Araştırma Makalesi
BibTex RIS Kaynak Göster

Development of biosynthesized silver nanoparticles from Cinnamomum tamala for anti-oxidant, anti-microbial and anti-cancer activity

Yıl 2023, Cilt: 27 Sayı: 2, 769 - 782, 27.06.2025

Öz

Purpose: The purpose of this study was to determine the effect of biosynthesized silver nanoparticles
(AgNPs) from Cinnamomum tamala aqueous extract (CTAE) for antioxidant, antimicrobial and anticancer activity.
Experimental approach: Biosynthesis of AgNPs was successfully achieved by using CTAE by eco-friendly and a
cheaper method. In this study we used CTAE for biosynthesis, which reduces silver ions into AgNPs. The obtained
AgNPs were characterized by UV, FTIR, DLS, TEM and EDAX analysis. They were further analyzed for their anti-
oxidant, anti-microbial, anti-cancer activities.
Key results: The presence of biosynthesized AgNPs (422nm) was confirmed by UV-visible spectroscopy. FT-IR
spectrum was used to confirm the presence of different functional groups in the biomolecules which were responsible
for capping & reducing of the nanoparticles. Dynamic light scattering of the prepared formulations revealed all the
formulations were in nano- range, F1 showed the mean particle size 239.1nm.TEM Analysis revealed that the size of the
particleswere in nano-range of 20.38nm and presence of silver was confirmed through EDAX. The IC50 value of F1
indicated 91.30µg/ml for H2O2 scavenging activity and 102.43µg/ml for DPPH scavenging activity. Biosynthesized
AgNPs (F1) showed good antimicrobial activity against two gram negative bacteria and one gram positive bacteria.
MTT assay of optimized formulation F1 was compared with CTAE showed significant antiproliferative activity against
A375 cancer cell line with IC50 for CTAE was 47.24µg/ml, where as for biosynthesized AgNPs the IC50 was 22µg/ml.
Apoptosis studies of formulation F1 showed higher early apoptosis as compared to CTAE.
Conclusion: The biosynthesized silver nanoparticles (F1) showed good antioxidant activity, antimicrobial activity and
anti cancer activity compared to CTAE.

