Araştırma Makalesi
BibTex RIS Kaynak Göster

Screening of Aerobic Spore-Forming Soil Bacteria for Potential Biotechnological Applications

Yıl 2025, Cilt: 11 Sayı: 1, 47 - 56, 25.06.2025
https://doi.org/10.55385/kastamonujes.1717548

Öz

Soils represent a significant source of bacteria that produce enzymes and bioactive compounds; however, many microorganisms with high biotechnological potential remain insufficiently explored for isolation. The aim of this study was to isolate aerobic spore-forming bacteria from soil and to identify potential strains for biotechnological applications. Soil samples were collected from various locations in Artvin province, where olive trees are present. The morphological and biochemical characteristics of 11 bacterial isolates were evaluated, and their molecular identification was performed through 16S rRNA gene sequencing. The isolates were identified as belonging to Priestia megaterium, Bacillus amyloliquefaciens, and Bacillus subtilis species. All isolates were screened for protease, amylase, and cellulase production, with five isolates demonstrating the ability to produce all three enzymes simultaneously. Additionally, the bacteriocin production capacities of the isolates were qualitatively assessed, revealing that several isolates significantly inhibited the growth of other strains. The resistance of the isolates to UV radiation was also evaluated; while short-term UV exposure caused a reduction in growth for some isolates, most exhibited high tolerance. The obtained results indicate that the bacterial isolates possess promising potential for various industrial and biotechnological applications due to their multi-enzyme production, antibacterial activities, and resilience to environmental stressors. Furthermore, the potential of these isolates in other biotechnological fields has been discussed in light of the current literature.

