Araştırma Makalesi
BibTex RIS Kaynak Göster

Additives screening for the formulation of solid lipid nanoparticles of alpha-mangostin

Yıl 2023, Cilt: 27 Sayı: 2, 794 - 810, 27.06.2025

Öz

The purpose of the study is to perform pre-formulation studies for alpha-mangostin (α-mangostin)
and screening of additives (such as solid lipids, emulsifiers and cryoprotectants) and their combinations (ratio of
lipids, ratio of drug: lipid, ratio of emulsifier: co-emulsifier and concentration of cryoprotectant) used in the
formulation of solid lipid nanoparticles of α-mangostin. This screening is essential for the formulation of solid lipid
nanoparticles (SLNP) that provide small particle size and PDI, high entrapment efficiency and zeta potential. This
screening offers a rationale for selecting additives and their concentrations for formulating optimized SLNP. Pre-
formulation studies showed melting point of 181.5°C, partition coefficient of 0.359 and drug solubility of 0.3072,
0.4576, 0.4892 and 0.5782 mg/mL in 1.2, 6.8, 7.0 and 7.5 pH buffers respectively. Ultimately, the DSC thermogram
defines the sharp endotherm of α-mangostin at 195.98°C. Hot melt homogenization followed by ultrasonication
technique is used to develop solid lipid nanoparticles. Process parameters such as homogenization speed (15,000
rpm) and ultra sonication (6 minutes) was optimized based on particle size and PDI. The optimized formulation of
SLNP of α-mangostin contain 1:2:0.5:0.5:5 ratio of Drug: Solid lipid (0.8:1.2 ratio of Stearic acid: Precriol ATO5):
Poloxamer 407: Sodium taurocholate: Mannitol.