Kaynakça

  • Hassan W, Kazmi SZ, Noreen H, Riaz A, Zaman B, 2016. Antimicrobial activity of cinnamomum tamala leaves. J nutr disord ther. 6(2), 2161-0509.[CrossRef]
  • Tamala AA. Ishan Dubey, Dr. Ritu M Gilhotra, Dr. Manmeet Singh saluja. The Int J Analytical Exp Modal Analysis. 2020; 9(7), 1657-71. [CrossRef]
  • Mann JR, DuBois RN. Cancer chemoprevention: myth or reality? Drug Discov Today Ther Strateg. 2004; 1(4),403-9.[CrossRef]
  • Seigneuric R, Markey L, SA Nuyten D, Dubernet C, TA Evelo C, Finot E, Garrido C. From nanotechnology to nanomedicine: applications to cancer research. Curr Mol Med. 2010;10(7), 640-52. [CrossRef]
  • basis in non-metastatic skin melanoma. Pharm Pharmacol Int J. 2022;10(3), 66-74. Novelles MC, Brown TS, Feliciano DN. Silver nanoparticles as proapoptotic drugs: pharmacological [CrossRef]
  • Ramasamy K, Shanmugam M, Balupillai A, Govindhasamy K, Gunaseelan S, Muthusamy G, Robert BM, Nagarajan RP. Ultraviolet radiation-induced carcinogenesis: Mechanisms and experimental models. J Radiat Res. 2017; 8(1), 4. [CrossRef]
  • Nadaroglu H, Gungor AA, Selvi IN. Synthesis of nanoparticles by green synthesis method. Int J Innov Res Rev. 2017; 1(1),6-9. [CrossRef]
  • Sarkar S, Kotteeswaran V. Green synthesis of silver nanoparticles from aqueous leaf extract of Pomegranate (Punica granatum) and their anticancer activity on human cervical cancer cells. Adv Nat Sci Nanosci Nanotechnol. 2018; 9(2),1-10 . [CrossRef]
  • Krishnan V, Bupesh G, Manikandan E, Thanigai AK, Magesh S, Kalyanaraman R, Maaza M. Green synthesis of silver nanoparticles using Piper nigrum concoction and its anticancer activity against MCF- 7 and Hep-2 cell lines. J Antimicro. 2016; 2: 2472- 1212.[CrossRef]
  • Venkatesan B, Subramanian V, Tumala A, Vellaichamy E. Rapid synthesis of biocompatible silver nanoparticles using aqueous extract of Rosa damascena petals and evaluation of their anticancer activity. Asian Pac J Trop Med. 2014; 7:294-300. [CrossRef]
  • Lakshmanan G, Sathiyaseelan A, Kalaichelvan PT, Murugesan K. Plant-mediated synthesis of silver nanoparticles using fruit extract of Cleome viscosa L.: assessment of their antibacterial and anticancer activity.Karbala Int J Mod Sci. 2018; 4(1),61-8. [CrossRef]
  • Shahwar D, Ullaha S, Khan MA, Ahmad N, Saeed A, Ullah S. Anticancer activity of Cinnamon tamala leaf constituents towards human ovarian cancer cells. Pak J Pharm Sci. 2015; 28(3). [CrossRef]
  • Dumbre RK, Kamble MB, Patil VR. Inhibitory effects by ayurvedic plants on prostate enlargement induced in rats. Pharmacogn Res. 2014; 6(2),127.[CrossRef]
  • Kushwaha RK, Deepa HN, Karkera P, Jayashree S. Antibacterial Activity of Silver Nanoparticles Synthesized Using Syzygium aromaticum, Cinnamomum tamala,Cinnamomum cassia Plant Extract. J Pharm Res Int. 2021; 20-31. [CrossRef]
  • Dash SS, Samanta S, Dey S, Giri B, Dash SK. Rapid green synthesis of biogenic silver nanoparticles using Cinnamomum tamala leaf extract and its potential antimicrobial application against clinically isolated multidrug-resistant bacterial strains. Biol Trace Elem. 2020; Res, 198(2),681-96. [CrossRef]
