Araştırma Makalesi
BibTex RIS Kaynak Göster

Patlatma Sonucu Oluşan Yığın İçindeki Patar Miktarının Değerlendirilmesi

Yıl 2025, Cilt: 2 Sayı: 1, 51 - 60, 27.06.2025

Öz

Bu çalışma, bir kalker ocağında yapılan basamak patlatmaları sonucunda oluşan iri blok miktarı üzerinde özgül şarj ve süreksizlik aralığının etkilerini incelemektedir. Kontrollü koşullarda gerçekleştirilen on adet tam ölçekli patlatma kapsamında, birim hacim başına düşen patlayıcı miktarı (özgül şarj), patlatma yüzeyindeki ortalama süreksizlik aralığı ve oluşan iri blokların toplam kütlesi sistematik olarak kaydedilmiştir. Ayrıca kayaçların tek eksenli basınç dayanımı (TEBD) ve birim hacim ağırlığı laboratuvar testleriyle belirlenmiştir. Elde edilen veriler, özgül şarj ile iri blok miktarı arasında güçlü bir ters yönlü ilişki (R² = 0.75) olduğunu ortaya koymuştur. Diğer yandan, süreksizlik aralığı tek başına zayıf bir ilişki göstermiştir (R² = 0.12); bu da süreksizliklerin yalnızca aralıklarına bakılarak iri blok oluşumunun güvenilir biçimde tahmin edilemeyeceğini göstermektedir. Her iki parametrenin birlikte değerlendirilmesiyle modelin öngörü gücü belirgin şekilde artmıştır (R² = 0.80). Sonuçlar, patlatma tasarımında özgül şarjın jeolojik yapı ile birlikte optimize edilmesinin, iri parça oluşumunu azaltmada etkili olduğunu göstermektedir. Benzer jeolojik koşullarda özgül şarj değerinin 0.38–0.40 kg/m³ üzerinde tutulması önerilmektedir. Gelecek çalışmalarda süreksizlik yönelimi ve sürekliliği gibi yapısal faktörlerin de modele dahil edilmesi tavsiye edilmektedir.

