Araştırma Makalesi
BibTex RIS Kaynak Göster

Green Synthesis of Zinc Oxide Nanoparticles, Characterization, Antibacterial and Cytotoxicity Against HepG2 Cells Using Syringodium isoetifolium

Yıl 2023, Cilt: 27 Sayı: 2, 783 - 793, 27.06.2025

Öz

Green nanoparticle synthesis using biological systems, particularly plant extracts is a growing subject in
nanotechnology. Leaves extract of Syringodium isoetifolium was used to successfully show the environmentally friendly
manufacture of zinc oxide nanoparticles (ZnO NPs) and zinc nitrate were used as precursor in this study. The
nanoparticles were examined using X-Ray Diffraction (XRD), Energy-Dispersive X-ray analysis (EDX), UV spectroscopy
(UV-VIS), Scanning Electron Microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FT-IR). The absorption
peak in 223 nm range was discovered via UV–Vis spectroscopy. XRD and FTIR verified the involvement of Syringodium
isoetifolium bioactive substances in the steadiness of zinc oxide nanoparticles. SEM and EDX investigation indicated an
agglomerated asymmetrical, hexagonal morphology and presence of O, Zn, C and K. Elemental mapping study of
produced ZnO NPs revealed 60% zinc distribution, 26% oxygen distribution, and 13% carbon distribution. The
produced ZnO NPs had a mean particle size of 26 nm was determined using dynamic light scattering (DLS)
measurements. Additionally, an in vitro assay was used to assess the ZnO NPs' cytotoxic effects on the HepG2 cell line.
The ZnO NPs had a strong cytotoxic effect on the HepG2 cancer cell line, as shown by the results of the MTT assay. ZnO
NPs exhibited excellent antimicrobial potencies against four different bacterial via pour plate method, and their zone of
inhibition values were calculated.

