Araştırma Makalesi
BibTex RIS Kaynak Göster

Cytotoxic effects of silver nanoparticles synthesized using Asphodelus aestivus Brot. aqueous extract

Yıl 2023, Cilt: 27 Sayı: 3, 1242 - 1251, 28.06.2025

Öz

The aim of the study is to examine the cytotoxic, apoptotic effects and gene expressions of Asphodelus
aestivus water extract (ASP) and silver nanoparticles (AgNPS) on decided cancer lines. Breast cancer cell lines MCF-7
and MDA- 231; melanoma cancer lines MEWO and CHL-1; fibroblast cancer lines WI-38 and HEL 299 were selected for
biological activities. xCELLigence system was used for cytotoxicity. Annexin V-EG FP Apoptosis detection kit was used
for apoptosis and gene expressions were assessed by real time online RT-PCR by using cancer cell lines Qiagen kits.
AgNPS showed significant cytotoxicity in all cell lines. The most prominent apoptosis was determined in MCF-7 cell
line for AgNPS. It has been observed that the most important progress in gene expression, the suppression capacity of
MUC1-C, a breast cancer- associated oncoprotein, is greatly increased by nanoparticle formation. In addition, cells that
were not affected at all in MDA-MB-231 breast cancer oncoprotein started to suppress with nanoparticles. In conclusion,
it was determined that silver nanoparticles increased the effect especially in breast cancer cell lines and could be
considered for use.