Kaynakça

  • Carvalho, R. V. D., Correa, T. L. R., Silva, J. C. M. D., Mansur, L. R. C. D. O., & Martins, M. L. L., (2008). Properties of an amylase from thermophilic Bacillus sp. Brazilian Journal of Microbiology. 39: 102–107.
  • Gupta, R., Beg, Q., & Lorenz, P., (2002). Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology. 59: 15–32.
  • Rajagopalan, G., & Krishnan, C., (2008). Alpha-amylase production from catabolite derepressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate. Bioresource Technology. 99: 3044–3050.
  • Aiyer, P. V., (2005). Amylases and their applications. African Journal of Biotechnology. 4(13): 1525–1529.
  • Jayasekara, S., & Ratnayake, R., (2019). Microbial cellulases: an overview and applications. Cellulose. 22.
  • Juturu, V., & Wu, J. C., (2014). Microbial cellulases: Engineering, production and applications. Renewable and Sustainable Energy Reviews. 33: 188–203.
  • Hossain, M. A., Ahammed, M. A., Sobuj, S. I., Shifat, S. K., & Somadder, P. D., (2021). Cellulase producing bacteria isolation, screening and media optimization from local soil sample. American Journal of Microbiological Research. 9(3): 62–74.
  • Klaenhammer, T. R., (1988). Bacteriocins of lactic acid bacteria. Biochimie. 70(3): 337–349.
  • Abriouel, H., Franz, C. M., Ben Omar, N., & Gálvez, A., (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews. 35: 201–232.
  • Amin, A., Khan, M. A., Ehsanullah, M., Haroon, U., Azam, S. M. F., & Hameed, A., (2012). Production of peptide antibiotics by Bacillus sp: GU 057 indigenously isolated from saline soil. Brazilian Journal of Microbiology. 43: 1340–1346.
  • Baindara, P., Mandal, S. M., Chawla, N., Singh, P. K., Pinnaka, A. K., & Korpole, S., (2013). Characterization of two antimicrobial peptides produced by a halotolerant Bacillus subtilis strain SK.DU.4 isolated from a rhizosphere soil sample. AMB Express. 3: 1–11.
  • Harley, J.P., & Prescott, L.M., (2002). Laboratory Exercises in Microbiology (5th ed.) McGraw-Hill: New York, 466 pp.
  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., & Lipman, D.J., (1990). Basic local alignment search tool. Journal of Molecular Biology. 215: 403–410.
  • Hall, T.A., (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 41: 95–98.
  • Tamura, K., Stecher, G., & Kumar, S., (2021). MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution. 38: 3022–3027.
  • Farias, D.F., Carvalho, A.F.U., Oliveira, C.C., Sousa, N.M., Rocha-Bezerrra, L.C.B., Ferreira, P.M.P., ... & Hissa, D.C., (2010). Alternative method for quantification of alfa-amylase activity. Brazilian Journal of Biology. 70: 405–407.
  • Carlisle, G.E., & Falkinham, J.O. III., (1989). Enzyme activities and antibiotic susceptibility of colonial variants of Bacillus subtilis and Bacillus licheniformis. Applied and Environmental Microbiology. 55: 3026–3028
  • Sazcı, A., Erenler, K., & Radford, A., (1986). Detection of cellulolytic fungi by using Congo red as an indicator: a comparative study with the dinitrosalicyclic acid reagent method. Journal of Applied Microbiology. 61(6): 559–562.
  • Bizani, D.A.B.A., & Brandelli, A., (2002). Characterization of a bacteriocin produced by a newly isolated Bacillus sp. strain 8 A. Journal of Applied Microbiology. 93(3): 512–519.
  • Gupta, R. S., Patel, S., Saini, N., & Chen, S., (2020). Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. International Journal of Systematic and Evolutionary Microbiology. 70(11): 5753–5798.
  • Dang, N. T., Phan, T. T. H., Tran, H. T., Le, T. T., Nguyen, L. T. H., Nguyen, T. K. B., ... & Van Cao, S., (2024). Biofilm biosynthesis of Priestia megaterium M1VB5 strain Muc Son Thanh Hoa paper mill. Science and Technology Development Journal. 27(1): 3301–3307.
  • Bhimani, A. A., Bhimani, H. D., Vaghela, N. R., & Gohel, S. D., (2024). Cultivation methods, characterization, and biocatalytic potential of organic solid waste degrading bacteria isolated from sugarcane rhizospheric soil and compost. Biologia. 79(3): 953–974.
  • Cotter, P. D., Hill, C., & Ross, R. P., (2005). Bacteriocins: developing innate immunity for food. Nature Reviews Microbiology. 3(10): 777–788.
  • Melo-Bolívar, J. F., Ruiz Pardo, R. Y., Junca, H., Sidjabat, H. E., Cano-Lozano, J. A., & Villamil Díaz, L. M., (2022). Competitive exclusion bacterial culture derived from the gut microbiome of Nile Tilapia (Oreochromis niloticus) as a resource to efficiently recover probiotic strains: Taxonomic, genomic, and functional proof of concept. Microorganisms. 10(7): 1376.
  • Setlow, P., (2014). Germination of spores of Bacillus species: what we know and do not know. Journal of Bacteriology. 196(7): 1297–1305.
  • Biedendieck, R., Knuuti, T., Moore, S. J., & Jahn, D., (2021). The “beauty in the beast”—the multiple uses of Priestia megaterium in biotechnology. Applied Microbiology and Biotechnology. 105: 5719–5737. [27] Vary, P. S., Biedendieck, R., Fuerch, T., Meinhardt, F., Rohde, M., Deckwer, W. D., et al., (2007). Bacillus megaterium — from simple soil bacterium to industrial protein production host. Applied Microbiology and Biotechnology. 76: 957–967.