Kaynakça

  • Maksimovic M, Miklicanin E. Towards green nanotechnology: maximizing benefits and minimizing harm. IFMBE Proceedings 2017; 62:164-170 [CrossRef]
  • Gour A, Jain NK. Advances in green synthesis of nanoparticles. Artif Cells Nano med Biotechnology 2019; 47(1): 844- 851. [CrossRef]
  • Ghorbani HR, Mehr FP, Pazoki H, Rahmani BM. Synthesis of ZnO nanoparticles by precipitation method. Orient J Chem 2015; 31(2):1219-1221. [CrossRef]
  • Zhang D, Gu Y, Huang H, Zhang G. Green Synthesis of metallic Nanoparticles and their Potential Applications to Treat Cancer. Front Chem 2020; 8: 799. [CrossRef]
  • Chang S, Yoon SO, Park HJ, Sakai A. Luminescence properties of Zn nanowires prepared by electrochemical etching. Mater Lett 2002; 53:432-436 [CrossRef]
  • Wu JJ, Liu SC. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv Mater 2002; 14(3): 215-218. [CrossRef]
  • Scarisoreanu N, Metai DG, Dinescu G, Epurescu G, Ghica C, Nistor LC, Dinescu M. Properties of ZnO thin films prepared by radio-frequency plasma beam assisted laser ablation. Appl Surf Sci 2005; 247(1):518-525. [CrossRef]
  • Ni YH, Wei ZW, Hong JM, Ye Y. Hydrothermal preparation and optical properties of ZnO nanorods. Mater Sci Eng B: Solid-State Mater Adv Technology 2005; 121(1):42-47. [CrossRef]
  • Ristiac M, Musiac S, Ivanda M, Popoviac S. Sol–gel synthesis and characterization of nanocrystalline ZnO powders. J Alloys Compd 2005; 397:1-4. [CrossRef]
  • Kavitha S, Damodaran M, Prasad R. Synthesis and characterisation of zinc oxide nanoparticles using terpenoid fractions of Andrographis paniculata leaves. Int Nano Lett 2017; 7:141-147[CrossRef]
  • Hare Krishna B, Dipak B, Sahoo DP, Priyanka S, Shankar P, Mishra A. Green synthesis of silver nanoparticles using latex of Jatropha Curcas, Colloid Surf A, Physiochem Eng Asp 2009; 339:134-139. [CrossRef]
  • Lamas DG, Lascalea GE, Walsoc NE. Synthesis and characterization of nanocrystalline powders for partially stabilized zirconia ceramics. J Eur Ceram Soc 1998; 18(9):1217-1221. [CrossRef]
  • Badhuri S. Enhanced low temperature toughness of Al2O3-ZrO2 nano composites. Nano struct Mater 1997; 8(6):755- 763. [CrossRef]
  • Kooti M, Nagdhi A, Microwave-assisted combustion synthesis of ZnO nanoparticles. J Chem 2013; 1:1-4. [CrossRef]
  • Rajesh D, Lakshmi BV, Sunandana CS, Two-step synthesis and characterization of ZnO nanoparticles. Phys B: Condens Matter 2012; 407(23):4537-4539. [CrossRef]
  • Shetty A, Nanda K. Synthesis of zinc oxide porous structures by anodisation with water as an electrolyte. Appl Phys A 2012; 109:151-157. [CrossRef]
  • Singh O, Kohli N, Singh RC. Precursor controlled morphology of zinc oxide and its sensing behaviour. Sens Actuators B Chem 2013; 178(1):149-154. [CrossRef]
  • Vazquez A, Lopez IA, Gomez I. Growth mechanism of one-dimensional zinc sulphide nanostructures through electrophoretic deposition. J Mater Sci. 2013; 48:2701-2704. [CrossRef]
  • Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A Critical review, Journal of Saudi chemical society. 2021; 25(9):1-17[CrossRef]
  • Fakhari S, Jamzad M, Fard HK. Green synthesis of zinc oxide nanoparticle. Green chem lett rev 2019; 12(1):19-24. [CrossRef]
  • Zare E, Pourseyedi S, Khatami M, Darezereshki E. Simple biosynthesis of zinc oxide nanoparticles using nature’s source, and it’s in vitro bio-activity. J Mol Struct 2017; 1146:96-103. [CrossRef]
  • Harpreet K, Simerjeet K, Jagpreet S, Mohit R, Green synthesis of TiO2 Nanoparticles using carica papaya leaves for photocatalysis application. Material Research Express,2019;6:1-11[CrossRef]
  • Alshami, Alharbi AE. Antimicrobial activity of Hibiscus abdariffa extract against uropathogenic strains isolated from recurrent urinary tract infections. Asian Pac J Trop Dis 2014; 4(4):317-322. [CrossRef]
  • Mukherjee S, Sushma V, Patra S, Barui AK. Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy. Nanotechnology 2012; 23(45): 455-463. [CrossRef]
  • Stan M, Popa A, Toloman D, Silipas TD, Vodnar DC. Antibacterial and antioxidant activities of ZnO nanoparticles synthesized using extracts of Allium sativum, Rosmarinus cinalis and Ocimum basilicum. Acta Metall Sin 2016; 29:228- 236. [CrossRef]
  • Yedurkar S, Maurya C, Mahanwar P. Biosynthesis of zinc oxide nanoparticles using Ixora coccinea leaf extract a Green approach. Open J Syn Theory Appl 2016; 5(1):1-14. [CrossRef]
  • Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basu R, Nandy P. Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. R Soc Chem Adv 2015; 5:4993-5003. [CrossRef]
  • Peng X, Palma S, Fisher NS, Wong SS. Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquatic Toxicology 2011; 102(3):186-196. [CrossRef]
  • Rajiv P, Rajeshwari S, Venkatesh R. Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochimica Acta A 2013; 112:384-387. [CrossRef]
  • Rajiv P, Rajeshwari S, Venkatesh R. Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochimica Acta A 2013; 112:384-387. [CrossRef]
Yıl 2023, Cilt: 27 Sayı: 2, 783 - 793, 27.06.2025

