Araştırma Makalesi
BibTex RIS Kaynak Göster

Biosynthesis of Magnesium Oxide Nanoparticles Using Opunita ficus-indica and Their Antifungal Effect Against Aspergillus Niger

Yıl 2023, Cilt: 27 Sayı: 3, 1188 - 1201, 28.06.2025

Öz

Magnesium oxide nanoparticles (MgO-NPs) were synthesis via green method using Opunita ficus indica
extract as reducing and covering agent. The optimal formula for the preparation of MgO-NPs was determined by UV-
Vis and DLS (Opunita ficus -indica extracted by distilled water and ethanol solvent, magnesium nitrate salt (1mM), stirred
at 70 °C for 24 h with pH= 9). UV-Vis analysis showed a peak at 300 nm, while DLS measured the hydrodynamic
diameter of the nanoparticles. FTIR results suggested that the polysaccharides, phenols and amines present in the
extract might have been involved in the formation of MgO-NPs from Mg (NO3)2 as the reducing agent. Image J was
utilized to analyze the SEM results and determine the size, which was on average 99 nm, the shape of the nanoparticles
was spherical, and EDX spectrum confirmed the presence of magnesium (Mg). It was found that MgO-NPs are highly
toxic against Aspergillus niger. Which showed a gradual inhibitory effect when using the concentration of 0.5% and
1.25%, and the inhibitory ability was 66.6%, 100% respectively, when using the poisoned food technique.

Kaynakça

  • Vega-Jiménez AL, Vázquez-Olmos AR, Acosta-Gío E, Álvarez-Pérez AM. In vitro antimicrobial activity evaluation of metal oxide nanoparticles. Nanoemulsions - Properties, Fabrications and Applications. 2019. https://doi.org/10.5772/INTECHOPEN.84369.
  • Hendrickson JA, Hu C, Aitken SL, Beyda N. Antifungal resistance: A concerning trend for the present and future. Curr Infect Dis Rep. 2019;21(12):47. https://doi.org/10.1007/s11908-019-0702-9.
  • Tan LF, Yap VL, Rajagopal M, Wiart C, Selvaraja M, Leong MY. Plant as an alternative source of antifungals against Aspergillus ınfections: A Review. Plants. 2022 Nov 8;11(22):3009. https://doi.org/10.3390/plants11223009.
  • León-Buitimea A, Garza-Cervantes JA, Gallegos-Alvarado DY, Osorio-Concepción M, Morones-Ramírez JR. Nanomaterial-based antifungal therapies to combat fungal diseases Aspergillosis, Coccidioidomycosis, Mucormycosis, and Candidiasis. Pathogens. 2021;10(10):1303. https://doi.org/10.3390/pathogens10101303.
  • Sharmila G, Muthukumaran C, Sangeetha E, Saraswathi H, Soundarya S, Kumar NM. Green fabrication, characterization of Pisonia alba leaf extract derived MgO nanoparticles and its biological applications. Nano- Struct Nano-Objects. 2019; 20: 100380. http://dx.doi.org/10.1016/j.nanoso.2019.100380
  • Rai M, Posten C. Green biosynthesis of nanoparticles: mechanisms and applications[Internet]. Wallingford: CABI; 2013 [cited 2021 Dec 17]. Available from:http://www.cabi.org/cabebooks/ebook/20133395759
  • Ramanujam K, Sundrarajan M. Antibacterial effects of biosynthesized MgO nanoparticles using ethanolic fruit extract of Emblica officinalis. J Photochem Photobiol B: Biol. 2014;141:296–300. https://doi.org/10.1016/j.jphotobiol.2014.09.011
  • Alfaro A, León A, Guajardo-Correa E, Reúquen P, Torres F, Mery M, Segura R, Zapata PA, Orihuela PA. MgO nanoparticles coated with polyethylene glycol as carrier for 2-Methoxyestradiol anticancer drug. PLoS One. 2019;14(8):e0214900. https://doi.org/10.1371/journal.pone.0214900.