Kaynakça

  • Ji X, Avula B, Khan IA. Quantitative and qualitative determination of six xanthones in Garcinia mangostanaL. by LC-PDA and LC-ESI-MS. J Pharm Biomed Anal 2007; 43(4): 1270–1276.[CrossRef]
  • Obolskiy D, Pischel I, Siriwatanametanon N, Heinrich M. Garcinia mangostanaL.: A phytochemical and pharmacological review, Phytother Res 2009; 23(8): 1047–1065.[CrossRef]
  • Pedraza-Chaverri J, Cardenas-Rodriguez N, Orozco-Ibarra M, Perez-Rojas JM. Medicinal properties of mangosteen (Garcinia mangostana). Food ChemToxicol 2008; 46(10): 3227–3239.[CrossRef]
  • Destandau E, Toribio A, Lafosse M, Pecher V, Lamy C, Andre P. Centrifugal partition chromatography directly interfaced with mass spectrometry for the fast screening and fractionation of major xanthones in Garcinia mangostana. J Chromatogr A 2009; 1216(9): 1390–1394.[CrossRef]
  • Fang L, Liu Y, Zhuang H, Liu W, Wang X, Huang L. Combined microwave-assisted extraction and high-speed counter-current chromatography for separation and purification of xanthones from Garcinia mangostana. J Chromatogr B AnalytTechnol Biomed Life Sci 2011; 879(28): 3023– 3027.[CrossRef]
  • Chin YW, Kinghorn AD. Structural characterization, biological effects, and snthetic studies on xanthones from mangosteen (Garcinia mangostana), a popular botanical dietary supplement. Mini Rev Org Chem 2008; 5(4): 355– 364.[CrossRef]
  • Pothitirat W, Chomnawang MT, Supabphol R, Gritsanapan W. Free radical scavenging and anti-acne activities of mangosteen fruit rind extracts prepared by different extraction methods. Pharm Biol 2010; 48(2): 182–186.[CrossRef]
  • Jung HA, Su BN, Keller WJ, Mehta RG, Kinghorn AD. Antioxidant xanthones from the pericarp of Garcinia mangostana(mangosteen). J Agric Food Chem 2006; 54(6): 2077–2082.[CrossRef]
  • Chen LG, Yang LL, Wang CC. Anti-inflammatory activity of mangosteens from Garcinia mangostana. Food ChemToxicol 2008; 46(2): 688–693.[CrossRef]
  • Chomnawang MT, Surassmo S, Wongsariya K, Bunyapraphatsara N. Antibacterial activity of Thai medicinal plants against methicillin-resistant Staphylococcus aureus.Fitoterapia 2009; 80(2): 102–104.[CrossRef]
  • Watanapokasin R, Jarinthanan F, Jerusalem A, Suksamrarn S, Nakamura Y, Sukseree S, Uthaisang- Tanethpongtamb W, Ratananukul P, Sano T. Potential of xanthones from tropical fruit mangosteen as anti-cancer agents: Caspase-dependent apoptosis induction in vitro and mice. ApplBiochemBiotechnol 2010; 162(4): 1080– 1094.[CrossRef]
  • Moongkarndi P, Kosem N, Kaslungka S, Luanratana O, Pongpan N, Neungton N. Antiproliferation, antioxidation and induction of apoptosis by Garcinia mangostana(mangosteen) on SKBR3 human breast cancer cell line. J Ethnopharmacol 2004; 90(1): 161–166.[CrossRef]
  • Balunas MJ, Su B, Brueggemeier RW, Kinghorn AD. Xanthones from the botanical dietary supplement mangosteen (Garcinia mangostana) with aromatase inhibitory activity. J Nat Prod 2008; 71(7): 1161–1166.[CrossRef]
  • Chin YW, Jung HA, Chai H, Keller WJ, Kinghorn AD. Xanthones with quinone reductase-inducing activity from the fruits of Garcinia mangostana(mangosteen). Phytochemistry 2008; 69(3): 754–758.[CrossRef]
  • Nabandith V, Suzuki M, Morioka T, Kaneshiro T, Kinjo T, Matsumoto K, Akao Y, IinumaM, Yoshimi N. Inhibitory effects of crude alpha-mangostin, a xanthone derivative, on two different categories of colon preneoplastic lesions induced by 1,2-dimethylhydrazine in the rat. Asian Pac J Cancer Prev 2004; 5(4): 433–438.
  • Udani JK, Singh BB, Barrett ML, Singh VJ. Evaluation of mangosteen juice blend on biomarkers of inflammation in obese subjects: A pilot, dose-finding study. Nutr J 2009; 8: 48.[CrossRef]
  • Kondo M, Zhang L, Ji H, Kou Y, Ou B. Bioavailability and antioxidant effects of xanthone-rich mangosteen (Garcinia mangostana) product in humans, J Agric Food Chem 2009; 57(19): 8788–8792.[CrossRef]
  • Li L, Brunner I, Han AR, Hamburger M, Kinghorn AD, Frye R, Butterweck V. Pharmacokinetics of alpha- mangostin in rats after intravenous and oral application, MolNutr Food Res 2011; 55 (Suppl. 1): S67–S74.[CrossRef]