  • Hwang, H. H., Chien, P. R., Huang, F. C., Yeh, P. H., Hung, S. H. W., Deng, W. L., & Huang, C. C., (2022). A plant endophytic bacterium Priestia megaterium Strain BP-R2 isolated from the halophyte Bolboschoenus planiculmis enhances plant growth under salt and drought stresses. Microorganisms. 10(10): 2047.
  • Balasubramanian, S., Thomas, T. B., Mathavan, D., Kumar, R. S., Uma, G., Jones, R. D., & Citarasu, T., (2023). Isolation and Screening of Probiotic Bacteria from the Gut of Polychaetes as a Probiotic Potential for Fish Aquaculture. Nature Environment & Pollution Technology. 22(2).
  • Schallmey, M., Singh, A., & Ward, O. P., (2004). Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology. 50(1): 1–17.
  • Singh, R. K., Tiwari, M. K., Singh, R., & Lee, J. K., (2013). From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. International Journal of Molecular Sciences. 14(1): 1232–1277.
  • Pokhrel, B., Bashyal, B., & Magar, R. T., (2014). Production, purification and characterization of cellulase from Bacillus subtilis isolated from soil. European Journal of Biotechnology Bioscience. 2: 31–37.
  • Avşar, C., Koyuncu, H., & Aras, E. S., (2017). Isolation and molecular characterization of Bacillus spp. isolated from soil for production of industrial enzymes. Biological and Chemical Research. 3(9): 72–86
  • Contesini, F. J., Melo, R. R., & Sato, H. H., (2018). An overview of Bacillus proteases: from production to application. Critical Reviews in Biotechnology. 38(3): 321–334.
  • Hussain, A. A., Abdel-Salam, M. S., Abo-Ghalia, H. H., Hegazy, W. K., & Hafez, S. S., (2017). Optimization and molecular identification of novel cellulose degrading bacteria isolated from Egyptian environment. Journal of Genetic Engineering and Biotechnology. 15(1): 77–85.
  • Abd Elhameed, E., Sayed, A. R., Radwan, T. E., & Hassan, G., (2020). Biochemical and molecular characterization of five Bacillus isolates displaying remarkable carboxymethyl cellulase activities. Current Microbiology. 77: 3076–3084.
  • Rehman, R., Ahmed, M., Siddique, A., Hasan, F., Hameed, A., & Jamal, A., (2017). Catalytic role of thermostable metalloproteases from Bacillus subtilis KT004404 as dehairing and destaining agent. Applied Biochemistry and Biotechnology. 181: 434–450.
  • Nadeem, M., Baig, S., Qurat-ul-Ain, S., & Qazi, J. I., (2006). Microbial production of alkaline proteases by locally isolated Bacillus subtilis PCSIR-5. Pakistan Journal of Zoology. 38(2).
  • Cotter, P. D., Ross, R. P., & Hill, C., (2013). Bacteriocins—a viable alternative to antibiotics? Nature Reviews Microbiology. 11(2): 95–105.
  • Bierbaum, G., & Sahl, H. G., (2009). Lantibiotics: mode of action, biosynthesis and bioengineering. Current Pharmaceutical Biotechnology. 10(1): 2–18.
  • Singh, N., Pandey, P., Dubey, R. C., & Maheshwari, D. K., (2008). Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World Journal of Microbiology and Biotechnology. 24: 1669–1679.
  • Mutaz Al-Ajlani, M., & Hasnain, S., (2010). Bacteria exhibiting antimicrobial activities; screening for antibiotics and the associated genetic studies. Open Conference Proceedings Journal. 1: 230–238.
  • Cleveland, J., Montville, T. J., Nes, I. F., & Chikindas, M. L., (2001). Bacteriocins: safe, natural antimicrobials for food preservation. International Journal of Food Microbiology. 71(1): 1–20.
  • Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J., & Setlow, P., (2000). Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews. 64(3): 548–572.
  • Wongbunmak, A., Khiawjan, S., Suphantharika, M., & Pongtharangkul, T., (2020). BTEX biodegradation by Bacillus amyloliquefaciens subsp. plantarum W1 and its proposed BTEX biodegradation pathways. Scientific Reports. 10: 17408.
  • Lu, D., Zhang, Y., Niu, S., Wang, L., Lin, S., Wang, C., Ye, W., & Yan, C., (2012). Study of phenol biodegradation using Bacillus amyloliquefaciens strain WJDB-1 immobilized in alginate-chitosan-alginate (ACA) microcapsules by electrochemical method. Biodegradation. 23(2): 209–219.
  • Rehman, K., Imran, A., Amin, I., & Afzal, M., (2018). Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. Journal of Hazardous Materials. 349: 242–251.
  • Rao, B. P., Kasirajan, S., Mandal, A. B., Sudharsan, K., Sekaran, R. C. H. G., & Mandal, A. B., (2013). Characterization of exopolysaccharide from Bacillus amyloliquefaciens BPRGS for its bioflocculant activity. International Journal of Scientific & Engineering Research. 4: 1696–1704.
  • Sánchez-León, E., Huang-Lin, E., Amils, R., & Abrusci, C., (2023). Production and characterisation of an exopolysaccharide by Bacillus amyloliquefaciens: Biotechnological applications. Polymers. 15(6): 1550.
  • Zhang, J., Yue, X., Zeng, Y., Hua, E., Wang, M., & Sun, Y., (2018). Bacillus amyloliquefaciens levan and its silver nanoparticles with antimicrobial properties. Biotechnology & Biotechnological Equipment. 32(6): 1583–1589.
  • Baysal, O., & Yildiz, A., (2017). Bacillus subtilis: an industrially important microbe for enzymes production. EC Microbiology 5(4): 148–156.
  • Akinsemolu, A. A., Onyeaka, H., Odion, S., & Adebanjo, I., (2024). Exploring Bacillus subtilis: Ecology, biotechnological applications, and future prospects. Journal of Basic Microbiology. 64(6): 2300614.