Öz

Kaynakça

  • Maksimovic M, Miklicanin E. Towards green nanotechnology: maximizing benefits and minimizing harm. IFMBE Proceedings 2017; 62:164-170 [CrossRef]
  • Gour A, Jain NK. Advances in green synthesis of nanoparticles. Artif Cells Nano med Biotechnology 2019; 47(1): 844- 851. [CrossRef]
  • Ghorbani HR, Mehr FP, Pazoki H, Rahmani BM. Synthesis of ZnO nanoparticles by precipitation method. Orient J Chem 2015; 31(2):1219-1221. [CrossRef]
  • Zhang D, Gu Y, Huang H, Zhang G. Green Synthesis of metallic Nanoparticles and their Potential Applications to Treat Cancer. Front Chem 2020; 8: 799. [CrossRef]
  • Chang S, Yoon SO, Park HJ, Sakai A. Luminescence properties of Zn nanowires prepared by electrochemical etching. Mater Lett 2002; 53:432-436 [CrossRef]
  • Wu JJ, Liu SC. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv Mater 2002; 14(3): 215-218. [CrossRef]
  • Scarisoreanu N, Metai DG, Dinescu G, Epurescu G, Ghica C, Nistor LC, Dinescu M. Properties of ZnO thin films prepared by radio-frequency plasma beam assisted laser ablation. Appl Surf Sci 2005; 247(1):518-525. [CrossRef]
  • Ni YH, Wei ZW, Hong JM, Ye Y. Hydrothermal preparation and optical properties of ZnO nanorods. Mater Sci Eng B: Solid-State Mater Adv Technology 2005; 121(1):42-47. [CrossRef]
  • Ristiac M, Musiac S, Ivanda M, Popoviac S. Sol–gel synthesis and characterization of nanocrystalline ZnO powders. J Alloys Compd 2005; 397:1-4. [CrossRef]
  • Kavitha S, Damodaran M, Prasad R. Synthesis and characterisation of zinc oxide nanoparticles using terpenoid fractions of Andrographis paniculata leaves. Int Nano Lett 2017; 7:141-147[CrossRef]
  • Hare Krishna B, Dipak B, Sahoo DP, Priyanka S, Shankar P, Mishra A. Green synthesis of silver nanoparticles using latex of Jatropha Curcas, Colloid Surf A, Physiochem Eng Asp 2009; 339:134-139. [CrossRef]
  • Lamas DG, Lascalea GE, Walsoc NE. Synthesis and characterization of nanocrystalline powders for partially stabilized zirconia ceramics. J Eur Ceram Soc 1998; 18(9):1217-1221. [CrossRef]
  • Badhuri S. Enhanced low temperature toughness of Al2O3-ZrO2 nano composites. Nano struct Mater 1997; 8(6):755- 763. [CrossRef]
  • Kooti M, Nagdhi A, Microwave-assisted combustion synthesis of ZnO nanoparticles. J Chem 2013; 1:1-4. [CrossRef]
  • Rajesh D, Lakshmi BV, Sunandana CS, Two-step synthesis and characterization of ZnO nanoparticles. Phys B: Condens Matter 2012; 407(23):4537-4539. [CrossRef]
  • Shetty A, Nanda K. Synthesis of zinc oxide porous structures by anodisation with water as an electrolyte. Appl Phys A 2012; 109:151-157. [CrossRef]
  • Singh O, Kohli N, Singh RC. Precursor controlled morphology of zinc oxide and its sensing behaviour. Sens Actuators B Chem 2013; 178(1):149-154. [CrossRef]
  • Vazquez A, Lopez IA, Gomez I. Growth mechanism of one-dimensional zinc sulphide nanostructures through electrophoretic deposition. J Mater Sci. 2013; 48:2701-2704. [CrossRef]
  • Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A Critical review, Journal of Saudi chemical society. 2021; 25(9):1-17[CrossRef]
  • Fakhari S, Jamzad M, Fard HK. Green synthesis of zinc oxide nanoparticle. Green chem lett rev 2019; 12(1):19-24. [CrossRef]
  • Zare E, Pourseyedi S, Khatami M, Darezereshki E. Simple biosynthesis of zinc oxide nanoparticles using nature’s source, and it’s in vitro bio-activity. J Mol Struct 2017; 1146:96-103. [CrossRef]
  • Harpreet K, Simerjeet K, Jagpreet S, Mohit R, Green synthesis of TiO2 Nanoparticles using carica papaya leaves for photocatalysis application. Material Research Express,2019;6:1-11[CrossRef]
  • Alshami, Alharbi AE. Antimicrobial activity of Hibiscus abdariffa extract against uropathogenic strains isolated from recurrent urinary tract infections. Asian Pac J Trop Dis 2014; 4(4):317-322. [CrossRef]
  • Mukherjee S, Sushma V, Patra S, Barui AK. Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy. Nanotechnology 2012; 23(45): 455-463. [CrossRef]
  • Stan M, Popa A, Toloman D, Silipas TD, Vodnar DC. Antibacterial and antioxidant activities of ZnO nanoparticles synthesized using extracts of Allium sativum, Rosmarinus cinalis and Ocimum basilicum. Acta Metall Sin 2016; 29:228- 236. [CrossRef]
  • Yedurkar S, Maurya C, Mahanwar P. Biosynthesis of zinc oxide nanoparticles using Ixora coccinea leaf extract a Green approach. Open J Syn Theory Appl 2016; 5(1):1-14. [CrossRef]
  • Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basu R, Nandy P. Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. R Soc Chem Adv 2015; 5:4993-5003. [CrossRef]
  • Peng X, Palma S, Fisher NS, Wong SS. Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquatic Toxicology 2011; 102(3):186-196. [CrossRef]
  • Rajiv P, Rajeshwari S, Venkatesh R. Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochimica Acta A 2013; 112:384-387. [CrossRef]
  • Rajiv P, Rajeshwari S, Venkatesh R. Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochimica Acta A 2013; 112:384-387. [CrossRef]
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık Biyokimyası
Bölüm Articles
Yazarlar