  • Mir SR, Ali M, Kapoor R. Chemical composition of essential oil of Cinnamomum tamala Nees et Eberm. [CrossRef] leaves. Flavour Fragr J. 2004; 19(2), 112-4. 17. Vijapur LS, Hiremath JN, Bonageri NN, Desai AR. Murraya koenigii: biogenic synthesis of silver nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cell lines. World J Pharm Med Res. 2019; 5(6): 206-11. [CrossRef]
  • Jaast S, Grewal A. Green synthesis of silver nanoparticles, characterization and evaluation of their [CrossRef]
  • photocatalytic dye degradation activity. Curr Opin Green Susta Chem. 2021; 4:1-6. 19. Meva FE, Segnou ML, Ebongue CO, Ntoumba AA, Kedi PB, Deli V, Etoh MA, Mpondo EM. Megaphrynium macrostachyum leaf extract. Rev bras farmacogn. 2016; 26(5), 640-6. Spectroscopic synthetic optimizations monitoring of silver nanoparticles formation from [CrossRef]
  • Vijapur LS, Srinivas Y, Desai AR, Hiremath JN, Swami CI, Shidramshettar SL. Antimicrobial activity 2021;15(3),189-98. of the biosynthesized silver nanoparticles of Gossypium hirsutum leaves extract. GSC biol. pharm. sci. [CrossRef]
  • Elamawi RM, Al-Harbi RE, Hendi AA. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J Biol Pest Co. 2018; 28(1), 1-1.[CrossRef]
  • Anandalakshmi K, Venugobal J, Ramasamy V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosci. 2016; (3),399-408. [CrossRef]
  • Yadav M, Yadav A, Yadav JP. In vitro antioxidant activity and total phenolic content of endophytic [CrossRef]
  • fungi isolated from Eugenia jambolana Lam. Asian Pac J Trop Med. 2014; 7, 256-61. 24. 25. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 2017;12:1227-1249.[CrossRef] Khandelwal K. Practical Pharmacognosy.20th ed. Nirali prakashan.2010; 25.1-25.9. [CrossRef]
  • Ahmed S, Saifullah, Ahmad M, Swami BL, Ikram S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci. 2016; 9(1), 1-7. [CrossRef]
  • Devaraj P, Kumari P, Aarti C, Renganathan A. Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against MCF-7 cell line. J Nanotechnol. 2013;1-5. [CrossRef]
  • Antimicrobial susceptibility testing protocols. Schwalve, Moore and Goodwin, Crc Press 2007. MTT Cell Proliferation Assay Instruction Guide – ATCC, VA, USA http://www.atcc.org Kumbar VM, Peram MR, Kugaji MS, Shah T, Patil SP, Muddapur UM, Bhat KG. Effect of curcumin on growth, biofilm formation and virulence factor gene expression of Porphyromonas gingivalis. Odontology. 2021; 109(1), 18-28. [CrossRef]
  • Peram MR, Jalalpure S, Kumbar V, Patil S, Joshi S, Bhat K, Diwan P. Factorial design based curcumin ethosomal nanocarriers for the skin cancer delivery: in vitro evaluation. J Liposome Res. 2019; 29(3), 291-311. [CrossRef]
  • Bin-Jumah M, Monera AA, Albasher G, Alarifi S. Effects of green silver nanoparticles on apoptosis and oxidative stress in normal and cancerous human hepatic cells in vitro.  Int J Nanomedicine. 2020; 15, 1537-1548. [CrossRef]
Yıl 2023, Cilt: 27 Sayı: 2, 769 - 782, 27.06.2025