  • Chitchumroonchokchai C, Riedl KM, Suksumrarn S, Clinton SK, Kinghorn AD, Failla ML. Xanthonesinmangosteen juice is absorbed and partially conjugated by healthy adults. J Nutr 2012; 142(4): 675– 680.[CrossRef]
  • Heiati H, Tawashi R, Phillips NC. Drug retention and stability of solid lipid nanoparticles containing azidothymidine-palmita te after autoclaving, storage and lyophilization. J Microencapsul. 1998;15(2):173- 184.[CrossRef]
  • Bunjes H, Westesen K, Koch MHJ. Crystallization tendency and polymorphic transitions in triglyceride nanoparticles, Int J Pharm. 1996;129(1-2):159-173.[CrossRef]
  • Westesen K, Bunjes H, Koch MHJ. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading and sustained release potential. J Control Release. 1997;48(2-3):223-236.[CrossRef]
  • Cavalli R, Gasco MR, Morel S. Behaviour of timolol incorporated in lipospheres in the presence of a series of phosphate esters, STP Pharma Sci. 1992;2:514-518.
  • Mehnert W, Mader K. Solid lipid nanoparticles production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2-3): 165-196.[CrossRef]
  • Siekmann B, Westesen K. Submicron-sized parenteral carrier systems based on solid lipids. Pharm Pharmacol Lett. 1992;1:123-126.
  • Mills IIIT, Roberson JC, Matchett CC, Simon MJ, Burns MD and Ollis RJ. Instrumental data for drug analysis (IDDA), third edition, CRC Press (Taylor & Francis Group), Boca Raton, London, New York. 2006; Vol–3: 1676–77 (INH), Vol–4: 2710–11 (PYZ) and Vol–4: 2776–77 (RIF).
  • Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci. 2018;13(4):288-303. [CrossRef]
  • McClements D, Rao J. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev FoodSci 2011; 51(4): 285–30.[CrossRef]
  • Olbrich C, Müller RH. Enzymatic degradation of SLN-effect of surfactant andsurfactant mixtures. Int J Pharm 1999; 180(1): 31–39.[CrossRef]
  • Olbrich C, Kayser O, Müller RH. Lipase degradation of Dynasty 114 and 116 solid lipid nanoparticles (SLN)-the effect of surfactants, storage time and crystallinity, Int J Pharm 2002a; 237(1): 119–28.[CrossRef]
  • Lippacher A, Müller RH, Mäder K. Investigation on the viscoelastic properties of lipid based colloidal drug carriers, Int J Pharm 2000; 196(2): 227–30.[CrossRef]
  • Amis TM, Renukuntla J, Bolla PK, Clark BA. Selection of Cryoprotectant in Lyophilization of Progesterone-Loaded Stearic Acid Solid Lipid Nanoparticles. Pharmaceutics. 2020;12(9):892. [CrossRef]
  • Zimmerman E, Müller RH, Mäder K. Influence of different parameters onreconstitution of lyophilized SLN. Int J Pharm 2000; 196(2): 211–13. [CrossRef]
  • Date PV, Samad A, Devarajan PV. Freeze thaw: a simple approach for prediction of optimal cryoprotectant for freeze drying. AAPS PharmSciTech. 2010;11(1):304-13 [CrossRef]
  • Ball RL, Bajaj P, Whitehead KA. Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization. Int J Nanomedicine. 2016;12:305-315 [CrossRef]
  • Kaur I, Ellis LJ, Romer I, Tantra R, Carriere M, Allard S, Mayne-L'Hermite M, Minelli C, Unger W, Potthoff A, Rades S, Valsami-Jones E. Dispersion of Nanomaterials in Aqueous Media: Towards Protocol Optimization. J Vis Exp. 2017;(130):56074 [CrossRef]
  • Arana L, Gallego L, Alkorta I. Incorporation of Antibiotics into Solid Lipid Nanoparticles: A Promising Approach to Reduce Antibiotic Resistance Emergence. Nanomaterials (Basel). 2021;11(5):1251. [CrossRef]
  • Kumar KN, Mallik S, Sarkar K. Role of freeze-drying in the presence of mannitol on the echogenicity of echogenic liposomes. J Acoust Soc Am. 2017;142(6):3670. [CrossRef]
  • National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 5281650, alpha- Mangostin. Retrieved August 24, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/alpha-Mangostin.
  • National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 5281, Stearic acid. Retrieved August 24, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/Stearic-acid.
  • Kallakunta VR, Tiwari R, Sarabu S, Bandari S, Repka MA. Effect of formulation and process variables on lipid based sustained release tablets via continuous twin screw granulation: A comparative study. Eur J Pharm Sci. 2018 Aug 30;121:126-138. [CrossRef]
Yıl 2023, Cilt: 27 Sayı: 2, 794 - 810, 27.06.2025

