence genes in enterococcus faecium and enterococcus faecalis from humans and retail red meat. BioMed Res Int. 2019 May 9;2019:1–12. [CrossRef]
  • Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD, Pitout JDD. Global extraintestinal pathogenic escherichia coli (expec) lineages. Clin Microbiol Rev [Internet]. 2019 Jun 19 [cited 2021 Dec 20];32(3). Available from: https://journals.asm.org/doi/10.1128/CMR.00135-18 [CrossRef]
  • Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019 Jan;37(1):177–92. [CrossRef]
  • Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, et al. Methicillin-resistant staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol. 2019 Apr;17(4):203–18. [CrossRef] Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018 Oct. [CrossRef]
  • Chassagne F, Samarakoon T, Porras G, Lyles JT, Dettweiler M, Marquez L, et al. A systematic review of plants with antibacterial activities: a taxonomic and phylogenetic perspective. Front Pharmacol. 2021 Jan 8;11:586548. [CrossRef]
  • Liu WY, Tzeng TF, Liu IM. Healing potential of zerumbone ointment on experimental full-thickness excision cutaneous wounds in rat. J Tissue Viability. 2017 Aug;26(3):202–7. [CrossRef]
  • Kandhare AD, Ghosh P, Bodhankar SL. Naringin, a flavanone glycoside, promotes angiogenesis and inhibits endothelial apoptosis through modulation of inflammatory and growth factor expression in diabetic foot ulcer in rats. Chem Biol Interact. 2014 Aug;219:101–12. [CrossRef]
  • Suriyamoorthy S, Subramaniam K, Jeevan Raj Durai S, Wahaab F, Pemila Edith Chitraselvi R. Evaluation of wound healing activity of acacia caesia in rats. Wound Med. 2014 Dec;7:1–7. [CrossRef]
  • Cho H, Blatchley MR, Duh EJ, Gerecht S. Acellular and cellular approaches to improve diabetic wound healing. Adv Drug Deliv Rev. 2019 Jun;146:267–88. [CrossRef]
  • Guo S, DiPietro LA. Factors affecting wound healing. J Dent Res. 2010 Mar;89(3):219–29. [CrossRef]
  • Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J Clin Invest. 2007 May 1;117(5):1219–22. [CrossRef]
  • Tandara AA, Mustoe TA. Oxygen in wound healing: more than a nutrient. World J Surg. 2004 Mar 1;28(3):294–300. [CrossRef]
  • Shah SA, Sohail M, Khan S, Minhas MU, de Matas M, Sikstone V, et al. Biopolymer-based biomaterials for accelerated diabetic wound healing: a critical review. Int J Biol Macromol. 2019 Oct;139:975–93. [CrossRef]
  • Woo K, Ayello EA, Sibbald RG. The edge effect: current therapeutic options to advance the wound edge. Adv Skin Wound Care. 2007 Feb;20(2):99–117. [CrossRef]
  • Loots MAM, Lamme EN, Zeegelaar J, Mekkes JR, Bos JD, Middelkoop E. Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. J Invest Dermatol. 1998 Nov;111(5):850–7. [CrossRef]
  • Gallagher KA, Liu ZJ, Xiao M, Chen H, Goldstein LJ, Buerk DG, et al. Diabetic impairments in no-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α. J Clin Invest. 2007 May 1;117(5):1249–59. [CrossRef]
  • Quattrini C, Jeziorska M, Boulton AJM, Malik RA. Reduced vascular endothelial growth factor expression and intra- epidermal nerve fiber loss in human diabetic neuropathy. Diabetes Care. 2008 Jan 1;31(1):140–5. [CrossRef]
  • Galiano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N, et al. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol. 2004 Jun;164(6):1935–47. [CrossRef]
  • Kirchner LM, Meerbaum SO, Gruber BS, Knoll AK, Bulgrin J, Taylor RAJ, et al. Effects of vascular endothelial growth factor on wound closure rates in the genetically diabetic mouse model. Wound Repair Regen. 2003 Mar;11(2):127–31. [CrossRef]
  • Gonzalez AC de O, Costa TF, Andrade Z de A, Medrado ARAP. Wound healing - a literature review. An Bras Dermatol. 2016 Oct;91(5):614–20. [CrossRef]
  • Kandhare AD, Alam J, Patil MVK, Sinha A, Bodhankar SL. Wound healing potential of naringin ointment formulation via regulating the expression of inflammatory, apoptotic and growth mediators in experimental rats. Pharm Biol. 2016 Mar 3;54(3):419–32. [CrossRef]
  • Patel S, Srivastava S, Singh MR, Singh D. Mechanistic insight into diabetic wounds: pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother. 2019 Apr;112:108615. [CrossRef] Wikler MA. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. CLSI NCCLS. 2006;26(2),15-35.
  • Karakaş N, Karadağ AE, Yilmaz R, Demirci F, Okur ME. In vitro cytotoxicity evaluation of marrubium vulgare l. methanol extract. J. Res. Pharm. 2019 Jul; 23(4):711–718. [CrossRef]
  • Okur ME, Ayla Ş, Karadağ AE, Çiçek Polat D, Demirci S, Seçkin İ. Opuntia ficus indica fruits ameliorate cisplatin- induced nephrotoxicity in mice. Biol. Pharm. Bull. 2020 May; 43(5):831–838. [CrossRef]
  • Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958 Apr;181(4617):1199–200. [CrossRef]
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved abts radical cation decolorization assay. Free Radic Biol Med. 1999 May;26(9–10):1231–7. [CrossRef]
  • Okur ME, Polat DC, Ozbek H, Yilmaz S, Yoltas A, Arslan R. Evaluation of the antidiabetic property of capparis ovata desf. var. palaestina zoh. extracts using in vivo and in vitro approaches. Endocr Metab Immune Disord - Drug Targets. 2018 Aug 28;18(5):489–501. [CrossRef]
  • Okur ME, Ayla Ş, Çiçek Polat D, Günal MY, Yoltaş A, Biçeroğlu Ö. Novel insight into wound healing properties of methanol extract of capparis ovata desf. var. palaestina zohary fruits. J Pharm Pharmacol. 2018 Sep 6;70(10):1401–13. [CrossRef]
  • Galeano M, Altavilla D, Bitto A, Minutoli L, Calò M, Cascio PL, et al. Recombinant human erythropoietin improves angiogenesis and wound healing in experimental burn wounds*: Crit Care Med. 2006 Apr;34(4):1139–46. [CrossRef]
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tıbbi Farmakoloji
Bölüm Articles
Yazarlar

