Design of a novel colorimetric method based on AuNPs for tazobactam and piperacillin
Yıl 2023,
Cilt: 27 Sayı: 3, 1066 - 1075, 28.06.2025
Zehra Özden Erdoğan
,
Hakan Balcı
Öz
In the present paper, a colorimetric method for the determination of tazobactam and piperacillin based on plasmonic nanoparticles (AuNPs) is suggested. Plasmonic nanoparticles have gained interest for application in the creation of sensitive analytical techniques because of their unique features. The localized surface plasmon resonance (LSPR) absorption band for AuNPs with a wavelength 543.5 (A543.5) nm was used for analysis. The working parameters such as the amount of AuNPs and pH were optimized to obtain the optimum experimental conditions. The calibration curve for the colorimetric method was prepared with tazobactam and piperacillin concentrations ranging from 2.25- 30.04 mg/L and0.52-10.33 mg/L, respectively. The detection limits were found to be 1.01 mg/L for tazobactam and 0.29 mg/L for piperacillin The AuNPs-based colorimetric method suggested in this work can use as an alternative analytical method for routine analysis of tazobactam and piperacillin because it is quick, simple, and affordable.
Kaynakça
- [1] Nanda V, Koder RL. Designing artificial enzymes by intuition and computation. Nat Chem. 2010; 2:15-24. https://doi.org/10.1038/nchem.473
- [2] Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PWNM. Supramolecular catalysis. Part 2: artificial enzyme mimics. Chem Soc Rev. 2014; 43: 1734-1787. https://doi.org/10.1039/c3cs60037h
- [3] Dong Z, Luo Q, Liu J. Artificial enzymes based on supramolecular scaffolds. Chem Soc Rev. 2012; 41:7890-7908. https://doi.org/10.1039/c2cs35207a
- [4] Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003; 107: 668. https://doi.org/10.1021/jp026731y
- [5] Ray PC. Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem Rev. 2010; 110: 5332-5365. https://doi.org/10.1021/cr900335q
- [6] Yin T, Qin W. Applications of nanomaterials in potentiometric sensors. TrAc Trends Anal Chem. 2013; 51: 79-86. https://doi.org/10.1016/j.trac.2013.06.009
- [7] Xu N, Jin S, Wang L. Metal nanoparticles-based nanoplatforms for colorimetric sensing: A review. Rev Anal Chem. 2021; 40: 1-11. https://doi.org/10.1515/revac-2021-0122
- [8] Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J. Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater. 2010; 22: 1805-1825. https://doi.org/10.1002/adma.200902557
- [9] Song Y, Wei W, Qu X. Colorimetric biosensing using smart materials. Adv Mater. 2011; 23: 4215–4236. https://doi.org/10.1002/adma.201101853
- [10] Peng HI, Miller BL. Recent advancements in optical DNA biosensors: exploiting the plasmonic effects of metal nanoparticles. Analyst. 2011; 136: 436-447. https://doi.org/10.1039/c0an00636j
- [11] Motl NE, Smith AF, DeSantis CJ, Skrabalak SE. Engineering plasmonic metal colloids through composition and structural design. Chem Soc Rev. 2014; 43 (11): 3823-3834. https://doi.org/10.1039/c3cs60347d
- [12] Sharma A, Shrivas K, Tapadia K, Ghosale A. Application of nanoparticles as a chemical sensor for analysis of enviromental samples, Chapter 13. Green Sustainable process for Chemical and Enviromental Engineering and Science, Analytical Techniques for Enviromental and Industrial Analysis. 2021; p.257. https://doi.org/10.1016/B978- 0-12-821883-9.00010-2
- [13] El-Sayed IH, Huang XH, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett. 2005; 5: 829-834. https://doi.org/10.1021/nl050074e
- [14] Safina G. Application of surface plasmon resonance for the detection of carbohydrates, glycoconjugates, and measurement of the carbohydrate-specific interactions: A comparison with conventional analytical techniques. A critical review. Anal Chim Acta. 2012; 712: 9-29. https://doi.org/10.1016/j.aca.2011.11.016