Öz

Kaynakça

  • Ji X, Avula B, Khan IA. Quantitative and qualitative determination of six xanthones in Garcinia mangostanaL. by LC-PDA and LC-ESI-MS. J Pharm Biomed Anal 2007; 43(4): 1270–1276.[CrossRef]
  • Obolskiy D, Pischel I, Siriwatanametanon N, Heinrich M. Garcinia mangostanaL.: A phytochemical and pharmacological review, Phytother Res 2009; 23(8): 1047–1065.[CrossRef]
  • Pedraza-Chaverri J, Cardenas-Rodriguez N, Orozco-Ibarra M, Perez-Rojas JM. Medicinal properties of mangosteen (Garcinia mangostana). Food ChemToxicol 2008; 46(10): 3227–3239.[CrossRef]
  • Destandau E, Toribio A, Lafosse M, Pecher V, Lamy C, Andre P. Centrifugal partition chromatography directly interfaced with mass spectrometry for the fast screening and fractionation of major xanthones in Garcinia mangostana. J Chromatogr A 2009; 1216(9): 1390–1394.[CrossRef]
  • Fang L, Liu Y, Zhuang H, Liu W, Wang X, Huang L. Combined microwave-assisted extraction and high-speed counter-current chromatography for separation and purification of xanthones from Garcinia mangostana. J Chromatogr B AnalytTechnol Biomed Life Sci 2011; 879(28): 3023– 3027.[CrossRef]
  • Chin YW, Kinghorn AD. Structural characterization, biological effects, and snthetic studies on xanthones from mangosteen (Garcinia mangostana), a popular botanical dietary supplement. Mini Rev Org Chem 2008; 5(4): 355– 364.[CrossRef]
  • Pothitirat W, Chomnawang MT, Supabphol R, Gritsanapan W. Free radical scavenging and anti-acne activities of mangosteen fruit rind extracts prepared by different extraction methods. Pharm Biol 2010; 48(2): 182–186.[CrossRef]
  • Jung HA, Su BN, Keller WJ, Mehta RG, Kinghorn AD. Antioxidant xanthones from the pericarp of Garcinia mangostana(mangosteen). J Agric Food Chem 2006; 54(6): 2077–2082.[CrossRef]
  • Chen LG, Yang LL, Wang CC. Anti-inflammatory activity of mangosteens from Garcinia mangostana. Food ChemToxicol 2008; 46(2): 688–693.[CrossRef]
  • Chomnawang MT, Surassmo S, Wongsariya K, Bunyapraphatsara N. Antibacterial activity of Thai medicinal plants against methicillin-resistant Staphylococcus aureus.Fitoterapia 2009; 80(2): 102–104.[CrossRef]
  • Watanapokasin R, Jarinthanan F, Jerusalem A, Suksamrarn S, Nakamura Y, Sukseree S, Uthaisang- Tanethpongtamb W, Ratananukul P, Sano T. Potential of xanthones from tropical fruit mangosteen as anti-cancer agents: Caspase-dependent apoptosis induction in vitro and mice. ApplBiochemBiotechnol 2010; 162(4): 1080– 1094.[CrossRef]
  • Moongkarndi P, Kosem N, Kaslungka S, Luanratana O, Pongpan N, Neungton N. Antiproliferation, antioxidation and induction of apoptosis by Garcinia mangostana(mangosteen) on SKBR3 human breast cancer cell line. J Ethnopharmacol 2004; 90(1): 161–166.[CrossRef]
  • Balunas MJ, Su B, Brueggemeier RW, Kinghorn AD. Xanthones from the botanical dietary supplement mangosteen (Garcinia mangostana) with aromatase inhibitory activity. J Nat Prod 2008; 71(7): 1161–1166.[CrossRef]
  • Chin YW, Jung HA, Chai H, Keller WJ, Kinghorn AD. Xanthones with quinone reductase-inducing activity from the fruits of Garcinia mangostana(mangosteen). Phytochemistry 2008; 69(3): 754–758.[CrossRef]
  • Nabandith V, Suzuki M, Morioka T, Kaneshiro T, Kinjo T, Matsumoto K, Akao Y, IinumaM, Yoshimi N. Inhibitory effects of crude alpha-mangostin, a xanthone derivative, on two different categories of colon preneoplastic lesions induced by 1,2-dimethylhydrazine in the rat. Asian Pac J Cancer Prev 2004; 5(4): 433–438.
  • Udani JK, Singh BB, Barrett ML, Singh VJ. Evaluation of mangosteen juice blend on biomarkers of inflammation in obese subjects: A pilot, dose-finding study. Nutr J 2009; 8: 48.[CrossRef]
  • Kondo M, Zhang L, Ji H, Kou Y, Ou B. Bioavailability and antioxidant effects of xanthone-rich mangosteen (Garcinia mangostana) product in humans, J Agric Food Chem 2009; 57(19): 8788–8792.[CrossRef]
  • Li L, Brunner I, Han AR, Hamburger M, Kinghorn AD, Frye R, Butterweck V. Pharmacokinetics of alpha- mangostin in rats after intravenous and oral application, MolNutr Food Res 2011; 55 (Suppl. 1): S67–S74.[CrossRef]