Öz

Kaynakça

  • Hassan W, Kazmi SZ, Noreen H, Riaz A, Zaman B, 2016. Antimicrobial activity of cinnamomum tamala leaves. J nutr disord ther. 6(2), 2161-0509.[CrossRef]
  • Tamala AA. Ishan Dubey, Dr. Ritu M Gilhotra, Dr. Manmeet Singh saluja. The Int J Analytical Exp Modal Analysis. 2020; 9(7), 1657-71. [CrossRef]
  • Mann JR, DuBois RN. Cancer chemoprevention: myth or reality? Drug Discov Today Ther Strateg. 2004; 1(4),403-9.[CrossRef]
  • Seigneuric R, Markey L, SA Nuyten D, Dubernet C, TA Evelo C, Finot E, Garrido C. From nanotechnology to nanomedicine: applications to cancer research. Curr Mol Med. 2010;10(7), 640-52. [CrossRef]
  • basis in non-metastatic skin melanoma. Pharm Pharmacol Int J. 2022;10(3), 66-74. Novelles MC, Brown TS, Feliciano DN. Silver nanoparticles as proapoptotic drugs: pharmacological [CrossRef]
  • Ramasamy K, Shanmugam M, Balupillai A, Govindhasamy K, Gunaseelan S, Muthusamy G, Robert BM, Nagarajan RP. Ultraviolet radiation-induced carcinogenesis: Mechanisms and experimental models. J Radiat Res. 2017; 8(1), 4. [CrossRef]
  • Nadaroglu H, Gungor AA, Selvi IN. Synthesis of nanoparticles by green synthesis method. Int J Innov Res Rev. 2017; 1(1),6-9. [CrossRef]
  • Sarkar S, Kotteeswaran V. Green synthesis of silver nanoparticles from aqueous leaf extract of Pomegranate (Punica granatum) and their anticancer activity on human cervical cancer cells. Adv Nat Sci Nanosci Nanotechnol. 2018; 9(2),1-10 . [CrossRef]
  • Krishnan V, Bupesh G, Manikandan E, Thanigai AK, Magesh S, Kalyanaraman R, Maaza M. Green synthesis of silver nanoparticles using Piper nigrum concoction and its anticancer activity against MCF- 7 and Hep-2 cell lines. J Antimicro. 2016; 2: 2472- 1212.[CrossRef]
  • Venkatesan B, Subramanian V, Tumala A, Vellaichamy E. Rapid synthesis of biocompatible silver nanoparticles using aqueous extract of Rosa damascena petals and evaluation of their anticancer activity. Asian Pac J Trop Med. 2014; 7:294-300. [CrossRef]
  • Lakshmanan G, Sathiyaseelan A, Kalaichelvan PT, Murugesan K. Plant-mediated synthesis of silver nanoparticles using fruit extract of Cleome viscosa L.: assessment of their antibacterial and anticancer activity.Karbala Int J Mod Sci. 2018; 4(1),61-8. [CrossRef]
  • Shahwar D, Ullaha S, Khan MA, Ahmad N, Saeed A, Ullah S. Anticancer activity of Cinnamon tamala leaf constituents towards human ovarian cancer cells. Pak J Pharm Sci. 2015; 28(3). [CrossRef]
  • Dumbre RK, Kamble MB, Patil VR. Inhibitory effects by ayurvedic plants on prostate enlargement induced in rats. Pharmacogn Res. 2014; 6(2),127.[CrossRef]
  • Kushwaha RK, Deepa HN, Karkera P, Jayashree S. Antibacterial Activity of Silver Nanoparticles Synthesized Using Syzygium aromaticum, Cinnamomum tamala,Cinnamomum cassia Plant Extract. J Pharm Res Int. 2021; 20-31. [CrossRef]
  • Dash SS, Samanta S, Dey S, Giri B, Dash SK. Rapid green synthesis of biogenic silver nanoparticles using Cinnamomum tamala leaf extract and its potential antimicrobial application against clinically isolated multidrug-resistant bacterial strains. Biol Trace Elem. 2020; Res, 198(2),681-96. [CrossRef]
  • Mir SR, Ali M, Kapoor R. Chemical composition of essential oil of Cinnamomum tamala Nees et Eberm. [CrossRef] leaves. Flavour Fragr J. 2004; 19(2), 112-4. 17. Vijapur LS, Hiremath JN, Bonageri NN, Desai AR. Murraya koenigii: biogenic synthesis of silver nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cell lines. World J Pharm Med Res. 2019; 5(6): 206-11. [CrossRef]
  • Jaast S, Grewal A. Green synthesis of silver nanoparticles, characterization and evaluation of their [CrossRef]
  • photocatalytic dye degradation activity. Curr Opin Green Susta Chem. 2021; 4:1-6. 19. Meva FE, Segnou ML, Ebongue CO, Ntoumba AA, Kedi PB, Deli V, Etoh MA, Mpondo EM. Megaphrynium macrostachyum leaf extract. Rev bras farmacogn. 2016; 26(5), 640-6. Spectroscopic synthetic optimizations monitoring of silver nanoparticles formation from [CrossRef]
  • Vijapur LS, Srinivas Y, Desai AR, Hiremath JN, Swami CI, Shidramshettar SL. Antimicrobial activity 2021;15(3),189-98. of the biosynthesized silver nanoparticles of Gossypium hirsutum leaves extract. GSC biol. pharm. sci. [CrossRef]
  • Elamawi RM, Al-Harbi RE, Hendi AA. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J Biol Pest Co. 2018; 28(1), 1-1.[CrossRef]
  • Anandalakshmi K, Venugobal J, Ramasamy V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosci. 2016; (3),399-408. [CrossRef]
  • Yadav M, Yadav A, Yadav JP. In vitro antioxidant activity and total phenolic content of endophytic [CrossRef]
  • fungi isolated from Eugenia jambolana Lam. Asian Pac J Trop Med. 2014; 7, 256-61. 24. 25. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 2017;12:1227-1249.[CrossRef] Khandelwal K. Practical Pharmacognosy.20th ed. Nirali prakashan.2010; 25.1-25.9. [CrossRef]
  • Ahmed S, Saifullah, Ahmad M, Swami BL, Ikram S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci. 2016; 9(1), 1-7. [CrossRef]
  • Devaraj P, Kumari P, Aarti C, Renganathan A. Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against MCF-7 cell line. J Nanotechnol. 2013;1-5. [CrossRef]
  • Antimicrobial susceptibility testing protocols. Schwalve, Moore and Goodwin, Crc Press 2007. MTT Cell Proliferation Assay Instruction Guide – ATCC, VA, USA http://www.atcc.org Kumbar VM, Peram MR, Kugaji MS, Shah T, Patil SP, Muddapur UM, Bhat KG. Effect of curcumin on growth, biofilm formation and virulence factor gene expression of Porphyromonas gingivalis. Odontology. 2021; 109(1), 18-28. [CrossRef]
  • Peram MR, Jalalpure S, Kumbar V, Patil S, Joshi S, Bhat K, Diwan P. Factorial design based curcumin ethosomal nanocarriers for the skin cancer delivery: in vitro evaluation. J Liposome Res. 2019; 29(3), 291-311. [CrossRef]
  • Bin-Jumah M, Monera AA, Albasher G, Alarifi S. Effects of green silver nanoparticles on apoptosis and oxidative stress in normal and cancerous human hepatic cells in vitro.  Int J Nanomedicine. 2020; 15, 1537-1548. [CrossRef]
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Farmakognozi
Bölüm Articles
Yazarlar

