Development and validation of an analytical method for the determination of nanostructured lipid carrier’s cinchonine used direct method modified by liquid-liquid extraction using high-performance liquid chromatography
Yıl 2023,
Cilt: 27 Sayı: 2, 913 - 923, 27.06.2025
Hariyanti Hariyanti
,
Neng Fisheri Kurniati
,
Yeyet C Umirtapura
Rachmat Mauludin
Öz
Background: cinchonine nanostructured lipid carrier is a preparation with a nanoparticle lipid delivery
system. Analysis of levels (efficiency of entrapment) of cinchonine lipid nanostructure is critical to ensure the accuracy
of drug dosage. Objective: development and validation of an analytical method for the direct assay of nanostructured
lipid carrier’s cinchonine modified by liquid-liquid extraction using high-performance liquid chromatography.
Methodology: The research was started by determining the maximum wavelength and validation parameters of
selectivity, linearity, sensitivity, precision (intraday and inter days), accuracy, and assay (entrapment efficiency) of
nanostructured lipid carrier’s cinchonine directly with modification of liquid-liquid extraction. Results: maximum
wavelength of cinchonine 289 nm; selectivity (RF 4.096 ± 0.30 min and TF 1); linearity (R2) 0.9998; sensitivity (LoD 1.2016
mg/L and LoQ 4.0054 mg/L); precision (RSD intraday and RSD inter days <2%); accuracy (recovery 99.52 – 99.87%),
entrapment efficiency using direct assay of 94.85 ± 1.91% and indirect assay of 93.35 ± 0.22%. Conclusion: The analysis
method for the direct assay of nanostructured lipid carrier’s cinchonine modified by the liquid-liquid extraction method
using high-performance liquid chromatography is effective, efficient, and specific with high validity to determine the
concentration (entrapment efficiency) of cinchonine from nanostructured lipid carrier’s cinchonine.
Kaynakça
- Heinrich M, Mah J, Amirkia V. Alkaloids Used as Medicines: Structural Phytochemistry Meets
Biodiversity—An Update and Forward Look. Molecules. 2021; 26(7): 1 – 18. [CrossRef]
- Nair K, Tree Crops. Harvesting Cash from the World’s Important Cash Crops, Springer, Malaparamba,
India 2021. [CrossRef]
- Lai J, Ma Z, Mink L, Mueller L.J, Zaera F. Influence of peripheral groups on the physical and chemical
behavior of cinchona alkaloids. J. Phys. Chem. B. 2009; 113 (34): 11696 - 11701. [CrossRef]
- Mink L, Ma Z, Olsen R.A, James J.N, Sholl D.S, Mueller L.J, Zaera F. The physico-chemical properties of
cinchona alkaloids responsible for their unique performance in chiral catalysis. Top Catal. 2008; 48: 120 -
127. [CrossRef]
- Sullivan D.J, Cinchona Alkaloids: Quinine and Quinidine, in: Treatment and Prevention of Malaria (Eds).
Springer Basel AG. Baltimore. USA., 2012; pp: 45-68. [CrossRef]
- Leveque M, Mas C, Haure M, Lejeune O, Duplan H, Castex-Rizzi N, Bessou-Touya S. 601 Hair growth
properties of Cinchona succirubra Extract, Leontopodium alpinum Extract and Manganese PCA in
human hair follicle dermal papilla cells. J. Invest. Dermatol. 2021; 141(5): S104 – S104. [CrossRef]
- Oliveira PM, Alencar-Silva T, Pires FQ, Cunha-Filho M, Gratieri T, Carvalho JL, Gelfuso GM.
Nanostructured lipid carriers loaded with an association of minoxidil and latanoprost for targeted topical
therapy of alopecia. Eur. J. Pharm. Biopharm. 2022; 172: 78-88. [CrossRef]
- Patzelt A, Lademann J. Recent advances in follicular drug delivery of nanoparticles. Expert Opinon on
Drug Delivery. 2020; 17: 1 - 13. [CrossRef]
- Pereira MN, Tolentino S, Pires FQ, Anjos JLV, Alonso A, Gratieri T, Cunha-Filho M, Gelfuso GM.