Ayşe Arzu Şakul 0000-0002-9354-0000

Mehmet Evren Okur 0000-0001-7706-6452

Ayşe Esra Karadağ

Benay Daylan 0000-0002-8302-1127

Elif Güzel 0000-0002-2737-0568

Ekrem Musa Özdemir 0000-0001-9416-7757

Mehmet Yalçın Günal 0000-0001-7702-2441

Yayımlanma Tarihi 27 Haziran 2025
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 2

Kaynak Göster

APA Şakul, A. A., Okur, M. E., Karadağ, A. E., Daylan, B., vd. (2025). n vivo wound-healing and in vitro antibacterial and antioxidant properties of Carduus adpressus extract. Journal of Research in Pharmacy, 27(2), 665-676.
AMA Şakul AA, Okur ME, Karadağ AE, Daylan B, Güzel E, Özdemir EM, Günal MY. n vivo wound-healing and in vitro antibacterial and antioxidant properties of Carduus adpressus extract. J. Res. Pharm. Haziran 2025;27(2):665-676.
Chicago Şakul, Ayşe Arzu, Mehmet Evren Okur, Ayşe Esra Karadağ, Benay Daylan, Elif Güzel, Ekrem Musa Özdemir, ve Mehmet Yalçın Günal. “N Vivo Wound-Healing and in Vitro Antibacterial and Antioxidant Properties of Carduus Adpressus Extract”. Journal of Research in Pharmacy 27, sy. 2 (Haziran 2025): 665-76.
EndNote Şakul AA, Okur ME, Karadağ AE, Daylan B, Güzel E, Özdemir EM, Günal MY (01 Haziran 2025) n vivo wound-healing and in vitro antibacterial and antioxidant properties of Carduus adpressus extract. Journal of Research in Pharmacy 27 2 665–676.
IEEE A. A. Şakul, M. E. Okur, A. E. Karadağ, B. Daylan, E. Güzel, E. M. Özdemir, ve M. Y. Günal, “n vivo wound-healing and in vitro antibacterial and antioxidant properties of Carduus adpressus extract”, J. Res. Pharm., c. 27, sy. 2, ss. 665–676, 2025.
ISNAD Şakul, Ayşe Arzu vd. “N Vivo Wound-Healing and in Vitro Antibacterial and Antioxidant Properties of Carduus Adpressus Extract”. Journal of Research in Pharmacy 27/2 (Haziran 2025), 665-676.
JAMA Şakul AA, Okur ME, Karadağ AE, Daylan B, Güzel E, Özdemir EM, Günal MY. n vivo wound-healing and in vitro antibacterial and antioxidant properties of Carduus adpressus extract. J. Res. Pharm. 2025;27:665–676.
MLA Şakul, Ayşe Arzu vd. “N Vivo Wound-Healing and in Vitro Antibacterial and Antioxidant Properties of Carduus Adpressus Extract”. Journal of Research in Pharmacy, c. 27, sy. 2, 2025, ss. 665-76.
Vancouver Şakul AA, Okur ME, Karadağ AE, Daylan B, Güzel E, Özdemir EM, Günal MY. n vivo wound-healing and in vitro antibacterial and antioxidant properties of Carduus adpressus extract. J. Res. Pharm. 2025;27(2):665-76.