Potansiyel Biyoteknolojik Uygulamalar Amacıyla Aerobik Spor Oluşturan Toprak Bakterilerinin İncelenmesi

Yıl 2025, Cilt: 11 Sayı: 1, 47 - 56, 25.06.2025
https://doi.org/10.55385/kastamonujes.1717548

Öz

Topraklar, enzim ve biyoaktif bileşikler üreten bakteriler için önemli bir kaynak olmakla birlikte, biyoteknolojik potansiyele sahip birçok mikroorganizmanın izolasyonu açısından henüz yeterince değerlendirilmemiştir. Bu çalışmanın amacı, topraktan aerobik spor oluşturan bakterilerin izolasyonunu gerçekleştirmek ve biyoteknolojik uygulamalar için potansiyel suşları belirlemektir. Toprak örnekleri, Artvin ilinde zeytin ağaçlarının bulunduğu çeşitli noktalardan alınmıştır. Elde edilen 11 bakteri izolatının morfolojik ve biyokimyasal özellikleri değerlendirilmiş ve moleküler identifikasyonları 16S rRNA gen dizileme yöntemiyle yapılmıştır. İzolatlar; Priestia megaterium, Bacillus amyloliquefaciens ve Bacillus subtilis türlerine ait bakteriler olarak tanımlanmıştır. Tüm izolatlar proteaz, amilaz ve selülaz üretimi açısından taranmış; beş izolatın üç enzimi birden üretebildiği belirlenmiştir. Ayrıca, izolatların bakteriyosin üretim kapasiteleri kalitatif olarak değerlendirilmiş ve bazı izolatların diğer suşların büyümesini anlamlı derecede inhibe ettiği saptanmıştır. İzolatların UV ışınına karşı dirençleri de test edilmiş olup, bazı izolatlarda kısa süreli UV maruziyeti büyümede azalmaya neden olurken, çoğu izolat yüksek dayanıklılık sergilemiştir. Elde edilen bulgular, bu bakteriyel izolatların çoklu enzim üretimi, antibakteriyel etkileri ve çevresel streslere karşı direnç gibi özellikleriyle çeşitli endüstriyel ve biyoteknolojik uygulamalar için potansiyel taşıdığını göstermektedir. Ayrıca, bu izolatların diğer biyoteknolojik alanlardaki potansiyelimevcut literatür ışığında tartışılmıştır.