  • Ozdal M, Gurkok S. Recent advances in nanoparticles as antibacterial agent. ADMET DMPK. 2022;10(2):115-129. https://doi.org/10.5599/admet.1172
  • Tabrez S, Khan AU, Hoque M, Suhail M, Khan MI, Zughaibi TA. Investigating the anticancer efficacy of biogenic synthesized MgONPs: An in vitro analysis. Front Chem. 2022;10:970193. https://doi.org/10.3389/fchem.2022.970193.
  • Raveesha HR, Nayana S, Vasudha DR, Begum JPS, Pratibha S, Ravikumara CR, et al. The electrochemical behavior, antifungal and cytotoxic activities of phytofabricated MgO nanoparticles using Withania somnifera leaf extract. J Sci- Adv Mater Dev. 2019;4(1):57–65. https://doi.org/10.1016/j.jsamd.2019.01.003.
  • Tang ZX, Lv BF. MgO nanoparticles as antibacterial agent: preparation and activity. Braz J Chem Eng. 2014;31(3):591–601. https://doi.org/10.1590/0104-6632.20140313s00002813.
  • Prasanth R, Kumar SD, Jayalakshmi A, Singaravelu G, Govindaraju K, Kumar VG. Green synthesis of magnesium oxide nanoparticles and their antibacterial activity. Ind J Geo Marine Sci. 2019;48(08):1210-1215.
  • Vergheese M, Vishal SK. Green synthesis of magnesium oxide nanoparticles using Trigonella foenum-graecum leaf extract and its antibacterial activity. J Pharmacogn Phytochem 2018; 7(3): 1193-1200.
  • Pugazhendhi A, Prabhu R, Muruganantham K, Shanmuganathan R, Natarajan S. Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J Photochem Photobiol B: Biol. 2019;190:86–97. https://doi.org/10.1016/j.jphotobiol.2018.11.014.
  • Essien E, Atasie V, Oyebanji T, Nwude D. Biomimetic synthesis of magnesium oxide nanoparticles using Chromolaena odorata (L.) leaf extract. Chem Pap.2020; 74: 2101–2109. https://doi.org/10.1007/s11696-020- 01056-x.
  • Kaur M. Pharmacological actions of Opuntia ficus indica: A Review. J App Pharm Sci. 2012; 02(07):15-18. Hikal WM, Ahl Has-A, Kačániová M. A review of antimicrobial activities of cactus (Opuntia ficus-indica). Asian J Res Biosci. 2021;3(2):92-99.
  • Yebpella GG, Adeyemi HMM, Hammuel C, Magomya AM, Agbaji AS, Okonkwo EM. Phtyochemical screening and comparative study of antimicrobial activity of Aloe vera various extracts. Afr J Microbiol Res. 2011;5(10):1182– 1187. https://doi.org/10.5897/AJMR10.818.
  • Alam MS, Janata E. UV absorption spectrum, formation and disappearance of the oxide radical ion O− in aqueous solution: A pulse radiolysis study. Chem Phys Lett. 2006;417(4–6):363–366.
  • Walton IM, Cox JM, Benson CA, Patel DG, Chen YS, Benedict JB. The role of atropisomers on the photo-reactivity and fatigue of diarylethene-based metal–organic frameworks. New J Chem. 2016;40(1):101–106. https://doi.org/10.1039/C5NJ01718A.
  • Msaddak L, Abdelhedi O, Kridene A, Rateb M, Belbahri L, Ammar E, Nasri M, Zouari N. Opuntia ficus-indica cladodes as a functional ingredient: bioactive compounds profile and their effect on antioxidant quality of bread. Lipids Health Dis. 2017;16(1):32. https://doi.org/10.1186/s12944-016-0397-y.
  • Jacob JA, Mahal HS, Biswas N, Mukherjee T, Kapoor S. Role of phenol derivatives in the formation of silver nanoparticles. Langmuir. 2008;24(2):528-533. https://doi.org/10.1021/la702073r.
  • M. Rai, C. Posten. Green biosynthesis of nanoparticles: mechanisms and applications. CABI, 2013. Ramanujam K , Sundrarajan M. Antibacterial effects of biosynthesized MgO nanoparticles using ethanolic fruit extract of Emblica officinalis. J Photochem Photobiol B: Biol. 2014;141: 296–300. https://doi.org/10.1016/j.jphotobiol.2014.09.011.