Nanostructured lipid carriers for hair follicle-targeted delivery of clindamycin and rifampicin to
hidradenitis suppurativa treatment. Colloids Surfaces B Biointerfaces. 2021; 197: 1 - 11. [CrossRef]
- Tampucci S, Paganini V, Burgalassi S, Chetoni P, Monti D. Nanostructured Drug Delivery Systems for
Targeting 5-α-Reductase Inhibitors to the Hair Follicle. Pharmaceutics. 2022; 14 (2): 286. [CrossRef]
- Tolentino S, Pereira MN, de Sousa MC, Cunha-Filho M, Gelfuso GM, Gratieri T. The influence of
sebaceous content on the performance of nanosystems designed for the treatment of follicular diseases.
Journal of Drug Delivery Science and Technology. 2020; 59: 1 – 6. [CrossRef]
- Arunprasert K, Pornpitchanarong C, Piemvuthi C, Siraprapapornsakul S, Sripeangchan S,
Lertsrimongkol O, Opanasopit P, Patrojanasophon P. Nanostructured lipid carrier-embedded polyacrylic
acid transdermal patches for improved transdermal delivery of capsaicin. Eur. J. Pharm. Sci. 2022; 173: 1
- 11. [CrossRef]
- Czajkowska-Kośnik A, Szymańska E, Czarnomysy R, Jacyna J, Markuszewski M, Basa A, Winnicka K.
Nanostructured lipid carriers engineered as topical delivery of etodolac: Optimization and cytotoxicity
studies. Materials (Basel). 2021; 14(3): 1 - 19. [CrossRef]
- Varela-Fernández R, García-Otero X, Díaz-Tomé V, Regueiro U, López-López M, González-Barcia M,
Isabel LM, Otero-Espinar JF. Lactoferrin-loaded nanostructured lipid carriers (NLCs) as a new
formulation for optimized ocular drug delivery. Eur. J. Pharm. Biopharm. 2022; 172: 144 - 156. [CrossRef]
- Li Q, Gong S, Yao W, Yu Y, Liu C, Wang R, Pan H, Wei M. PEG-interpenetrated genipin-crosslinked dual-
sensitive hydrogel/nanostructured lipid carrier compound formulation for topical drug administration.
Artificial Cells, Nanomedicine, and Biotechnology. 2021; 49(1): 345 - 353. [CrossRef]
- Gu L, Sun R, Wang W, Xia Q. Nanostructured lipid carriers for the encapsulation of phloretin: preparation
and in vitro characterization studies. Chemistry and Physics of Lipids. 2022; 242: 1 - 7. [CrossRef]
- Jafarifar Z, Rezaie M, Sharifan P, Jahani V, Daneshmand S, Ghazizadeh H, GA. Ferns GA,
Golmohammadzadeh S, Ghayour-Mobarhan M. Preparation and Characterization of Nanostructured
Lipid Carrier (NLC) and Nanoemulsion Containing Vitamin D3. Applied Biochemistry and
Biotechnology. 2022; 194: 914 - 929. [CrossRef]
- Ma W, Row K.H. pH-induced deep eutectic solvents based homogeneous liquid-liquid microextraction
for the extraction of two antibiotics from environmental water. Microchemical Journal. 2021; 160: 1 - 35.