- [15] Law WC, Yong KT, Baev A, Hu R, Prasad PN. Nanoparticle enhanced surface plasmon resonance biosensing: Application of gold nanorods. Opt Express. 2009; 17: 19041-19046. https://doi.org/10.1364/OE.17.019041
- [16] Boozer C, Kim G, Cong S, Guan HW, Londergan T. Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Curr Opin Biotechnol. 2006; 17: 400-405. https://doi.org/10.1016/j.copbio.2006.06.012
- [17] Lu X, Zheng H, Li WQ, Yuan XX, Li H, Deng LG, Zhang H, Wang WZ, Yang GS, Meng M, Xi RM, Aboul-Enein HY. Detection of ractopamine residues in pork by surface plasmon resonance based biosensor inhibition immunoassay. Food Chem. 2012; 130: 1061-1065. https://doi.org/10.1016/j.foodchem.2011.07.133
- [18] Li Y, Liu X, Lin Z. Recent developments and applications of surface plasmon resonance biosensors for the detection of mycotoxins in foodstuffs. Food Chem. 2012; 132: 1549-1554. https://doi.org/10.1016/j.foodchem.2011.10.109
- [19] Kreno LE, Hupp JT, Van Duyne RP. 2010. Metal−organic framework thin film for enhanced localized surface plasmon resonance gas sensing. Anal Chem. 2010; 82: 8042-8046. https://doi.org/10.1021/ac102127p
- [20] Qiao LF, Wang D, Zuo LJ, Ye YQ, Qian J, Chen HZ, He SL. Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres. Appl Energy. 2011; 88: 848-885. https://doi.org/10.1016/j.apenergy.2010.09.021
- [21] Kim J, Choi H, Nahm C, Park B. Surface-plasmon resonance for photoluminescence and solar-cell applications. Electron Matter. 2012; 8: 351-364. https://doi.org/10.1007/s13391-012-2117-8
- [22] Bryson HM, Brogden RE. Piperacillin/tazobactam: a review of its antibacterial activity, pharmacokinetic properties and therapeutic potential. Drugs. 1994; 47(3): 506- 535. https://doi.org/10.2165/00003495-199447030-00008
- [23] Rice LB, Carias LL, Shlaes DM. In vivo efficacies of β-lactam- β-lactamase inhibitor combinations against a TEM26- producing strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 1994; 38: 2663-2664. https://doi.org/10.1128/aac.38.11.2663
- [24] Thauvin-Eliopoulos C, Tripodi MF, Moellering RC Jr, Eliopoulos GM. Efficacies of piperacillin-tazobactam and cefepime in rats with experimental intra-abdominal abscesses due to an extended-spectrum β lactamase-producing strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 1997; 41: 1053-1057. https://doi.org/10.1128/aac.41.5.1053
- [25] Fournier JL, Ramisse F, Jacolot AC, Szatanik M, Petitjean OJ, Alonso JM, Scavizzi MR. Assessment of two penicillins plus β-lactamase inhibitors versus cefotaxime in treatment of murine Klebsiella pneumoniae infections. Antimicrob Agents Chemother. 1996; 40: 325-30. https://doi.org/10.1128/aac.40.2.325
- [26] Perry CM, Markham A. Piperacillin/Tazobactam: An updated review of its use in the treatment of bacterial infections. Drugs. 1999; 57 (5): 805-843. https://doi.org/10.2165/00003495-199957050-00017
- [27] Titus D, Samuel EJJ, Roopan SM. Nanoparticle characterization techniques. In: Green synthesis, characterization and applications of nanoparticles, Elsevier, 2019, pp. 303-319. https://doi.org/10.1016/B978-0-08-102579-6.00012-5
- [28] Veillette JJ, Winans SA, Forland SC, Maskiewicz VK. A simple and rapid RP-HPLC method for the simultaneous determination of piperacillin and tazobactam in human plasma. J Phar Biomed Anal. 2016; 131: 80-86. https://doi.org/10.1016/j.jpba.2016.08.010
- [29] Sangeetha S, Arul B, Alexandar S, Jaykar B. Development and validation of UV spectrophotometric area under curve method for quantitative estimation of piperacillin and tazobactam. Int J Chemtech Res. 2017; 10(2): 988-994.
- [30] Kant R, Bodla R, Bhutani R, Kapoor G, Goswami S. Spectrophotometric absorbance correction method for the estimation of Tazobactam and Cefepime in combined tablet dosage forms. J Chem Pharm Res. 2015; 7.6: 648-656.