Kaynakça

  • [1] Bindhu MR, Umadevi M. Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2015; 135: 373–378.
  • [2] Pourmortazavi SM, Taghdiri M, Makari V, Rahimi-Nasrabadi M. Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa. Spectrochim Acta A Mol Biomol Spectrosc. 2015; 136: 1249–1254.
  • [3] Sre PRR, Reka M, Poovazhagi R, Kumar MA, Murugesan K. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica Lam. Spectrochim Acta A Mol Biomol Spectrosc. 2015; 135: 1137–1144.
  • [4] Saravanakumar A, Ganesh M, Jayaparakash J, Jang HT. Biosynthesis of silver nanoparticles using Cassia tora leaf extract and its antioxidant and antibacterial activities. J Ind Eng Chem. 2015; 28: 277–281.
  • [5] Thuesombat P, Hannongbua S, Akasit S, Chadchawan S. Effect of silver nanoparticles on rice (Oryza sativa L.) seed germination and seedling growth. Ecotoxicol Environ Saf. 2014; 104: 302–309.
  • [6] Kharat SN, Mendhulkar SN. Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Mater Sci Eng C Mater Biol Appl. 2016; 62: 719–724.
  • [7] Matthews V, Asphodelus L., in Davis O.H. (Ed.), Flora of Turkey and the East Aegean Islands. Edinburgh, 85, 1984.
  • [8] Baytop T. Treatment with Plants in Turkey. Nobel Tıp Kitap Evleri, Istanbul, 1999.
  • [9] Ugulu I, Baslar S, Yorek N, Dogan Y. The investigation and quantitative ethnobotanical evaluation of medicinal plants used around Izmir province, Turkey. J Med Plants Res. 2009; 3: 345–367.
  • [10] Peksel A, Altas-Kiymaz N, Imamoglu S. Evaluation of antioxidant and antifungal potential of Asphodelus aestivus Brot. growing in Turkey. J Med Plants Res. 2012; 6: 253–265.
  • [11] Celik TA, Aslantürk SA. Investigation of antioxidant, cytotoxic and apoptotic activities of the extracts from tubers Asphodelus aestivus Brot. Afr J Pharm Pharmacol. 2013; 7: 610–621.
  • [12] Adinolfi M, Corsaro MC, Lanzetta R, Parrilli M, Scopa A. A bianthrone C-glycoside from Asphodelus ramosus tubers. Phytochemistry. 1989; 28: 284–288.
  • [13] Adinolfi M, Lanzetta R, Marciano CE, Parrilli M, Giulio AD. A new class of anthraquinone-anthrone-C-glycosides from Asphodelus ramosus tubers. Tetrahedron. 1991; 47: 4435–4440.
  • [14] Wyk BEV, Yenesew A, Dagne E. Chemotaxonomic significance of anthroquinones in the roots of Asphodeloideae. Biochem Syst Ecol. 1995; 23: 277–281.
  • [15] Hanahan D, Weinberg RA. The Hallmarks of Cancer. Cell. 2000; 100: 57–70.
  • [16] Grandér D. How do mutated oncogenes and tumor suppressor genes cause cancer? Med Oncol. 1998; 15: 20–26.
  • [17] Hayakawa Y, Hirata Y, Kinoshita H, Sakitani K, Nakagawa H, et al. Differential Roles of ASK1 and TAK1 in Helicobacter pylori-Induced Cellular Responses. Infect Immun. 2013; 81: 4551–4560.
  • [18] Kumar R, Njauw CN, Reddy BY, et al. Growth suppression by dual BRAF(V600E) and NRAS(Q61) oncogene expression is mediated by SPRY4 in melanoma. Oncogene. 2019; 38: 3504–3520.
  • [19] Dioguardi M, Campanella P, Cocco A, Arena C, et al. Possible Uses of Plants of the Genus Asphodelus in Oral Medicine. Biomedicine. 2019; 7: 67.
  • [20] Di Petrillo A, González-Paramás AM, Era B, Medda R, et al. Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts. BMC Complement Altern Med. 2016; 16: 453.
  • [21] Khalfaoui A, Chini MG, Bouheroum M, Belaabed S, et al. J Nat Prod. 2018; 81: 1786–1794.
  • [22] Tai H, Naoki K, Shigeaki K. Involvement of nuclear receptor coactivator SRC-1 in estrogen-dependent cell growth of MCF-7 cells. Biochem Biophys Res Commun. 2000; 267: 311–316.
  • [23] Castanon I, Baylies MK. A Twist in fate: evolutionary comparison of Twist structure and function. Gene. 2002; 287: 11–22.
  • [24] Mironchik Y, Winnard PT Jr, Vesuna F, Kato Y, et al. Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer. Cancer Res. 2005; 65: 10801–10809.
  • [25] Bai M, Agnantis NJ, Skyrlas A, Tsanou E, et al. Increased expression of the bcl6 and CD10 proteins is associated with increased apoptosis and proliferation in diffuse large B-cell lymphomas. Mod Pathol. 2003; 16: 471–480.
  • [26] Abosedera DA, Emera SA, Tamam OAS, Badr OM, et al. Metabolomic profile and in vitro evaluation of the cytotoxic activity of Asphodelus microcarpus against human malignant melanoma cells A375. Arab J Chem. 2022; 15: 104174.
  • [27] Abdellatef AA, Fathy M, Mohammed AESI, Bakr MSA, et al. Inhibition of cell‑intrinsic NF‑κB activity and metastatic abilities of breast cancer by aloe‑emodin and emodic‑acid isolated from Asphodelus microcarpus. J Nat Med. 2021; 75: 840–853.
  • [28] Khalfaoui A, Chini MG, Bouherum M, Belaebed S, et al. Glucopyranosylbianthrones from the Algerian Asphodelus tenuifolius: Structural Insights and Biological Evaluation on Melanoma Cancer Cells. J Nat Prod. 2018; 81: 1786–1794.
  • [29] Fafal T, Taştan P, Tüzün Sümer B, Ozyazıcı M. Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Asphodelus aestivus Brot. aerial part extract. South African J Bot. 2017; 112: 346–353.
  • [30] Awwad AM, Salem NM. A Green and Facile Approach for Synthesis of Magnetite Nanoparticles. Nanosci Nanotechnol. 2012; 2: 208–213.
  • [31] Pasupuleti VR, Prasad TNVKV, Shiekh RA, Balam SK, et al. Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: synthesis, spectral analysis, and antimicrobial studies. Int J Nanomedicine. 2013; 8: 3355–3364.
  • [32] Dinesh R, Anandaraj M, Srinivasan S, Hamza S. Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma. 2012; 173–174: 19–27.
  • [33] Tuzun BS, Fafal T, Tastan P, Kivcak B, et al. Structural characterization, antioxidant and cytotoxic effects of iron nanoparticles synthesized using Asphodelus aestivus Brot. aqueous extract. Green Process Synth. 2020; 9: 153–163.
Yıl 2023, Cilt: 27 Sayı: 3, 1242 - 1251, 28.06.2025