  • Suresh J, Yuvakkumar R, Sundrarajan M, Hong S. Green synthesis of magnesium oxide nanoparticles. Adv Mater Res. 2014; 952: 141–144. https://doi.org/10.4028/www.scientific.net/AMR.952.141.
  • Moorthy S Ashok Ch, Rao K, Viswanathan C. Synthesis and characterization of MgO nanoparticles by neem leaves through green method. Mater Today Proceed. 2015; 2(9): 4360–4368. https://doi.org/10.1016/j.matpr.2015.10.027
  • Magnesium nitrate | Mg(NO3)2 - PubChem [Internet]. [cited 2022 Dec 17]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Magnesium-nitrate
  • Pal G, Rai P, Pandey A. Green synthesis of nanoparticles: A greener approach for a cleaner future. In: green synthesis, characterization and applications of nanoparticles. https://doi.org/10.1016/B978-0-08-102579-6.00001- 0.
  • Din MI, Rani A. Selection of optimum strategies for the fabrication of plant-mediated metal nanoparticles: Emerging problems in sustainability. Crit Rev Anal Chem. 2018;48(5):406–415. https://doi.org/10.1080/10408347.2018.1444464.
  • Walton I, Cox J, Benson C, Patel G, Chen Y, Benedict J. The role of atropisomers on the photo-reactivity and fatigue of diarylethene-based metal–organic frameworks. New J Chem. 2016; 40 (1): 101–106. https://doi.org/10.1039/C5NJ01718A.
  • Jeevanandam J, Chan Y, Jing Wong Y, Siang Hii Y. Biogenic synthesis of magnesium oxide nanoparticles using Aloe barbadensis leaf latex extract. IOP Conf Ser Mater Sci Eng. 2020; 943: 012030. https://doi.org/10.1088/1757- 899X/943/1/012030.
  • Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev. 2011;63(6):456–469. https://doi.org/10.1016/j.addr.2011.02.001.
  • Khan MI, Akhtar MN, Ashraf N, Najeeb J, Munir H, Awan TI. Green synthesis of magnesium oxide nanoparticles using Dalbergia sissoo extract for photocatalytic activity and antibacterial efficacy. Appl Nanosci. 2020;10(7):2351–2364. 2020. https://doi.org/10.1007/s13204-020-01414-x.
  • Akhtar MS, Panwar J, Yun YS. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chem Eng 2013;1(6):591–602. https://doi.org/10.1021/sc300118u.
  • Dobrucka R. Synthesis of MgO nanoparticles using Artemisia abrotanum herba extract and their antioxidant and photocatalytic properties. Iran J Sci Technol Trans Sci. 2018; 42(2): 547–555. https://doi.org/10.1007/s40995-016- 0076-x
  • IJSRD - International Journal for Scientific Research & Development, https://www.ijsrd.com, (accessed May 21, 2023).
  • Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018;10(27):12871–12934. https://doi.org/10.1039/C8NR02278J
  • Sherin L, Sohail A, Amjad US, Mustafa M, Jabeen R, Ul-Hamid A. Facile green synthesis of silver nanoparticles using Terminalia bellerica kernel extract for catalytic reduction of anthropogenic water pollutants. Colloid Interface Sci Commun. 2020;37:100276. https://doi.org/10.1016/j.colcom.2020.100276.
  • Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13(10):2638. https://doi.org/10.1039/C1GC15386B.
  • Abinaya S, Kavitha H, Prakash M, Muthukrishnaraj A. Green synthesis of magnesium oxide nanoparticles and its applications: A review. Sustain Chem Pharm. 2021;19: 100368. https://doi.org/10.1016/j.scp.2020.100368.
  • Anantharaman A, Kuriakose S, George M. Green synthesis and ıts applications of magnesium oxide nanoparticles from the seeds of Lepedium sativum. Int J Recent Sci Res.YEAR?: 7(10) 14029-14032.
