Error performance of zero-forcing beamforming with signal space diversity over correlated and uncorrelated Rician fading channels
Yıl 2025,
Sayı: 060, 79 - 88, 25.03.2025
Hilal Uslu
,
Mustafa Anıl Reşat
,
Serdar Özyurt
Öz
In this manuscript, the error performance evaluation of multiple-input multiple-output (MIMO) method implementing zero-forcing beamforming (ZFBF) technique along with signal space diversity (SSD) is investigated under Rician fading channels. MIMO systems can be defined as systems created by using multiple antennas on both the transmitter and receiver sides. MIMO systems can enhance spectral efficiency and improve communication reliability. They hold significant importance for current 5G systems and ongoing research of 6G systems. Rician fading channels are commonly encountered in wireless communication systems and include line of sight (LOS) along with non-LOS propagation paths. In this research, examinations are conducted on a t×r MIMO scenario (with t transmitter antennas and r receiver antennas), assuming that the channel is known only at the receiver side. The ZFBF technique is used at the receiver to boost the spectral efficiency, while SSD is utilized to enhance the system reliability. The performance of SSD over Rician fading channels is evaluated and it is observed that there is a noteworthy improvement in the bit error rate performance a gain of up to 5.5 dB is obtained. Even under transmitter antenna correlation, it is shown that this technique can provide an important performance enhancement given by approximately 2 dB gain without any additional computational complexity.
Kaynakça
- [1] Ö. Özdoğan, E. Björnson and E. G. Larsson, “Massive MIMO with spatially correlated Rician fading channels,” IEEE Trans. Commun., vol. 67, no. 5, pp. 3234-3250, Jun. 2019, doi: 10.1109/tcomm.2019.2893221.
- [2] S. Özyurt and O. Kucur “Zero-forcing beamforming with signal space diversity,” IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 812-816, Aug. 2018, doi: 10.1109/tvt.2017.2742218.
- [3] R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays, NY: Wiley, 1980.
- [4] D. Gerlach and A. Paulraj. "Adaptive transmitting antenna arrays with feedback," IEEE Signal Process. Lett., vol. 1, no. 10, pp. 150-152, Oct. 1994, doi: 10.1109/97.329842.
- [5] T. Haustein, C. von Helmolt, E. Jorswieck, V. Jungnickel, and V. Pohl, “Performance of MIMO systems with channel inversion," in Proc. IEEE 55th Veh. Tech. Conf., 2002, pp. 35-39, doi: 10.1109/VTC.2002.1002659.
- [6] M. Joham, W. Utschick, and J. A. Nossek, “Linear transmit processing in MIMO communications systems," IEEE Trans. Signal Process., vol. 53, no. 8, pp. 2700-2712, Aug. 2005, 10.1109/tsp.2005.850331.
- [7] A. Wiesel, Y. C. Eldar and S. Shamai, “Zero-forcing precoding and generalized inverses," IEEE Trans. Signal Process., vol. 56, no. 9, pp. 4409-4418, Sep. 2008, doi: 10.1109/TSP.2008.924638.
- [8] H. Bölskei, D. Gesbert, C. B. Papadias and A.V. Veen, Space-Time Wireless Systems: From Array Processing to MIMO Communications, NY: Cambridge University Press, 2008
- [9] S. Özyurt and O. Kucur, “Performance of zero-forcing receive beamforming with signal space diversity over Rayleigh fading channels,” 2017 Advances in Wireless and Optical Communications (RTUWO), vol. 67, no. 1, pp. 812-816, Jan. 2018, doi: 10.1109/rtuwo.2017.8228523
- [10] A. Yılmaz and O. Kucur, “Performance of rotated PSK modulation in Nakagami-m fading channels,” Digital Signal Process., vol. 21, no. 2, pp. 296-306, Mar. 2011, doi: 10.1016/j.dsp.2010.06.009.
- [11] G. Taricco and E. Viterbo, “Performance of component interleaved signal sets for fading channels," Electron. Lett., vol. 32, no. 13, pp. 1170-1172, Apr. 1996, doi: 10.1049/el:19960816.
- [12] J. Boutros and E. Viterbo, “Signal space diversity: a power- and bandwidth-efficient diversity technique for the Rayleigh fading channel," IEEE Trans. Inf. Theory, vol. 44, no. 4, pp. 1453-1467, Jul. 1998, doi: 10.1109/18.681321.
- [13] S. B. Slimane, “An improved PSK scheme for fading channels," IEEE Trans. Veh. Technol., vol. 47, no. 2, pp. 703-710, May. 1998, doi: 10.1109/glocom.1996.587650.
- [14] M. Z. A. Khan and B. S. Rajan, “Single-symbol maximum likelihood decodable linear STBCs," IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 2062-2091, May. 2006, doi: 10.1109/tit.2006.872970.
- [15] H. Lee, J. G. Andrews, R. W. Heath and E. J. Powers, “The performance of space-time block codes from coordinate interleaved orthogonal designs over Nakagami-m fading channels," IEEE Trans. Commun., vol. 57, no. 3, pp. 653-664, Mar. 2009, doi: 10.1109/tcomm.2009.03.060716.
- [16] H. Lee and A. Paulraj, “MIMO systems based on modulation diversity," IEEE Trans. Commun., vol. 58, no. 12, pp. 3405-3409, Oct. 2010, doi: 10.1109/tcomm.2010.100510.090084a.
- [17] Y. Li and M. Salehi, “Coded MIMO systems with modulation diversity for block-fading channels," in Proc. Inf. Sciences and Sys. Conf., (Princeton, USA), Mar. 2012, pp. 1-5, doi: 10.1109/ciss.2012.6310745.