Öz

Kaynakça

  • [1] Bindhu MR, Umadevi M. Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2015; 135: 373–378.
  • [2] Pourmortazavi SM, Taghdiri M, Makari V, Rahimi-Nasrabadi M. Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa. Spectrochim Acta A Mol Biomol Spectrosc. 2015; 136: 1249–1254.
  • [3] Sre PRR, Reka M, Poovazhagi R, Kumar MA, Murugesan K. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica Lam. Spectrochim Acta A Mol Biomol Spectrosc. 2015; 135: 1137–1144.
  • [4] Saravanakumar A, Ganesh M, Jayaparakash J, Jang HT. Biosynthesis of silver nanoparticles using Cassia tora leaf extract and its antioxidant and antibacterial activities. J Ind Eng Chem. 2015; 28: 277–281.
  • [5] Thuesombat P, Hannongbua S, Akasit S, Chadchawan S. Effect of silver nanoparticles on rice (Oryza sativa L.) seed germination and seedling growth. Ecotoxicol Environ Saf. 2014; 104: 302–309.
  • [6] Kharat SN, Mendhulkar SN. Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Mater Sci Eng C Mater Biol Appl. 2016; 62: 719–724.
  • [7] Matthews V, Asphodelus L., in Davis O.H. (Ed.), Flora of Turkey and the East Aegean Islands. Edinburgh, 85, 1984.
  • [8] Baytop T. Treatment with Plants in Turkey. Nobel Tıp Kitap Evleri, Istanbul, 1999.
  • [9] Ugulu I, Baslar S, Yorek N, Dogan Y. The investigation and quantitative ethnobotanical evaluation of medicinal plants used around Izmir province, Turkey. J Med Plants Res. 2009; 3: 345–367.
  • [10] Peksel A, Altas-Kiymaz N, Imamoglu S. Evaluation of antioxidant and antifungal potential of Asphodelus aestivus Brot. growing in Turkey. J Med Plants Res. 2012; 6: 253–265.
  • [11] Celik TA, Aslantürk SA. Investigation of antioxidant, cytotoxic and apoptotic activities of the extracts from tubers Asphodelus aestivus Brot. Afr J Pharm Pharmacol. 2013; 7: 610–621.
  • [12] Adinolfi M, Corsaro MC, Lanzetta R, Parrilli M, Scopa A. A bianthrone C-glycoside from Asphodelus ramosus tubers. Phytochemistry. 1989; 28: 284–288.
  • [13] Adinolfi M, Lanzetta R, Marciano CE, Parrilli M, Giulio AD. A new class of anthraquinone-anthrone-C-glycosides from Asphodelus ramosus tubers. Tetrahedron. 1991; 47: 4435–4440.
  • [14] Wyk BEV, Yenesew A, Dagne E. Chemotaxonomic significance of anthroquinones in the roots of Asphodeloideae. Biochem Syst Ecol. 1995; 23: 277–281.
  • [15] Hanahan D, Weinberg RA. The Hallmarks of Cancer. Cell. 2000; 100: 57–70.
  • [16] Grandér D. How do mutated oncogenes and tumor suppressor genes cause cancer? Med Oncol. 1998; 15: 20–26.
  • [17] Hayakawa Y, Hirata Y, Kinoshita H, Sakitani K, Nakagawa H, et al. Differential Roles of ASK1 and TAK1 in Helicobacter pylori-Induced Cellular Responses. Infect Immun. 2013; 81: 4551–4560.
  • [18] Kumar R, Njauw CN, Reddy BY, et al. Growth suppression by dual BRAF(V600E) and NRAS(Q61) oncogene expression is mediated by SPRY4 in melanoma. Oncogene. 2019; 38: 3504–3520.
  • [19] Dioguardi M, Campanella P, Cocco A, Arena C, et al. Possible Uses of Plants of the Genus Asphodelus in Oral Medicine. Biomedicine. 2019; 7: 67.
  • [20] Di Petrillo A, González-Paramás AM, Era B, Medda R, et al. Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts. BMC Complement Altern Med. 2016; 16: 453.
  • [21] Khalfaoui A, Chini MG, Bouheroum M, Belaabed S, et al. J Nat Prod. 2018; 81: 1786–1794.
  • [22] Tai H, Naoki K, Shigeaki K. Involvement of nuclear receptor coactivator SRC-1 in estrogen-dependent cell growth of MCF-7 cells. Biochem Biophys Res Commun. 2000; 267: 311–316.
  • [23] Castanon I, Baylies MK. A Twist in fate: evolutionary comparison of Twist structure and function. Gene. 2002; 287: 11–22.
  • [24] Mironchik Y, Winnard PT Jr, Vesuna F, Kato Y, et al. Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer. Cancer Res. 2005; 65: 10801–10809.
  • [25] Bai M, Agnantis NJ, Skyrlas A, Tsanou E, et al. Increased expression of the bcl6 and CD10 proteins is associated with increased apoptosis and proliferation in diffuse large B-cell lymphomas. Mod Pathol. 2003; 16: 471–480.
  • [26] Abosedera DA, Emera SA, Tamam OAS, Badr OM, et al. Metabolomic profile and in vitro evaluation of the cytotoxic activity of Asphodelus microcarpus against human malignant melanoma cells A375. Arab J Chem. 2022; 15: 104174.
  • [27] Abdellatef AA, Fathy M, Mohammed AESI, Bakr MSA, et al. Inhibition of cell‑intrinsic NF‑κB activity and metastatic abilities of breast cancer by aloe‑emodin and emodic‑acid isolated from Asphodelus microcarpus. J Nat Med. 2021; 75: 840–853.
  • [28] Khalfaoui A, Chini MG, Bouherum M, Belaebed S, et al. Glucopyranosylbianthrones from the Algerian Asphodelus tenuifolius: Structural Insights and Biological Evaluation on Melanoma Cancer Cells. J Nat Prod. 2018; 81: 1786–1794.
  • [29] Fafal T, Taştan P, Tüzün Sümer B, Ozyazıcı M. Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Asphodelus aestivus Brot. aerial part extract. South African J Bot. 2017; 112: 346–353.
  • [30] Awwad AM, Salem NM. A Green and Facile Approach for Synthesis of Magnetite Nanoparticles. Nanosci Nanotechnol. 2012; 2: 208–213.
  • [31] Pasupuleti VR, Prasad TNVKV, Shiekh RA, Balam SK, et al. Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: synthesis, spectral analysis, and antimicrobial studies. Int J Nanomedicine. 2013; 8: 3355–3364.
  • [32] Dinesh R, Anandaraj M, Srinivasan S, Hamza S. Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma. 2012; 173–174: 19–27.
  • [33] Tuzun BS, Fafal T, Tastan P, Kivcak B, et al. Structural characterization, antioxidant and cytotoxic effects of iron nanoparticles synthesized using Asphodelus aestivus Brot. aqueous extract. Green Process Synth. 2020; 9: 153–163.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Farmakognozi
Bölüm Articles
Yazarlar