  • Chitchumroonchokchai C, Riedl KM, Suksumrarn S, Clinton SK, Kinghorn AD, Failla ML. Xanthonesinmangosteen juice is absorbed and partially conjugated by healthy adults. J Nutr 2012; 142(4): 675– 680.[CrossRef]
  • Heiati H, Tawashi R, Phillips NC. Drug retention and stability of solid lipid nanoparticles containing azidothymidine-palmita te after autoclaving, storage and lyophilization. J Microencapsul. 1998;15(2):173- 184.[CrossRef]
  • Bunjes H, Westesen K, Koch MHJ. Crystallization tendency and polymorphic transitions in triglyceride nanoparticles, Int J Pharm. 1996;129(1-2):159-173.[CrossRef]
  • Westesen K, Bunjes H, Koch MHJ. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading and sustained release potential. J Control Release. 1997;48(2-3):223-236.[CrossRef]
  • Cavalli R, Gasco MR, Morel S. Behaviour of timolol incorporated in lipospheres in the presence of a series of phosphate esters, STP Pharma Sci. 1992;2:514-518.
  • Mehnert W, Mader K. Solid lipid nanoparticles production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2-3): 165-196.[CrossRef]
  • Siekmann B, Westesen K. Submicron-sized parenteral carrier systems based on solid lipids. Pharm Pharmacol Lett. 1992;1:123-126.
  • Mills IIIT, Roberson JC, Matchett CC, Simon MJ, Burns MD and Ollis RJ. Instrumental data for drug analysis (IDDA), third edition, CRC Press (Taylor & Francis Group), Boca Raton, London, New York. 2006; Vol–3: 1676–77 (INH), Vol–4: 2710–11 (PYZ) and Vol–4: 2776–77 (RIF).
  • Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci. 2018;13(4):288-303. [CrossRef]
  • McClements D, Rao J. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev FoodSci 2011; 51(4): 285–30.[CrossRef]
  • Olbrich C, Müller RH. Enzymatic degradation of SLN-effect of surfactant andsurfactant mixtures. Int J Pharm 1999; 180(1): 31–39.[CrossRef]
  • Olbrich C, Kayser O, Müller RH. Lipase degradation of Dynasty 114 and 116 solid lipid nanoparticles (SLN)-the effect of surfactants, storage time and crystallinity, Int J Pharm 2002a; 237(1): 119–28.[CrossRef]
  • Lippacher A, Müller RH, Mäder K. Investigation on the viscoelastic properties of lipid based colloidal drug carriers, Int J Pharm 2000; 196(2): 227–30.[CrossRef]
  • Amis TM, Renukuntla J, Bolla PK, Clark BA. Selection of Cryoprotectant in Lyophilization of Progesterone-Loaded Stearic Acid Solid Lipid Nanoparticles. Pharmaceutics. 2020;12(9):892. [CrossRef]
  • Zimmerman E, Müller RH, Mäder K. Influence of different parameters onreconstitution of lyophilized SLN. Int J Pharm 2000; 196(2): 211–13. [CrossRef]
  • Date PV, Samad A, Devarajan PV. Freeze thaw: a simple approach for prediction of optimal cryoprotectant for freeze drying. AAPS PharmSciTech. 2010;11(1):304-13 [CrossRef]
  • Ball RL, Bajaj P, Whitehead KA. Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization. Int J Nanomedicine. 2016;12:305-315 [CrossRef]
  • Kaur I, Ellis LJ, Romer I, Tantra R, Carriere M, Allard S, Mayne-L'Hermite M, Minelli C, Unger W, Potthoff A, Rades S, Valsami-Jones E. Dispersion of Nanomaterials in Aqueous Media: Towards Protocol Optimization. J Vis Exp. 2017;(130):56074 [CrossRef]
  • Arana L, Gallego L, Alkorta I. Incorporation of Antibiotics into Solid Lipid Nanoparticles: A Promising Approach to Reduce Antibiotic Resistance Emergence. Nanomaterials (Basel). 2021;11(5):1251. [CrossRef]
  • Kumar KN, Mallik S, Sarkar K. Role of freeze-drying in the presence of mannitol on the echogenicity of echogenic liposomes. J Acoust Soc Am. 2017;142(6):3670. [CrossRef]
  • National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 5281650, alpha- Mangostin. Retrieved August 24, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/alpha-Mangostin.
  • National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 5281, Stearic acid. Retrieved August 24, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/Stearic-acid.
  • Kallakunta VR, Tiwari R, Sarabu S, Bandari S, Repka MA. Effect of formulation and process variables on lipid based sustained release tablets via continuous twin screw granulation: A comparative study. Eur J Pharm Sci. 2018 Aug 30;121:126-138. [CrossRef]
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Farmasotik Biyoteknoloji
Bölüm Articles
Yazarlar