Dhanaraju Kavitha 0000-0003-3745-7939

Ramakrishnan Padmini 0000-0002-0816-3600

Thiyagarajan Deepan 0000-0003-4062-3993

Magharla Dasaratha Dhanaraju 0000-0003-4876-7051

Yayımlanma Tarihi 27 Haziran 2025
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 2

Kaynak Göster

APA Kavitha, D., Padmini, R., Deepan, T., Dhanaraju, M. D. (2025). Green Synthesis of Zinc Oxide Nanoparticles, Characterization, Antibacterial and Cytotoxicity Against HepG2 Cells Using Syringodium isoetifolium. Journal of Research in Pharmacy, 27(2), 783-793.
AMA Kavitha D, Padmini R, Deepan T, Dhanaraju MD. Green Synthesis of Zinc Oxide Nanoparticles, Characterization, Antibacterial and Cytotoxicity Against HepG2 Cells Using Syringodium isoetifolium. J. Res. Pharm. Haziran 2025;27(2):783-793.
Chicago Kavitha, Dhanaraju, Ramakrishnan Padmini, Thiyagarajan Deepan, ve Magharla Dasaratha Dhanaraju. “Green Synthesis of Zinc Oxide Nanoparticles, Characterization, Antibacterial and Cytotoxicity Against HepG2 Cells Using Syringodium Isoetifolium”. Journal of Research in Pharmacy 27, sy. 2 (Haziran 2025): 783-93.
EndNote Kavitha D, Padmini R, Deepan T, Dhanaraju MD (01 Haziran 2025) Green Synthesis of Zinc Oxide Nanoparticles, Characterization, Antibacterial and Cytotoxicity Against HepG2 Cells Using Syringodium isoetifolium. Journal of Research in Pharmacy 27 2 783–793.
IEEE D. Kavitha, R. Padmini, T. Deepan, ve M. D. Dhanaraju, “Green Synthesis of Zinc Oxide Nanoparticles, Characterization, Antibacterial and Cytotoxicity Against HepG2 Cells Using Syringodium isoetifolium”, J. Res. Pharm., c. 27, sy. 2, ss. 783–793, 2025.
ISNAD Kavitha, Dhanaraju vd. “Green Synthesis of Zinc Oxide Nanoparticles, Characterization, Antibacterial and Cytotoxicity Against HepG2 Cells Using Syringodium Isoetifolium”. Journal of Research in Pharmacy 27/2 (Haziran 2025), 783-793.
JAMA Kavitha D, Padmini R, Deepan T, Dhanaraju MD. Green Synthesis of Zinc Oxide Nanoparticles, Characterization, Antibacterial and Cytotoxicity Against HepG2 Cells Using Syringodium isoetifolium. J. Res. Pharm. 2025;27:783–793.
MLA Kavitha, Dhanaraju vd. “Green Synthesis of Zinc Oxide Nanoparticles, Characterization, Antibacterial and Cytotoxicity Against HepG2 Cells Using Syringodium Isoetifolium”. Journal of Research in Pharmacy, c. 27, sy. 2, 2025, ss. 783-9.
Vancouver Kavitha D, Padmini R, Deepan T, Dhanaraju MD. Green Synthesis of Zinc Oxide Nanoparticles, Characterization, Antibacterial and Cytotoxicity Against HepG2 Cells Using Syringodium isoetifolium. J. Res. Pharm. 2025;27(2):783-9.