Kaynakça

  • Carvalho, R. V. D., Correa, T. L. R., Silva, J. C. M. D., Mansur, L. R. C. D. O., & Martins, M. L. L., (2008). Properties of an amylase from thermophilic Bacillus sp. Brazilian Journal of Microbiology. 39: 102–107.
  • Gupta, R., Beg, Q., & Lorenz, P., (2002). Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology. 59: 15–32.
  • Rajagopalan, G., & Krishnan, C., (2008). Alpha-amylase production from catabolite derepressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate. Bioresource Technology. 99: 3044–3050.
  • Aiyer, P. V., (2005). Amylases and their applications. African Journal of Biotechnology. 4(13): 1525–1529.
  • Jayasekara, S., & Ratnayake, R., (2019). Microbial cellulases: an overview and applications. Cellulose. 22.
  • Juturu, V., & Wu, J. C., (2014). Microbial cellulases: Engineering, production and applications. Renewable and Sustainable Energy Reviews. 33: 188–203.
  • Hossain, M. A., Ahammed, M. A., Sobuj, S. I., Shifat, S. K., & Somadder, P. D., (2021). Cellulase producing bacteria isolation, screening and media optimization from local soil sample. American Journal of Microbiological Research. 9(3): 62–74.
  • Klaenhammer, T. R., (1988). Bacteriocins of lactic acid bacteria. Biochimie. 70(3): 337–349.
  • Abriouel, H., Franz, C. M., Ben Omar, N., & Gálvez, A., (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews. 35: 201–232.
  • Amin, A., Khan, M. A., Ehsanullah, M., Haroon, U., Azam, S. M. F., & Hameed, A., (2012). Production of peptide antibiotics by Bacillus sp: GU 057 indigenously isolated from saline soil. Brazilian Journal of Microbiology. 43: 1340–1346.
  • Baindara, P., Mandal, S. M., Chawla, N., Singh, P. K., Pinnaka, A. K., & Korpole, S., (2013). Characterization of two antimicrobial peptides produced by a halotolerant Bacillus subtilis strain SK.DU.4 isolated from a rhizosphere soil sample. AMB Express. 3: 1–11.
  • Harley, J.P., & Prescott, L.M., (2002). Laboratory Exercises in Microbiology (5th ed.) McGraw-Hill: New York, 466 pp.
  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., & Lipman, D.J., (1990). Basic local alignment search tool. Journal of Molecular Biology. 215: 403–410.
  • Hall, T.A., (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 41: 95–98.
  • Tamura, K., Stecher, G., & Kumar, S., (2021). MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution. 38: 3022–3027.
  • Farias, D.F., Carvalho, A.F.U., Oliveira, C.C., Sousa, N.M., Rocha-Bezerrra, L.C.B., Ferreira, P.M.P., ... & Hissa, D.C., (2010). Alternative method for quantification of alfa-amylase activity. Brazilian Journal of Biology. 70: 405–407.
  • Carlisle, G.E., & Falkinham, J.O. III., (1989). Enzyme activities and antibiotic susceptibility of colonial variants of Bacillus subtilis and Bacillus licheniformis. Applied and Environmental Microbiology. 55: 3026–3028
  • Sazcı, A., Erenler, K., & Radford, A., (1986). Detection of cellulolytic fungi by using Congo red as an indicator: a comparative study with the dinitrosalicyclic acid reagent method. Journal of Applied Microbiology. 61(6): 559–562.
  • Bizani, D.A.B.A., & Brandelli, A., (2002). Characterization of a bacteriocin produced by a newly isolated Bacillus sp. strain 8 A. Journal of Applied Microbiology. 93(3): 512–519.
  • Gupta, R. S., Patel, S., Saini, N., & Chen, S., (2020). Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. International Journal of Systematic and Evolutionary Microbiology. 70(11): 5753–5798.
  • Dang, N. T., Phan, T. T. H., Tran, H. T., Le, T. T., Nguyen, L. T. H., Nguyen, T. K. B., ... & Van Cao, S., (2024). Biofilm biosynthesis of Priestia megaterium M1VB5 strain Muc Son Thanh Hoa paper mill. Science and Technology Development Journal. 27(1): 3301–3307.
  • Bhimani, A. A., Bhimani, H. D., Vaghela, N. R., & Gohel, S. D., (2024). Cultivation methods, characterization, and biocatalytic potential of organic solid waste degrading bacteria isolated from sugarcane rhizospheric soil and compost. Biologia. 79(3): 953–974.
  • Cotter, P. D., Hill, C., & Ross, R. P., (2005). Bacteriocins: developing innate immunity for food. Nature Reviews Microbiology. 3(10): 777–788.
  • Melo-Bolívar, J. F., Ruiz Pardo, R. Y., Junca, H., Sidjabat, H. E., Cano-Lozano, J. A., & Villamil Díaz, L. M., (2022). Competitive exclusion bacterial culture derived from the gut microbiome of Nile Tilapia (Oreochromis niloticus) as a resource to efficiently recover probiotic strains: Taxonomic, genomic, and functional proof of concept. Microorganisms. 10(7): 1376.
  • Setlow, P., (2014). Germination of spores of Bacillus species: what we know and do not know. Journal of Bacteriology. 196(7): 1297–1305.
  • Biedendieck, R., Knuuti, T., Moore, S. J., & Jahn, D., (2021). The “beauty in the beast”—the multiple uses of Priestia megaterium in biotechnology. Applied Microbiology and Biotechnology. 105: 5719–5737. [27] Vary, P. S., Biedendieck, R., Fuerch, T., Meinhardt, F., Rohde, M., Deckwer, W. D., et al., (2007). Bacillus megaterium — from simple soil bacterium to industrial protein production host. Applied Microbiology and Biotechnology. 76: 957–967.