Nagendra Babu Vutti 0000-0002-6805-1440

Sn Koteswara Rao Gudhanti 0000-0003-1257-7133

Rajasekhar Reddy Alavala 0000-0002-2610-8111

Prasanna Kumar Desu 0000-0001-6709-6551

Roja Rani Budha 0000-0002-9073-8927

Kishore Babu Govada 0000-0001-7619-5973

Durga Prasad Arja 0000-0003-4129-4685

Nagendra Ch 0000-0002-8400-8805

Yayımlanma Tarihi 27 Haziran 2025
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 2

Kaynak Göster

APA Vutti, N. B., Gudhanti, S. K. R., Alavala, R. R., Desu, P. K., vd. (2025). Additives screening for the formulation of solid lipid nanoparticles of alpha-mangostin. Journal of Research in Pharmacy, 27(2), 794-810.
AMA Vutti NB, Gudhanti SKR, Alavala RR, Desu PK, Budha RR, Govada KB, Arja DP, Ch N. Additives screening for the formulation of solid lipid nanoparticles of alpha-mangostin. J. Res. Pharm. Haziran 2025;27(2):794-810.
Chicago Vutti, Nagendra Babu, Sn Koteswara Rao Gudhanti, Rajasekhar Reddy Alavala, Prasanna Kumar Desu, Roja Rani Budha, Kishore Babu Govada, Durga Prasad Arja, ve Nagendra Ch. “Additives Screening for the Formulation of Solid Lipid Nanoparticles of Alpha-Mangostin”. Journal of Research in Pharmacy 27, sy. 2 (Haziran 2025): 794-810.
EndNote Vutti NB, Gudhanti SKR, Alavala RR, Desu PK, Budha RR, Govada KB, Arja DP, Ch N (01 Haziran 2025) Additives screening for the formulation of solid lipid nanoparticles of alpha-mangostin. Journal of Research in Pharmacy 27 2 794–810.
IEEE N. B. Vutti, S. K. R. Gudhanti, R. R. Alavala, P. K. Desu, R. R. Budha, K. B. Govada, D. P. Arja, ve N. Ch, “Additives screening for the formulation of solid lipid nanoparticles of alpha-mangostin”, J. Res. Pharm., c. 27, sy. 2, ss. 794–810, 2025.
ISNAD Vutti, Nagendra Babu vd. “Additives Screening for the Formulation of Solid Lipid Nanoparticles of Alpha-Mangostin”. Journal of Research in Pharmacy 27/2 (Haziran 2025), 794-810.
JAMA Vutti NB, Gudhanti SKR, Alavala RR, Desu PK, Budha RR, Govada KB, Arja DP, Ch N. Additives screening for the formulation of solid lipid nanoparticles of alpha-mangostin. J. Res. Pharm. 2025;27:794–810.
MLA Vutti, Nagendra Babu vd. “Additives Screening for the Formulation of Solid Lipid Nanoparticles of Alpha-Mangostin”. Journal of Research in Pharmacy, c. 27, sy. 2, 2025, ss. 794-10.
Vancouver Vutti NB, Gudhanti SKR, Alavala RR, Desu PK, Budha RR, Govada KB, Arja DP, Ch N. Additives screening for the formulation of solid lipid nanoparticles of alpha-mangostin. J. Res. Pharm. 2025;27(2):794-810.