  • Sharma G, Soni R, Jasuja N. Phytoassisted synthesis of magnesium oxide nanoparticles with Swertia chirayaita. J Taibah Univ Sci. 2017;11(3): 471-477. https://doi.org/10.1016/j.jtusci.2016.09.004.
  • Jhansi K, Jayarambabu N, Reddy KP, Reddy NM, Suvarna RP, Rao KV, Kumar VR, Rajendar V. Biosynthesis of MgO nanoparticles using mushroom extract: Effect on peanut (Arachis hypogaea L.) seed germination. 3 Biotech. 2017;7(4):263. https://doi.org/10.1007/s13205-017-0894-3.
  • Hussein HZ, Wahbe AA. Assessing The efficacy of certain nano, natural and chemical materials in fungal ınhibition and AFB1 toxinreduction oxin of Aspergillus flavus isolated from Peanuton Pdamedia . Plant Arch. 2020: 1051-1057
  • Galal E, Abdelsadek MS, El-Dawy E, Khalaphallah R. Green synthesis of magnesium oxide nanoparticles and assessing the effect on fungal growth and metabolism of Aspergillus species under optimum temperatures. SVU- Int J Agric Sci. 2022;4(3):243–254. https://doi.org/10.21608/svuijas.2022.167056.1240.
  • Chen J, Wu L, Lu M, Lu S, Li Z, Ding W. Comparative study on the fungicidal activity of metallic MgO nanoparticles and macroscale MgO against soilborne fungal phytopathogens. Front Microbiol. 2020;11:365. https://doi.org/10.3389/fmicb.2020.00365.
  • Hashem AH, Saied E, Amin BH, Alotibi FO, Al-Askar AA, Arishi AA, Elkady FM, Elbahnasawy MA. Antifungal Activity of Biosynthesized Silver Nanoparticles (AgNPs) against Aspergilli Causing Aspergillosis: Ultrastructure Study. J Funct Biomater. 2022;13(4):242. https://doi.org/10.3390/jfb13040242.
  • Šebesta M, Urík M, Bujdoš M, Kolenčík M, Vávra I, Dobročka E, Kim H, Matúš P. Fungus Aspergillus niger processes exogenous zinc nanoparticles into a biogenic oxalate mineral. J Fungi (Basel). 2020;6(4):210. https://doi.org/10.3390/jof6040210.
  • Bocate KP, Reis GF, de Souza PC, Oliveira Junior AG, Durán N, Nakazato G, Furlaneto MC, de Almeida RS, Panagio LA. Antifungal activity of silver nanoparticles and simvastatin against toxigenic species of Aspergillus. Int J Food Microbiol. 2019;291:79-86. https://doi.org/10.1016/j.ijfoodmicro.2018.11.012.
  • Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P. Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crop Prod. 2013;45:423–429. https://doi.org/10.1016/j.indcrop.2012.12.019.
  • Haiss W, Thanh NTK, Aveyard J, Fernig DG. Determination of size and concentration of gold nanoparticles from UV−Vis Spectra. Anal Chem. 2007;79(11):4215–4221. https://doi.org/10.1021/ac0702084.
  • Tan LF, Yap VL, Rajagopal M, Wiart C, Selvaraja M, Leong MY, Tan PL. Plant as an Alternative source of antifungals against Aspergillus infections: A Review. Plants (Basel). 2022;11(22):3009. https://doi.org/10.3390/plants11223009.
Yıl 2023, Cilt: 27 Sayı: 3, 1188 - 1201, 28.06.2025

Öz

Kaynakça

  • Vega-Jiménez AL, Vázquez-Olmos AR, Acosta-Gío E, Álvarez-Pérez AM. In vitro antimicrobial activity evaluation of metal oxide nanoparticles. Nanoemulsions - Properties, Fabrications and Applications. 2019. https://doi.org/10.5772/INTECHOPEN.84369.
  • Hendrickson JA, Hu C, Aitken SL, Beyda N. Antifungal resistance: A concerning trend for the present and future. Curr Infect Dis Rep. 2019;21(12):47. https://doi.org/10.1007/s11908-019-0702-9.