- [18] M. A. Reşat, A. Çiçek, S. Özyurt and E. Çavuş, “Analysis and FPGA implementation of zero-forcing receive beamforming with signal space diversity under different interleaving techniques,” Journal of Circuits, Systems and Computers, vol. 29, no. 1, pp. 2050007, Jan. 2019, doi: 10.1142/s0218126620500073.
- [19] M. A. Reşat and S. Özyurt, “Performance of zero-forcing MIMO systems with signal space diversity under transmit antenna correlation," in Proc. 10th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 2017, pp. 700-704.
Yıl 2025,
Sayı: 060, 79 - 88, 25.03.2025
Hilal Uslu
,
Mustafa Anıl Reşat
,
Serdar Özyurt
Kaynakça
- [1] Ö. Özdoğan, E. Björnson and E. G. Larsson, “Massive MIMO with spatially correlated Rician fading channels,” IEEE Trans. Commun., vol. 67, no. 5, pp. 3234-3250, Jun. 2019, doi: 10.1109/tcomm.2019.2893221.
- [2] S. Özyurt and O. Kucur “Zero-forcing beamforming with signal space diversity,” IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 812-816, Aug. 2018, doi: 10.1109/tvt.2017.2742218.
- [3] R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays, NY: Wiley, 1980.
- [4] D. Gerlach and A. Paulraj. "Adaptive transmitting antenna arrays with feedback," IEEE Signal Process. Lett., vol. 1, no. 10, pp. 150-152, Oct. 1994, doi: 10.1109/97.329842.
- [5] T. Haustein, C. von Helmolt, E. Jorswieck, V. Jungnickel, and V. Pohl, “Performance of MIMO systems with channel inversion," in Proc. IEEE 55th Veh. Tech. Conf., 2002, pp. 35-39, doi: 10.1109/VTC.2002.1002659.
- [6] M. Joham, W. Utschick, and J. A. Nossek, “Linear transmit processing in MIMO communications systems," IEEE Trans. Signal Process., vol. 53, no. 8, pp. 2700-2712, Aug. 2005, 10.1109/tsp.2005.850331.
- [7] A. Wiesel, Y. C. Eldar and S. Shamai, “Zero-forcing precoding and generalized inverses," IEEE Trans. Signal Process., vol. 56, no. 9, pp. 4409-4418, Sep. 2008, doi: 10.1109/TSP.2008.924638.
- [8] H. Bölskei, D. Gesbert, C. B. Papadias and A.V. Veen, Space-Time Wireless Systems: From Array Processing to MIMO Communications, NY: Cambridge University Press, 2008
- [9] S. Özyurt and O. Kucur, “Performance of zero-forcing receive beamforming with signal space diversity over Rayleigh fading channels,” 2017 Advances in Wireless and Optical Communications (RTUWO), vol. 67, no. 1, pp. 812-816, Jan. 2018, doi: 10.1109/rtuwo.2017.8228523
- [10] A. Yılmaz and O. Kucur, “Performance of rotated PSK modulation in Nakagami-m fading channels,” Digital Signal Process., vol. 21, no. 2, pp. 296-306, Mar. 2011, doi: 10.1016/j.dsp.2010.06.009.
- [11] G. Taricco and E. Viterbo, “Performance of component interleaved signal sets for fading channels," Electron. Lett., vol. 32, no. 13, pp. 1170-1172, Apr. 1996, doi: 10.1049/el:19960816.
- [12] J. Boutros and E. Viterbo, “Signal space diversity: a power- and bandwidth-efficient diversity technique for the Rayleigh fading channel," IEEE Trans. Inf. Theory, vol. 44, no. 4, pp. 1453-1467, Jul. 1998, doi: 10.1109/18.681321.
- [13] S. B. Slimane, “An improved PSK scheme for fading channels," IEEE Trans. Veh. Technol., vol. 47, no. 2, pp. 703-710, May. 1998, doi: 10.1109/glocom.1996.587650.
- [14] M. Z. A. Khan and B. S. Rajan, “Single-symbol maximum likelihood decodable linear STBCs," IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 2062-2091, May. 2006, doi: 10.1109/tit.2006.872970.
- [15] H. Lee, J. G. Andrews, R. W. Heath and E. J. Powers, “The performance of space-time block codes from coordinate interleaved orthogonal designs over Nakagami-m fading channels," IEEE Trans. Commun., vol. 57, no. 3, pp. 653-664, Mar. 2009, doi: 10.1109/tcomm.2009.03.060716.
- [16] H. Lee and A. Paulraj, “MIMO systems based on modulation diversity," IEEE Trans. Commun., vol. 58, no. 12, pp. 3405-3409, Oct. 2010, doi: 10.1109/tcomm.2010.100510.090084a.
- [17] Y. Li and M. Salehi, “Coded MIMO systems with modulation diversity for block-fading channels," in Proc. Inf. Sciences and Sys. Conf., (Princeton, USA), Mar. 2012, pp. 1-5, doi: 10.1109/ciss.2012.6310745.
- [18] M. A. Reşat, A. Çiçek, S. Özyurt and E. Çavuş, “Analysis and FPGA implementation of zero-forcing receive beamforming with signal space diversity under different interleaving techniques,” Journal of Circuits, Systems and Computers, vol. 29, no. 1, pp. 2050007, Jan. 2019, doi: 10.1142/s0218126620500073.
- [19] M. A. Reşat and S. Özyurt, “Performance of zero-forcing MIMO systems with signal space diversity under transmit antenna correlation," in Proc. 10th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 2017, pp. 700-704.