[CrossRef]
- Mogaddam AMR, Farajzadeh MA, Tuzen M, Jouyban A, Khandaghi J. Organic solvent-free elevated
temperature liquid–liquid extraction combined with a new switchable deep eutectic solvent-based
dispersive liquid–liquid microextraction of three phenolic antioxidants from oil samples. Microchemical
Journal. 2021; 168: 1 - 7. [CrossRef]
- Khatibi SA, Hamidi S, Siahi-Shadbad MR. Application of Liquid-Liquid Extraction for the Determination
of Antibiotics in the Foodstuff: Recent Trends and Developments. Crit. Rev. Anal. Chem. 2020; 52: 327 -
342. [CrossRef]
- Eggert A, Maßmann T, Kreyenschulte D, Becker M, Heyman B, Büchs J, Jupke A. Integrated in-situ
product removal process concept for itaconic acid by reactive extraction, pH-shift back extraction and
purification by pH-shift crystallization. Separation and Purification Technology. 2019; 215: 463 - 472.
[CrossRef]
- Hariyanti H, Mauludin R, Sumirtapura Y.C, Kurniati N.F. A Review: Pharmacological Activities of
Quinoline Alkaloid of Cinchona sp, Biointerface Res. Appl. Chem. 2022; 13 (4): 1 - 13. [CrossRef]
- Bulduk I. HPLC-UV method for quantification of favipiravir in pharmaceutical formulations. Acta
Chromatogr. 2021; 33(3): 209 - 215. [CrossRef]
- Gedawy A, Al-Salami H, Dass CR. Development and validation of a new analytical HPLC method for
simultaneous determination of the antidiabetic drugs, metformin and gliclazide. J. Food Drug Anal.
(2019) 27(1): 315 - 322. [CrossRef]
- Woźniak MK, Banaszkiewicz L, Wiergowski M, Tomczak E, Kata M, Szpiech B, Namieśnik J, Biziuk M.
Development and validation of a GC–MS/MS method for the determination of 11 amphetamines and 34
synthetic cathinones in whole blood. Forensic Toxicol. 2020; 38: 42 - 58. [CrossRef]
- Ivanova AS, Merkuleva AD, Andreev SV, Sakharov KA. Method for determination of hydrogen peroxide
in adulterated milk using high performance liquid chromatography. Food Chem. 2019; 283: 431 - 436.
[CrossRef]
- Kahsay BN, Moeller L, Imming P, Neubert RHH, Gebre‑Mariam T. Development and Validation of a
Simple, Selective, and Accurate Reversed‑Phase Liquid Chromatographic Method with Diode Array
Detection (RP‑HPLC/DAD) for the Simultaneous Analysis of 18 Free Amino Acids in Topical
Formulations. Chromatographia. 2022; 85: 665 -676. [CrossRef]
- ICH. Q2 (R1), Harmonized Tripartite Guideline, Validation of Analytical Procedures: Text and
Methodology, In Proceedings of the International Conference on Harmonization of Technical
Requirements for Registration of Pharmaceuticals for Human Use, Somatek Inc., San Diego, USA, 2005,
pp: 1 - 18. [CrossRef]
Yıl 2023,
Cilt: 27 Sayı: 2, 913 - 923, 27.06.2025
Hariyanti Hariyanti
,
Neng Fisheri Kurniati
,
Yeyet C Umirtapura
Rachmat Mauludin
Kaynakça
- Heinrich M, Mah J, Amirkia V. Alkaloids Used as Medicines: Structural Phytochemistry Meets
Biodiversity—An Update and Forward Look. Molecules. 2021; 26(7): 1 – 18. [CrossRef]
- Nair K, Tree Crops. Harvesting Cash from the World’s Important Cash Crops, Springer, Malaparamba,
India 2021. [CrossRef]
- Lai J, Ma Z, Mink L, Mueller L.J, Zaera F. Influence of peripheral groups on the physical and chemical
behavior of cinchona alkaloids. J. Phys. Chem. B. 2009; 113 (34): 11696 - 11701. [CrossRef]
- Mink L, Ma Z, Olsen R.A, James J.N, Sholl D.S, Mueller L.J, Zaera F. The physico-chemical properties of
cinchona alkaloids responsible for their unique performance in chiral catalysis. Top Catal. 2008; 48: 120 -
127. [CrossRef]
- Sullivan D.J, Cinchona Alkaloids: Quinine and Quinidine, in: Treatment and Prevention of Malaria (Eds).