  • Tan LF, Yap VL, Rajagopal M, Wiart C, Selvaraja M, Leong MY. Plant as an alternative source of antifungals against Aspergillus ınfections: A Review. Plants. 2022 Nov 8;11(22):3009. https://doi.org/10.3390/plants11223009.
  • León-Buitimea A, Garza-Cervantes JA, Gallegos-Alvarado DY, Osorio-Concepción M, Morones-Ramírez JR. Nanomaterial-based antifungal therapies to combat fungal diseases Aspergillosis, Coccidioidomycosis, Mucormycosis, and Candidiasis. Pathogens. 2021;10(10):1303. https://doi.org/10.3390/pathogens10101303.
  • Sharmila G, Muthukumaran C, Sangeetha E, Saraswathi H, Soundarya S, Kumar NM. Green fabrication, characterization of Pisonia alba leaf extract derived MgO nanoparticles and its biological applications. Nano- Struct Nano-Objects. 2019; 20: 100380. http://dx.doi.org/10.1016/j.nanoso.2019.100380
  • Rai M, Posten C. Green biosynthesis of nanoparticles: mechanisms and applications[Internet]. Wallingford: CABI; 2013 [cited 2021 Dec 17]. Available from:http://www.cabi.org/cabebooks/ebook/20133395759
  • Ramanujam K, Sundrarajan M. Antibacterial effects of biosynthesized MgO nanoparticles using ethanolic fruit extract of Emblica officinalis. J Photochem Photobiol B: Biol. 2014;141:296–300. https://doi.org/10.1016/j.jphotobiol.2014.09.011
  • Alfaro A, León A, Guajardo-Correa E, Reúquen P, Torres F, Mery M, Segura R, Zapata PA, Orihuela PA. MgO nanoparticles coated with polyethylene glycol as carrier for 2-Methoxyestradiol anticancer drug. PLoS One. 2019;14(8):e0214900. https://doi.org/10.1371/journal.pone.0214900.
  • Ozdal M, Gurkok S. Recent advances in nanoparticles as antibacterial agent. ADMET DMPK. 2022;10(2):115-129. https://doi.org/10.5599/admet.1172
  • Tabrez S, Khan AU, Hoque M, Suhail M, Khan MI, Zughaibi TA. Investigating the anticancer efficacy of biogenic synthesized MgONPs: An in vitro analysis. Front Chem. 2022;10:970193. https://doi.org/10.3389/fchem.2022.970193.
  • Raveesha HR, Nayana S, Vasudha DR, Begum JPS, Pratibha S, Ravikumara CR, et al. The electrochemical behavior, antifungal and cytotoxic activities of phytofabricated MgO nanoparticles using Withania somnifera leaf extract. J Sci- Adv Mater Dev. 2019;4(1):57–65. https://doi.org/10.1016/j.jsamd.2019.01.003.
  • Tang ZX, Lv BF. MgO nanoparticles as antibacterial agent: preparation and activity. Braz J Chem Eng. 2014;31(3):591–601. https://doi.org/10.1590/0104-6632.20140313s00002813.
  • Prasanth R, Kumar SD, Jayalakshmi A, Singaravelu G, Govindaraju K, Kumar VG. Green synthesis of magnesium oxide nanoparticles and their antibacterial activity. Ind J Geo Marine Sci. 2019;48(08):1210-1215.
  • Vergheese M, Vishal SK. Green synthesis of magnesium oxide nanoparticles using Trigonella foenum-graecum leaf extract and its antibacterial activity. J Pharmacogn Phytochem 2018; 7(3): 1193-1200.
  • Pugazhendhi A, Prabhu R, Muruganantham K, Shanmuganathan R, Natarajan S. Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J Photochem Photobiol B: Biol. 2019;190:86–97. https://doi.org/10.1016/j.jphotobiol.2018.11.014.
  • Essien E, Atasie V, Oyebanji T, Nwude D. Biomimetic synthesis of magnesium oxide nanoparticles using Chromolaena odorata (L.) leaf extract. Chem Pap.2020; 74: 2101–2109. https://doi.org/10.1007/s11696-020- 01056-x.