  • Hwang, H. H., Chien, P. R., Huang, F. C., Yeh, P. H., Hung, S. H. W., Deng, W. L., & Huang, C. C., (2022). A plant endophytic bacterium Priestia megaterium Strain BP-R2 isolated from the halophyte Bolboschoenus planiculmis enhances plant growth under salt and drought stresses. Microorganisms. 10(10): 2047.
  • Balasubramanian, S., Thomas, T. B., Mathavan, D., Kumar, R. S., Uma, G., Jones, R. D., & Citarasu, T., (2023). Isolation and Screening of Probiotic Bacteria from the Gut of Polychaetes as a Probiotic Potential for Fish Aquaculture. Nature Environment & Pollution Technology. 22(2).
  • Schallmey, M., Singh, A., & Ward, O. P., (2004). Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology. 50(1): 1–17.
  • Singh, R. K., Tiwari, M. K., Singh, R., & Lee, J. K., (2013). From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. International Journal of Molecular Sciences. 14(1): 1232–1277.
  • Pokhrel, B., Bashyal, B., & Magar, R. T., (2014). Production, purification and characterization of cellulase from Bacillus subtilis isolated from soil. European Journal of Biotechnology Bioscience. 2: 31–37.
  • Avşar, C., Koyuncu, H., & Aras, E. S., (2017). Isolation and molecular characterization of Bacillus spp. isolated from soil for production of industrial enzymes. Biological and Chemical Research. 3(9): 72–86
  • Contesini, F. J., Melo, R. R., & Sato, H. H., (2018). An overview of Bacillus proteases: from production to application. Critical Reviews in Biotechnology. 38(3): 321–334.
  • Hussain, A. A., Abdel-Salam, M. S., Abo-Ghalia, H. H., Hegazy, W. K., & Hafez, S. S., (2017). Optimization and molecular identification of novel cellulose degrading bacteria isolated from Egyptian environment. Journal of Genetic Engineering and Biotechnology. 15(1): 77–85.
  • Abd Elhameed, E., Sayed, A. R., Radwan, T. E., & Hassan, G., (2020). Biochemical and molecular characterization of five Bacillus isolates displaying remarkable carboxymethyl cellulase activities. Current Microbiology. 77: 3076–3084.
  • Rehman, R., Ahmed, M., Siddique, A., Hasan, F., Hameed, A., & Jamal, A., (2017). Catalytic role of thermostable metalloproteases from Bacillus subtilis KT004404 as dehairing and destaining agent. Applied Biochemistry and Biotechnology. 181: 434–450.
  • Nadeem, M., Baig, S., Qurat-ul-Ain, S., & Qazi, J. I., (2006). Microbial production of alkaline proteases by locally isolated Bacillus subtilis PCSIR-5. Pakistan Journal of Zoology. 38(2).
  • Cotter, P. D., Ross, R. P., & Hill, C., (2013). Bacteriocins—a viable alternative to antibiotics? Nature Reviews Microbiology. 11(2): 95–105.
  • Bierbaum, G., & Sahl, H. G., (2009). Lantibiotics: mode of action, biosynthesis and bioengineering. Current Pharmaceutical Biotechnology. 10(1): 2–18.
  • Singh, N., Pandey, P., Dubey, R. C., & Maheshwari, D. K., (2008). Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World Journal of Microbiology and Biotechnology. 24: 1669–1679.
  • Mutaz Al-Ajlani, M., & Hasnain, S., (2010). Bacteria exhibiting antimicrobial activities; screening for antibiotics and the associated genetic studies. Open Conference Proceedings Journal. 1: 230–238.
  • Cleveland, J., Montville, T. J., Nes, I. F., & Chikindas, M. L., (2001). Bacteriocins: safe, natural antimicrobials for food preservation. International Journal of Food Microbiology. 71(1): 1–20.
  • Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J., & Setlow, P., (2000). Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews. 64(3): 548–572.
  • Wongbunmak, A., Khiawjan, S., Suphantharika, M., & Pongtharangkul, T., (2020). BTEX biodegradation by Bacillus amyloliquefaciens subsp. plantarum W1 and its proposed BTEX biodegradation pathways. Scientific Reports. 10: 17408.
  • Lu, D., Zhang, Y., Niu, S., Wang, L., Lin, S., Wang, C., Ye, W., & Yan, C., (2012). Study of phenol biodegradation using Bacillus amyloliquefaciens strain WJDB-1 immobilized in alginate-chitosan-alginate (ACA) microcapsules by electrochemical method. Biodegradation. 23(2): 209–219.
  • Rehman, K., Imran, A., Amin, I., & Afzal, M., (2018). Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. Journal of Hazardous Materials. 349: 242–251.
  • Rao, B. P., Kasirajan, S., Mandal, A. B., Sudharsan, K., Sekaran, R. C. H. G., & Mandal, A. B., (2013). Characterization of exopolysaccharide from Bacillus amyloliquefaciens BPRGS for its bioflocculant activity. International Journal of Scientific & Engineering Research. 4: 1696–1704.
  • Sánchez-León, E., Huang-Lin, E., Amils, R., & Abrusci, C., (2023). Production and characterisation of an exopolysaccharide by Bacillus amyloliquefaciens: Biotechnological applications. Polymers. 15(6): 1550.
  • Zhang, J., Yue, X., Zeng, Y., Hua, E., Wang, M., & Sun, Y., (2018). Bacillus amyloliquefaciens levan and its silver nanoparticles with antimicrobial properties. Biotechnology & Biotechnological Equipment. 32(6): 1583–1589.
  • Baysal, O., & Yildiz, A., (2017). Bacillus subtilis: an industrially important microbe for enzymes production. EC Microbiology 5(4): 148–156.
  • Akinsemolu, A. A., Onyeaka, H., Odion, S., & Adebanjo, I., (2024). Exploring Bacillus subtilis: Ecology, biotechnological applications, and future prospects. Journal of Basic Microbiology. 64(6): 2300614.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Bilimi (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Nurcan Albayrak İskender 0000-0001-8413-3190