- [31] Ferrari D, Ripa M, Premaschi S, Banfi G, Castagna A, Locatelli M. LC-MS/MS method for simultaneous determination of linezolid, meropenem, piperacillin and teicoplanin in human plasma samples. J Pharm Biomed Anal. 2019; 169: 11-18. https://doi.org/10.1016/j.jpba.2019.02.037
- [32] Milla P, Ferrari F, Muntoni E, Sartori M, Ronco C, Arpicco S. Validation of a simple and economic HPLC-UV method for the simultaneous determination of vancomycin, meropenem, piperacillin and tazobactam in plasma samples. J Chromatogr B. 2020; 1148: 122151. https://doi.org/10.1016/j.jchromb.2020.122151
- [33] Toral MI, Nova-Ramirez F, Nacaratte F. Simultaneous determination of piperacillin and tazobactam in the pharmaceutical formulation Tazonam® by derivative spectrophotometry. J Chilean Chem Soc. 2012; 57(2): 1189-1193. http://doi.org/10.4067/S0717-97072012000200028
- [34] Al‐Attas A, Nasr JJ, El‐Enany N, Belal F. A green capillary zone electrophoresis method for the simultaneous determination of piperacillin, tazobactam and cefepime in pharmaceutical formulations and human plasma. Biomed Chromatogr. 2015; 29(12): 1811-1818. https://doi.org/10.1002/bmc.3500
Yıl 2023,
Cilt: 27 Sayı: 3, 1066 - 1075, 28.06.2025
Zehra Özden Erdoğan
,
Hakan Balcı
Kaynakça
- [1] Nanda V, Koder RL. Designing artificial enzymes by intuition and computation. Nat Chem. 2010; 2:15-24. https://doi.org/10.1038/nchem.473
- [2] Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PWNM. Supramolecular catalysis. Part 2: artificial enzyme mimics. Chem Soc Rev. 2014; 43: 1734-1787. https://doi.org/10.1039/c3cs60037h
- [3] Dong Z, Luo Q, Liu J. Artificial enzymes based on supramolecular scaffolds. Chem Soc Rev. 2012; 41:7890-7908. https://doi.org/10.1039/c2cs35207a
- [4] Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003; 107: 668. https://doi.org/10.1021/jp026731y
- [5] Ray PC. Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem Rev. 2010; 110: 5332-5365. https://doi.org/10.1021/cr900335q
- [6] Yin T, Qin W. Applications of nanomaterials in potentiometric sensors. TrAc Trends Anal Chem. 2013; 51: 79-86. https://doi.org/10.1016/j.trac.2013.06.009
- [7] Xu N, Jin S, Wang L. Metal nanoparticles-based nanoplatforms for colorimetric sensing: A review. Rev Anal Chem. 2021; 40: 1-11. https://doi.org/10.1515/revac-2021-0122
- [8] Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J. Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater. 2010; 22: 1805-1825. https://doi.org/10.1002/adma.200902557
- [9] Song Y, Wei W, Qu X. Colorimetric biosensing using smart materials. Adv Mater. 2011; 23: 4215–4236. https://doi.org/10.1002/adma.201101853
- [10] Peng HI, Miller BL. Recent advancements in optical DNA biosensors: exploiting the plasmonic effects of metal nanoparticles. Analyst. 2011; 136: 436-447. https://doi.org/10.1039/c0an00636j
- [11] Motl NE, Smith AF, DeSantis CJ, Skrabalak SE. Engineering plasmonic metal colloids through composition and structural design. Chem Soc Rev. 2014; 43 (11): 3823-3834. https://doi.org/10.1039/c3cs60347d
- [12] Sharma A, Shrivas K, Tapadia K, Ghosale A. Application of nanoparticles as a chemical sensor for analysis of enviromental samples, Chapter 13. Green Sustainable process for Chemical and Enviromental Engineering and Science, Analytical Techniques for Enviromental and Industrial Analysis. 2021; p.257. https://doi.org/10.1016/B978- 0-12-821883-9.00010-2
- [13] El-Sayed IH, Huang XH, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett. 2005; 5: 829-834. https://doi.org/10.1021/nl050074e
- [14] Safina G. Application of surface plasmon resonance for the detection of carbohydrates, glycoconjugates, and measurement of the carbohydrate-specific interactions: A comparison with conventional analytical techniques. A critical review. Anal Chim Acta. 2012; 712: 9-29. https://doi.org/10.1016/j.aca.2011.11.016
- [15] Law WC, Yong KT, Baev A, Hu R, Prasad PN. Nanoparticle enhanced surface plasmon resonance biosensing: Application of gold nanorods. Opt Express. 2009; 17: 19041-19046. https://doi.org/10.1364/OE.17.019041
- [16] Boozer C, Kim G, Cong S, Guan HW, Londergan T. Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Curr Opin Biotechnol. 2006; 17: 400-405. https://doi.org/10.1016/j.copbio.2006.06.012
- [17] Lu X, Zheng H, Li WQ, Yuan XX, Li H, Deng LG, Zhang H, Wang WZ, Yang GS, Meng M, Xi RM, Aboul-Enein HY. Detection of ractopamine residues in pork by surface plasmon resonance based biosensor inhibition immunoassay. Food Chem. 2012; 130: 1061-1065. https://doi.org/10.1016/j.foodchem.2011.07.133