  • Kaur M. Pharmacological actions of Opuntia ficus indica: A Review. J App Pharm Sci. 2012; 02(07):15-18. Hikal WM, Ahl Has-A, Kačániová M. A review of antimicrobial activities of cactus (Opuntia ficus-indica). Asian J Res Biosci. 2021;3(2):92-99.
  • Yebpella GG, Adeyemi HMM, Hammuel C, Magomya AM, Agbaji AS, Okonkwo EM. Phtyochemical screening and comparative study of antimicrobial activity of Aloe vera various extracts. Afr J Microbiol Res. 2011;5(10):1182– 1187. https://doi.org/10.5897/AJMR10.818.
  • Alam MS, Janata E. UV absorption spectrum, formation and disappearance of the oxide radical ion O− in aqueous solution: A pulse radiolysis study. Chem Phys Lett. 2006;417(4–6):363–366.
  • Walton IM, Cox JM, Benson CA, Patel DG, Chen YS, Benedict JB. The role of atropisomers on the photo-reactivity and fatigue of diarylethene-based metal–organic frameworks. New J Chem. 2016;40(1):101–106. https://doi.org/10.1039/C5NJ01718A.
  • Msaddak L, Abdelhedi O, Kridene A, Rateb M, Belbahri L, Ammar E, Nasri M, Zouari N. Opuntia ficus-indica cladodes as a functional ingredient: bioactive compounds profile and their effect on antioxidant quality of bread. Lipids Health Dis. 2017;16(1):32. https://doi.org/10.1186/s12944-016-0397-y.
  • Jacob JA, Mahal HS, Biswas N, Mukherjee T, Kapoor S. Role of phenol derivatives in the formation of silver nanoparticles. Langmuir. 2008;24(2):528-533. https://doi.org/10.1021/la702073r.
  • M. Rai, C. Posten. Green biosynthesis of nanoparticles: mechanisms and applications. CABI, 2013. Ramanujam K , Sundrarajan M. Antibacterial effects of biosynthesized MgO nanoparticles using ethanolic fruit extract of Emblica officinalis. J Photochem Photobiol B: Biol. 2014;141: 296–300. https://doi.org/10.1016/j.jphotobiol.2014.09.011.
  • Suresh J, Yuvakkumar R, Sundrarajan M, Hong S. Green synthesis of magnesium oxide nanoparticles. Adv Mater Res. 2014; 952: 141–144. https://doi.org/10.4028/www.scientific.net/AMR.952.141.
  • Moorthy S Ashok Ch, Rao K, Viswanathan C. Synthesis and characterization of MgO nanoparticles by neem leaves through green method. Mater Today Proceed. 2015; 2(9): 4360–4368. https://doi.org/10.1016/j.matpr.2015.10.027
  • Magnesium nitrate | Mg(NO3)2 - PubChem [Internet]. [cited 2022 Dec 17]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Magnesium-nitrate
  • Pal G, Rai P, Pandey A. Green synthesis of nanoparticles: A greener approach for a cleaner future. In: green synthesis, characterization and applications of nanoparticles. https://doi.org/10.1016/B978-0-08-102579-6.00001- 0.
  • Din MI, Rani A. Selection of optimum strategies for the fabrication of plant-mediated metal nanoparticles: Emerging problems in sustainability. Crit Rev Anal Chem. 2018;48(5):406–415. https://doi.org/10.1080/10408347.2018.1444464.
  • Walton I, Cox J, Benson C, Patel G, Chen Y, Benedict J. The role of atropisomers on the photo-reactivity and fatigue of diarylethene-based metal–organic frameworks. New J Chem. 2016; 40 (1): 101–106. https://doi.org/10.1039/C5NJ01718A.
  • Jeevanandam J, Chan Y, Jing Wong Y, Siang Hii Y. Biogenic synthesis of magnesium oxide nanoparticles using Aloe barbadensis leaf latex extract. IOP Conf Ser Mater Sci Eng. 2020; 943: 012030. https://doi.org/10.1088/1757- 899X/943/1/012030.
  • Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev. 2011;63(6):456–469. https://doi.org/10.1016/j.addr.2011.02.001.