Laxman Vıjapur 0000-0003-2043-8862

Y Srinivas 0000-0002-8472-0958

Anita Desai 0000-0003-1032-2604

Avinash S Gudigennavar 0000-0001-7099-5857

Somalingeshwar Siddramshettar 0000-0001-7648-6666

Pooja Yaragattimath 0000-0003-3851-7497

Yayımlanma Tarihi 27 Haziran 2025
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 2

Kaynak Göster

APA Vıjapur, L., Srinivas, Y., Desai, A., Gudigennavar, A. S., vd. (2025). Development of biosynthesized silver nanoparticles from Cinnamomum tamala for anti-oxidant, anti-microbial and anti-cancer activity. Journal of Research in Pharmacy, 27(2), 769-782.
AMA Vıjapur L, Srinivas Y, Desai A, Gudigennavar AS, Siddramshettar S, Yaragattimath P. Development of biosynthesized silver nanoparticles from Cinnamomum tamala for anti-oxidant, anti-microbial and anti-cancer activity. J. Res. Pharm. Haziran 2025;27(2):769-782.
Chicago Vıjapur, Laxman, Y Srinivas, Anita Desai, Avinash S Gudigennavar, Somalingeshwar Siddramshettar, ve Pooja Yaragattimath. “Development of Biosynthesized Silver Nanoparticles from Cinnamomum Tamala for Anti-Oxidant, Anti-Microbial and Anti-Cancer Activity”. Journal of Research in Pharmacy 27, sy. 2 (Haziran 2025): 769-82.
EndNote Vıjapur L, Srinivas Y, Desai A, Gudigennavar AS, Siddramshettar S, Yaragattimath P (01 Haziran 2025) Development of biosynthesized silver nanoparticles from Cinnamomum tamala for anti-oxidant, anti-microbial and anti-cancer activity. Journal of Research in Pharmacy 27 2 769–782.
IEEE L. Vıjapur, Y. Srinivas, A. Desai, A. S. Gudigennavar, S. Siddramshettar, ve P. Yaragattimath, “Development of biosynthesized silver nanoparticles from Cinnamomum tamala for anti-oxidant, anti-microbial and anti-cancer activity”, J. Res. Pharm., c. 27, sy. 2, ss. 769–782, 2025.
ISNAD Vıjapur, Laxman vd. “Development of Biosynthesized Silver Nanoparticles from Cinnamomum Tamala for Anti-Oxidant, Anti-Microbial and Anti-Cancer Activity”. Journal of Research in Pharmacy 27/2 (Haziran 2025), 769-782.
JAMA Vıjapur L, Srinivas Y, Desai A, Gudigennavar AS, Siddramshettar S, Yaragattimath P. Development of biosynthesized silver nanoparticles from Cinnamomum tamala for anti-oxidant, anti-microbial and anti-cancer activity. J. Res. Pharm. 2025;27:769–782.
MLA Vıjapur, Laxman vd. “Development of Biosynthesized Silver Nanoparticles from Cinnamomum Tamala for Anti-Oxidant, Anti-Microbial and Anti-Cancer Activity”. Journal of Research in Pharmacy, c. 27, sy. 2, 2025, ss. 769-82.
Vancouver Vıjapur L, Srinivas Y, Desai A, Gudigennavar AS, Siddramshettar S, Yaragattimath P. Development of biosynthesized silver nanoparticles from Cinnamomum tamala for anti-oxidant, anti-microbial and anti-cancer activity. J. Res. Pharm. 2025;27(2):769-82.