- [18] Li Y, Liu X, Lin Z. Recent developments and applications of surface plasmon resonance biosensors for the detection of mycotoxins in foodstuffs. Food Chem. 2012; 132: 1549-1554. https://doi.org/10.1016/j.foodchem.2011.10.109
- [19] Kreno LE, Hupp JT, Van Duyne RP. 2010. Metal−organic framework thin film for enhanced localized surface plasmon resonance gas sensing. Anal Chem. 2010; 82: 8042-8046. https://doi.org/10.1021/ac102127p
- [20] Qiao LF, Wang D, Zuo LJ, Ye YQ, Qian J, Chen HZ, He SL. Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres. Appl Energy. 2011; 88: 848-885. https://doi.org/10.1016/j.apenergy.2010.09.021
- [21] Kim J, Choi H, Nahm C, Park B. Surface-plasmon resonance for photoluminescence and solar-cell applications. Electron Matter. 2012; 8: 351-364. https://doi.org/10.1007/s13391-012-2117-8
- [22] Bryson HM, Brogden RE. Piperacillin/tazobactam: a review of its antibacterial activity, pharmacokinetic properties and therapeutic potential. Drugs. 1994; 47(3): 506- 535. https://doi.org/10.2165/00003495-199447030-00008
- [23] Rice LB, Carias LL, Shlaes DM. In vivo efficacies of β-lactam- β-lactamase inhibitor combinations against a TEM26- producing strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 1994; 38: 2663-2664. https://doi.org/10.1128/aac.38.11.2663
- [24] Thauvin-Eliopoulos C, Tripodi MF, Moellering RC Jr, Eliopoulos GM. Efficacies of piperacillin-tazobactam and cefepime in rats with experimental intra-abdominal abscesses due to an extended-spectrum β lactamase-producing strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 1997; 41: 1053-1057. https://doi.org/10.1128/aac.41.5.1053
- [25] Fournier JL, Ramisse F, Jacolot AC, Szatanik M, Petitjean OJ, Alonso JM, Scavizzi MR. Assessment of two penicillins plus β-lactamase inhibitors versus cefotaxime in treatment of murine Klebsiella pneumoniae infections. Antimicrob Agents Chemother. 1996; 40: 325-30. https://doi.org/10.1128/aac.40.2.325
- [26] Perry CM, Markham A. Piperacillin/Tazobactam: An updated review of its use in the treatment of bacterial infections. Drugs. 1999; 57 (5): 805-843. https://doi.org/10.2165/00003495-199957050-00017
- [27] Titus D, Samuel EJJ, Roopan SM. Nanoparticle characterization techniques. In: Green synthesis, characterization and applications of nanoparticles, Elsevier, 2019, pp. 303-319. https://doi.org/10.1016/B978-0-08-102579-6.00012-5
- [28] Veillette JJ, Winans SA, Forland SC, Maskiewicz VK. A simple and rapid RP-HPLC method for the simultaneous determination of piperacillin and tazobactam in human plasma. J Phar Biomed Anal. 2016; 131: 80-86. https://doi.org/10.1016/j.jpba.2016.08.010
- [29] Sangeetha S, Arul B, Alexandar S, Jaykar B. Development and validation of UV spectrophotometric area under curve method for quantitative estimation of piperacillin and tazobactam. Int J Chemtech Res. 2017; 10(2): 988-994.
- [30] Kant R, Bodla R, Bhutani R, Kapoor G, Goswami S. Spectrophotometric absorbance correction method for the estimation of Tazobactam and Cefepime in combined tablet dosage forms. J Chem Pharm Res. 2015; 7.6: 648-656.
- [31] Ferrari D, Ripa M, Premaschi S, Banfi G, Castagna A, Locatelli M. LC-MS/MS method for simultaneous determination of linezolid, meropenem, piperacillin and teicoplanin in human plasma samples. J Pharm Biomed Anal. 2019; 169: 11-18. https://doi.org/10.1016/j.jpba.2019.02.037
- [32] Milla P, Ferrari F, Muntoni E, Sartori M, Ronco C, Arpicco S. Validation of a simple and economic HPLC-UV method for the simultaneous determination of vancomycin, meropenem, piperacillin and tazobactam in plasma samples. J Chromatogr B. 2020; 1148: 122151. https://doi.org/10.1016/j.jchromb.2020.122151
- [33] Toral MI, Nova-Ramirez F, Nacaratte F. Simultaneous determination of piperacillin and tazobactam in the pharmaceutical formulation Tazonam® by derivative spectrophotometry. J Chilean Chem Soc. 2012; 57(2): 1189-1193. http://doi.org/10.4067/S0717-97072012000200028
- [34] Al‐Attas A, Nasr JJ, El‐Enany N, Belal F. A green capillary zone electrophoresis method for the simultaneous determination of piperacillin, tazobactam and cefepime in pharmaceutical formulations and human plasma. Biomed Chromatogr. 2015; 29(12): 1811-1818. https://doi.org/10.1002/bmc.3500