  • Khan MI, Akhtar MN, Ashraf N, Najeeb J, Munir H, Awan TI. Green synthesis of magnesium oxide nanoparticles using Dalbergia sissoo extract for photocatalytic activity and antibacterial efficacy. Appl Nanosci. 2020;10(7):2351–2364. 2020. https://doi.org/10.1007/s13204-020-01414-x.
  • Akhtar MS, Panwar J, Yun YS. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chem Eng 2013;1(6):591–602. https://doi.org/10.1021/sc300118u.
  • Dobrucka R. Synthesis of MgO nanoparticles using Artemisia abrotanum herba extract and their antioxidant and photocatalytic properties. Iran J Sci Technol Trans Sci. 2018; 42(2): 547–555. https://doi.org/10.1007/s40995-016- 0076-x
  • IJSRD - International Journal for Scientific Research & Development, https://www.ijsrd.com, (accessed May 21, 2023).
  • Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018;10(27):12871–12934. https://doi.org/10.1039/C8NR02278J
  • Sherin L, Sohail A, Amjad US, Mustafa M, Jabeen R, Ul-Hamid A. Facile green synthesis of silver nanoparticles using Terminalia bellerica kernel extract for catalytic reduction of anthropogenic water pollutants. Colloid Interface Sci Commun. 2020;37:100276. https://doi.org/10.1016/j.colcom.2020.100276.
  • Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13(10):2638. https://doi.org/10.1039/C1GC15386B.
  • Abinaya S, Kavitha H, Prakash M, Muthukrishnaraj A. Green synthesis of magnesium oxide nanoparticles and its applications: A review. Sustain Chem Pharm. 2021;19: 100368. https://doi.org/10.1016/j.scp.2020.100368.
  • Anantharaman A, Kuriakose S, George M. Green synthesis and ıts applications of magnesium oxide nanoparticles from the seeds of Lepedium sativum. Int J Recent Sci Res.YEAR?: 7(10) 14029-14032.
  • Sharma G, Soni R, Jasuja N. Phytoassisted synthesis of magnesium oxide nanoparticles with Swertia chirayaita. J Taibah Univ Sci. 2017;11(3): 471-477. https://doi.org/10.1016/j.jtusci.2016.09.004.
  • Jhansi K, Jayarambabu N, Reddy KP, Reddy NM, Suvarna RP, Rao KV, Kumar VR, Rajendar V. Biosynthesis of MgO nanoparticles using mushroom extract: Effect on peanut (Arachis hypogaea L.) seed germination. 3 Biotech. 2017;7(4):263. https://doi.org/10.1007/s13205-017-0894-3.
  • Hussein HZ, Wahbe AA. Assessing The efficacy of certain nano, natural and chemical materials in fungal ınhibition and AFB1 toxinreduction oxin of Aspergillus flavus isolated from Peanuton Pdamedia . Plant Arch. 2020: 1051-1057
  • Galal E, Abdelsadek MS, El-Dawy E, Khalaphallah R. Green synthesis of magnesium oxide nanoparticles and assessing the effect on fungal growth and metabolism of Aspergillus species under optimum temperatures. SVU- Int J Agric Sci. 2022;4(3):243–254. https://doi.org/10.21608/svuijas.2022.167056.1240.
  • Chen J, Wu L, Lu M, Lu S, Li Z, Ding W. Comparative study on the fungicidal activity of metallic MgO nanoparticles and macroscale MgO against soilborne fungal phytopathogens. Front Microbiol. 2020;11:365. https://doi.org/10.3389/fmicb.2020.00365.
  • Hashem AH, Saied E, Amin BH, Alotibi FO, Al-Askar AA, Arishi AA, Elkady FM, Elbahnasawy MA. Antifungal Activity of Biosynthesized Silver Nanoparticles (AgNPs) against Aspergilli Causing Aspergillosis: Ultrastructure Study. J Funct Biomater. 2022;13(4):242. https://doi.org/10.3390/jfb13040242.