Pelin Taştan

Tuğçe Fafal

Burcu Sümer Tüzün 0000-0002-9194-3447

Besra Ozmen Yelken 0000-0002-0659-1097

Cağla Kayabasi

Sunde Yilmaz Susluer 0000-0002-0535-150X

Cumhur Gunduz 0000-0002-6593-3237

Bijen Kivcak

Yayımlanma Tarihi 28 Haziran 2025
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 3

Kaynak Göster

APA Taştan, P., Fafal, T., Sümer Tüzün, B., Ozmen Yelken, B., vd. (2025). Cytotoxic effects of silver nanoparticles synthesized using Asphodelus aestivus Brot. aqueous extract. Journal of Research in Pharmacy, 27(3), 1242-1251.
AMA Taştan P, Fafal T, Sümer Tüzün B, Ozmen Yelken B, Kayabasi C, Yilmaz Susluer S, Gunduz C, Kivcak B. Cytotoxic effects of silver nanoparticles synthesized using Asphodelus aestivus Brot. aqueous extract. J. Res. Pharm. Haziran 2025;27(3):1242-1251.
Chicago Taştan, Pelin, Tuğçe Fafal, Burcu Sümer Tüzün, Besra Ozmen Yelken, Cağla Kayabasi, Sunde Yilmaz Susluer, Cumhur Gunduz, ve Bijen Kivcak. “Cytotoxic Effects of Silver Nanoparticles Synthesized Using Asphodelus Aestivus Brot. Aqueous Extract”. Journal of Research in Pharmacy 27, sy. 3 (Haziran 2025): 1242-51.
EndNote Taştan P, Fafal T, Sümer Tüzün B, Ozmen Yelken B, Kayabasi C, Yilmaz Susluer S, Gunduz C, Kivcak B (01 Haziran 2025) Cytotoxic effects of silver nanoparticles synthesized using Asphodelus aestivus Brot. aqueous extract. Journal of Research in Pharmacy 27 3 1242–1251.
IEEE P. Taştan, T. Fafal, B. Sümer Tüzün, B. Ozmen Yelken, C. Kayabasi, S. Yilmaz Susluer, C. Gunduz, ve B. Kivcak, “Cytotoxic effects of silver nanoparticles synthesized using Asphodelus aestivus Brot. aqueous extract”, J. Res. Pharm., c. 27, sy. 3, ss. 1242–1251, 2025.
ISNAD Taştan, Pelin vd. “Cytotoxic Effects of Silver Nanoparticles Synthesized Using Asphodelus Aestivus Brot. Aqueous Extract”. Journal of Research in Pharmacy 27/3 (Haziran 2025), 1242-1251.
JAMA Taştan P, Fafal T, Sümer Tüzün B, Ozmen Yelken B, Kayabasi C, Yilmaz Susluer S, Gunduz C, Kivcak B. Cytotoxic effects of silver nanoparticles synthesized using Asphodelus aestivus Brot. aqueous extract. J. Res. Pharm. 2025;27:1242–1251.
MLA Taştan, Pelin vd. “Cytotoxic Effects of Silver Nanoparticles Synthesized Using Asphodelus Aestivus Brot. Aqueous Extract”. Journal of Research in Pharmacy, c. 27, sy. 3, 2025, ss. 1242-51.
Vancouver Taştan P, Fafal T, Sümer Tüzün B, Ozmen Yelken B, Kayabasi C, Yilmaz Susluer S, Gunduz C, Kivcak B. Cytotoxic effects of silver nanoparticles synthesized using Asphodelus aestivus Brot. aqueous extract. J. Res. Pharm. 2025;27(3):1242-51.