Springer Basel AG. Baltimore. USA., 2012; pp: 45-68. [CrossRef]
- Leveque M, Mas C, Haure M, Lejeune O, Duplan H, Castex-Rizzi N, Bessou-Touya S. 601 Hair growth
properties of Cinchona succirubra Extract, Leontopodium alpinum Extract and Manganese PCA in
human hair follicle dermal papilla cells. J. Invest. Dermatol. 2021; 141(5): S104 – S104. [CrossRef]
- Oliveira PM, Alencar-Silva T, Pires FQ, Cunha-Filho M, Gratieri T, Carvalho JL, Gelfuso GM.
Nanostructured lipid carriers loaded with an association of minoxidil and latanoprost for targeted topical
therapy of alopecia. Eur. J. Pharm. Biopharm. 2022; 172: 78-88. [CrossRef]
- Patzelt A, Lademann J. Recent advances in follicular drug delivery of nanoparticles. Expert Opinon on
Drug Delivery. 2020; 17: 1 - 13. [CrossRef]
- Pereira MN, Tolentino S, Pires FQ, Anjos JLV, Alonso A, Gratieri T, Cunha-Filho M, Gelfuso GM.
Nanostructured lipid carriers for hair follicle-targeted delivery of clindamycin and rifampicin to
hidradenitis suppurativa treatment. Colloids Surfaces B Biointerfaces. 2021; 197: 1 - 11. [CrossRef]
- Tampucci S, Paganini V, Burgalassi S, Chetoni P, Monti D. Nanostructured Drug Delivery Systems for
Targeting 5-α-Reductase Inhibitors to the Hair Follicle. Pharmaceutics. 2022; 14 (2): 286. [CrossRef]
- Tolentino S, Pereira MN, de Sousa MC, Cunha-Filho M, Gelfuso GM, Gratieri T. The influence of
sebaceous content on the performance of nanosystems designed for the treatment of follicular diseases.
Journal of Drug Delivery Science and Technology. 2020; 59: 1 – 6. [CrossRef]
- Arunprasert K, Pornpitchanarong C, Piemvuthi C, Siraprapapornsakul S, Sripeangchan S,
Lertsrimongkol O, Opanasopit P, Patrojanasophon P. Nanostructured lipid carrier-embedded polyacrylic
acid transdermal patches for improved transdermal delivery of capsaicin. Eur. J. Pharm. Sci. 2022; 173: 1
- 11. [CrossRef]
- Czajkowska-Kośnik A, Szymańska E, Czarnomysy R, Jacyna J, Markuszewski M, Basa A, Winnicka K.
Nanostructured lipid carriers engineered as topical delivery of etodolac: Optimization and cytotoxicity
studies. Materials (Basel). 2021; 14(3): 1 - 19. [CrossRef]
- Varela-Fernández R, García-Otero X, Díaz-Tomé V, Regueiro U, López-López M, González-Barcia M,
Isabel LM, Otero-Espinar JF. Lactoferrin-loaded nanostructured lipid carriers (NLCs) as a new
formulation for optimized ocular drug delivery. Eur. J. Pharm. Biopharm. 2022; 172: 144 - 156. [CrossRef]
- Li Q, Gong S, Yao W, Yu Y, Liu C, Wang R, Pan H, Wei M. PEG-interpenetrated genipin-crosslinked dual-
sensitive hydrogel/nanostructured lipid carrier compound formulation for topical drug administration.