  • Šebesta M, Urík M, Bujdoš M, Kolenčík M, Vávra I, Dobročka E, Kim H, Matúš P. Fungus Aspergillus niger processes exogenous zinc nanoparticles into a biogenic oxalate mineral. J Fungi (Basel). 2020;6(4):210. https://doi.org/10.3390/jof6040210.
  • Bocate KP, Reis GF, de Souza PC, Oliveira Junior AG, Durán N, Nakazato G, Furlaneto MC, de Almeida RS, Panagio LA. Antifungal activity of silver nanoparticles and simvastatin against toxigenic species of Aspergillus. Int J Food Microbiol. 2019;291:79-86. https://doi.org/10.1016/j.ijfoodmicro.2018.11.012.
  • Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P. Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crop Prod. 2013;45:423–429. https://doi.org/10.1016/j.indcrop.2012.12.019.
  • Haiss W, Thanh NTK, Aveyard J, Fernig DG. Determination of size and concentration of gold nanoparticles from UV−Vis Spectra. Anal Chem. 2007;79(11):4215–4221. https://doi.org/10.1021/ac0702084.
  • Tan LF, Yap VL, Rajagopal M, Wiart C, Selvaraja M, Leong MY, Tan PL. Plant as an Alternative source of antifungals against Aspergillus infections: A Review. Plants (Basel). 2022;11(22):3009. https://doi.org/10.3390/plants11223009.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Farmasotik Mikrobiyoloji
Bölüm Articles
Yazarlar

Taif Alholy

Walid Khaddam 0000-0001-6771-2211

Yayımlanma Tarihi 28 Haziran 2025
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 3

Kaynak Göster

APA Alholy, T., & Khaddam, W. (2025). Biosynthesis of Magnesium Oxide Nanoparticles Using Opunita ficus-indica and Their Antifungal Effect Against Aspergillus Niger. Journal of Research in Pharmacy, 27(3), 1188-1201.
AMA Alholy T, Khaddam W. Biosynthesis of Magnesium Oxide Nanoparticles Using Opunita ficus-indica and Their Antifungal Effect Against Aspergillus Niger. J. Res. Pharm. Haziran 2025;27(3):1188-1201.
Chicago Alholy, Taif, ve Walid Khaddam. “Biosynthesis of Magnesium Oxide Nanoparticles Using Opunita Ficus-Indica and Their Antifungal Effect Against Aspergillus Niger”. Journal of Research in Pharmacy 27, sy. 3 (Haziran 2025): 1188-1201.
EndNote Alholy T, Khaddam W (01 Haziran 2025) Biosynthesis of Magnesium Oxide Nanoparticles Using Opunita ficus-indica and Their Antifungal Effect Against Aspergillus Niger. Journal of Research in Pharmacy 27 3 1188–1201.
IEEE T. Alholy ve W. Khaddam, “Biosynthesis of Magnesium Oxide Nanoparticles Using Opunita ficus-indica and Their Antifungal Effect Against Aspergillus Niger”, J. Res. Pharm., c. 27, sy. 3, ss. 1188–1201, 2025.
ISNAD Alholy, Taif - Khaddam, Walid. “Biosynthesis of Magnesium Oxide Nanoparticles Using Opunita Ficus-Indica and Their Antifungal Effect Against Aspergillus Niger”. Journal of Research in Pharmacy 27/3 (Haziran 2025), 1188-1201.
JAMA Alholy T, Khaddam W. Biosynthesis of Magnesium Oxide Nanoparticles Using Opunita ficus-indica and Their Antifungal Effect Against Aspergillus Niger. J. Res. Pharm. 2025;27:1188–1201.
MLA Alholy, Taif ve Walid Khaddam. “Biosynthesis of Magnesium Oxide Nanoparticles Using Opunita Ficus-Indica and Their Antifungal Effect Against Aspergillus Niger”. Journal of Research in Pharmacy, c. 27, sy. 3, 2025, ss. 1188-01.
Vancouver Alholy T, Khaddam W. Biosynthesis of Magnesium Oxide Nanoparticles Using Opunita ficus-indica and Their Antifungal Effect Against Aspergillus Niger. J. Res. Pharm. 2025;27(3):1188-201.