Yayımlanma Tarihi 25 Haziran 2025
Gönderilme Tarihi 11 Haziran 2025
Kabul Tarihi 22 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 1

Kaynak Göster

APA Albayrak İskender, N. (2025). Screening of Aerobic Spore-Forming Soil Bacteria for Potential Biotechnological Applications. Kastamonu University Journal of Engineering and Sciences, 11(1), 47-56. https://doi.org/10.55385/kastamonujes.1717548
AMA Albayrak İskender N. Screening of Aerobic Spore-Forming Soil Bacteria for Potential Biotechnological Applications. KUJES. Haziran 2025;11(1):47-56. doi:10.55385/kastamonujes.1717548
Chicago Albayrak İskender, Nurcan. “Screening of Aerobic Spore-Forming Soil Bacteria for Potential Biotechnological Applications”. Kastamonu University Journal of Engineering and Sciences 11, sy. 1 (Haziran 2025): 47-56. https://doi.org/10.55385/kastamonujes.1717548.
EndNote Albayrak İskender N (01 Haziran 2025) Screening of Aerobic Spore-Forming Soil Bacteria for Potential Biotechnological Applications. Kastamonu University Journal of Engineering and Sciences 11 1 47–56.
IEEE N. Albayrak İskender, “Screening of Aerobic Spore-Forming Soil Bacteria for Potential Biotechnological Applications”, KUJES, c. 11, sy. 1, ss. 47–56, 2025, doi: 10.55385/kastamonujes.1717548.
ISNAD Albayrak İskender, Nurcan. “Screening of Aerobic Spore-Forming Soil Bacteria for Potential Biotechnological Applications”. Kastamonu University Journal of Engineering and Sciences 11/1 (Haziran 2025), 47-56. https://doi.org/10.55385/kastamonujes.1717548.
JAMA Albayrak İskender N. Screening of Aerobic Spore-Forming Soil Bacteria for Potential Biotechnological Applications. KUJES. 2025;11:47–56.
MLA Albayrak İskender, Nurcan. “Screening of Aerobic Spore-Forming Soil Bacteria for Potential Biotechnological Applications”. Kastamonu University Journal of Engineering and Sciences, c. 11, sy. 1, 2025, ss. 47-56, doi:10.55385/kastamonujes.1717548.
Vancouver Albayrak İskender N. Screening of Aerobic Spore-Forming Soil Bacteria for Potential Biotechnological Applications. KUJES. 2025;11(1):47-56.