Artificial Cells, Nanomedicine, and Biotechnology. 2021; 49(1): 345 - 353. [CrossRef]
- Gu L, Sun R, Wang W, Xia Q. Nanostructured lipid carriers for the encapsulation of phloretin: preparation
and in vitro characterization studies. Chemistry and Physics of Lipids. 2022; 242: 1 - 7. [CrossRef]
- Jafarifar Z, Rezaie M, Sharifan P, Jahani V, Daneshmand S, Ghazizadeh H, GA. Ferns GA,
Golmohammadzadeh S, Ghayour-Mobarhan M. Preparation and Characterization of Nanostructured
Lipid Carrier (NLC) and Nanoemulsion Containing Vitamin D3. Applied Biochemistry and
Biotechnology. 2022; 194: 914 - 929. [CrossRef]
- Ma W, Row K.H. pH-induced deep eutectic solvents based homogeneous liquid-liquid microextraction
for the extraction of two antibiotics from environmental water. Microchemical Journal. 2021; 160: 1 - 35.
[CrossRef]
- Mogaddam AMR, Farajzadeh MA, Tuzen M, Jouyban A, Khandaghi J. Organic solvent-free elevated
temperature liquid–liquid extraction combined with a new switchable deep eutectic solvent-based
dispersive liquid–liquid microextraction of three phenolic antioxidants from oil samples. Microchemical
Journal. 2021; 168: 1 - 7. [CrossRef]
- Khatibi SA, Hamidi S, Siahi-Shadbad MR. Application of Liquid-Liquid Extraction for the Determination
of Antibiotics in the Foodstuff: Recent Trends and Developments. Crit. Rev. Anal. Chem. 2020; 52: 327 -
342. [CrossRef]
- Eggert A, Maßmann T, Kreyenschulte D, Becker M, Heyman B, Büchs J, Jupke A. Integrated in-situ
product removal process concept for itaconic acid by reactive extraction, pH-shift back extraction and
purification by pH-shift crystallization. Separation and Purification Technology. 2019; 215: 463 - 472.
[CrossRef]
- Hariyanti H, Mauludin R, Sumirtapura Y.C, Kurniati N.F. A Review: Pharmacological Activities of
Quinoline Alkaloid of Cinchona sp, Biointerface Res. Appl. Chem. 2022; 13 (4): 1 - 13. [CrossRef]
- Bulduk I. HPLC-UV method for quantification of favipiravir in pharmaceutical formulations. Acta
Chromatogr. 2021; 33(3): 209 - 215. [CrossRef]
- Gedawy A, Al-Salami H, Dass CR. Development and validation of a new analytical HPLC method for
simultaneous determination of the antidiabetic drugs, metformin and gliclazide. J. Food Drug Anal.
(2019) 27(1): 315 - 322. [CrossRef]
- Woźniak MK, Banaszkiewicz L, Wiergowski M, Tomczak E, Kata M, Szpiech B, Namieśnik J, Biziuk M.
Development and validation of a GC–MS/MS method for the determination of 11 amphetamines and 34
synthetic cathinones in whole blood. Forensic Toxicol. 2020; 38: 42 - 58. [CrossRef]
- Ivanova AS, Merkuleva AD, Andreev SV, Sakharov KA. Method for determination of hydrogen peroxide
in adulterated milk using high performance liquid chromatography. Food Chem. 2019; 283: 431 - 436.
[CrossRef]
- Kahsay BN, Moeller L, Imming P, Neubert RHH, Gebre‑Mariam T. Development and Validation of a
Simple, Selective, and Accurate Reversed‑Phase Liquid Chromatographic Method with Diode Array
Detection (RP‑HPLC/DAD) for the Simultaneous Analysis of 18 Free Amino Acids in Topical
Formulations. Chromatographia. 2022; 85: 665 -676. [CrossRef]
- ICH. Q2 (R1), Harmonized Tripartite Guideline, Validation of Analytical Procedures: Text and
Methodology, In Proceedings of the International Conference on Harmonization of Technical
Requirements for Registration of Pharmaceuticals for Human Use, Somatek Inc., San Diego, USA, 2005,
pp: 1 - 18. [CrossRef]