Kaynakça

  • [1] Singh, D.P. & Sarma, K.S. (1983). Influence of joints on rock blasting: A model scale study. Proceedings of the 1st International Symposium on Rock Fragmentation by Blasting, Lulea, Sweden.
  • [2] Singh, D.P. & Sastry, V.R. (1987). Role of weakness planes in bench blasting: A critical study. Proceedings of the 2nd International Symposium on Rock Fragmentation by Blasting, Keystone, Colorado.
  • [3] Ash, R.L. (1973). The influence of geological discontinuities on rock blasting. Ph.D. Dissertation, University of Minnesota, Minneapolis.
  • [4] Fourney, L.W., Barker, B.D., & Holloway, C.D. (1983). Fragmentation in jointed rock material. Proceedings of the 1st International Symposium on Rock Fragmentation by Blasting, Lulea, Sweden, pp. 505–531.
  • [5] Özkahraman, H.T. & Bilgin, H.A. (1996). Hâkim süreksizlik yönünün patlatmaya etkisi: Yerinde inceleme. Proceedings of the 2nd Drilling and Blasting Symposium, Ankara.
  • [6] Lande, G. (1983). Influence of structural geology on controlled blasting in sedimentary rocks: Case history. Proceedings of the International Symposium on Rock Fragmentation by Blasting, Lulea, Sweden.
  • [7] Bilgin, H.A., Paşamehmetoğlu, A.G., & Özkahraman, H.T. (1993). Optimum burden determination and fragmentation evaluation by full scale slab blasting. Proceedings of the 4th International Symposium on Rock Fragmentation by Blasting, Vienna, Austria.
  • [8] Fairhurst, C. (2019). Rock engineering: where is the laboratory?. Rock Mechanics and Rock Engineering, 52(12), 4865-4888.
  • [9] Sinha, S. (2020). Advancing continuum and discontinuum models of brittle rock damage and rock-support interaction (Doctoral dissertation, Colorado School of Mines).
  • [10] Patterson, J. (2009). Human error in mining: A multivariable analysis of mining accidents/incidents in Queensland, Australia and the United States of America using the human factors analysis and classification system framework.
  • [11] Pekin, A. (2010). Ercan Taş Ocağı delme-patlatma sisteminin incelenmesi. Balıkesir University, Institute of Science and Technology, MSc Thesis, Balıkesir.
  • [12] Topal, İ., Elevli, B., Akçakoca, H., & Oğul, K. (2011). Bir kırmataş işletmesinde patlatma delik düzeni değişiminin kayaç parçalanmasına etkisi. Proceedings of the 22nd International Mining Congress and Exhibition of Turkey, Ankara.
  • [13] Gupta, R.N. & Adhikari, G.R. (1989). Influence of discontinuity structure on rock fragmentation by blasting. International Journal of Mining and Geological Engineering, pp. 239–248.
  • [14] Jochmans, K. (2022). Heteroscedasticity-robust inference in linear regression models with many covariates. Journal of the American Statistical Association, 117(538), 887-896.
  • [15] Özkahraman, H.T. (1994). Critical evaluation of blast design parameters for discontinuous rocks by blasting. Ph.D. Thesis, Middle East Technical University (METU), Ankara.
  • [16] Rout, M., & Parida, C. K. (2007). Optimization of blasting parameters in opencast mines (Doctoral dissertation).
  • [17] Kong, D., Saroglou, C., Wu, F., Sha, P., & Li, B. (2021). Development and application of UAV-SfM photogrammetry for quantitative characterization of rock mass discontinuities. International Journal of Rock Mechanics and Mining Sciences, 141, 104729.
  • [18] Kong, D., Saroglou, C., Wu, F., Sha, P., & Li, B. (2021). Development and application of UAV-SfM photogrammetry for quantitative characterization of rock mass discontinuities. International Journal of Rock Mechanics and Mining Sciences, 141, 104729.

Evaluation of the Amount of Boulder in the Pile as a Result of Blasting

Yıl 2025, Cilt: 2 Sayı: 1, 51 - 60, 27.06.2025

Öz

This study investigates the effects of specific charge and discontinuity spacing on boulder formation resulting from bench blasting in a limestone quarry. Ten full-scale blasts were carried out under controlled conditions, during which the amount of explosive per unit volume (specific charge), the average spacing of discontinuities on the blast face, and the total mass of oversized boulders were systematically recorded. Uniaxial compressive strength (UCS) and unit volume weight of the rock were also determined through laboratory testing. The results revealed a strong inverse correlation between specific charge and boulder quantity (R² = 0.75), indicating that increased energy input significantly reduces the formation of oversized fragments. Conversely, discontinuity spacing alone exhibited a weak correlation (R² = 0.12), suggesting that spacing without consideration of orientation and persistence is not a reliable predictor. When both parameters were evaluated together, the predictive power increased notably (R² = 0.80), highlighting the importance of their combined influence. The findings offer practical guidance for optimizing blast design to minimize oversize material, improve loading safety, and reduce secondary breakage costs. Maintaining specific charge levels above 0.38–0.40 kg/m³ in similar geological conditions is recommended. Further studies incorporating joint orientation and fracture properties are encouraged.

Kaynakça

  • [1] Singh, D.P. & Sarma, K.S. (1983). Influence of joints on rock blasting: A model scale study. Proceedings of the 1st International Symposium on Rock Fragmentation by Blasting, Lulea, Sweden.
  • [2] Singh, D.P. & Sastry, V.R. (1987). Role of weakness planes in bench blasting: A critical study. Proceedings of the 2nd International Symposium on Rock Fragmentation by Blasting, Keystone, Colorado.
  • [3] Ash, R.L. (1973). The influence of geological discontinuities on rock blasting. Ph.D. Dissertation, University of Minnesota, Minneapolis.
  • [4] Fourney, L.W., Barker, B.D., & Holloway, C.D. (1983). Fragmentation in jointed rock material. Proceedings of the 1st International Symposium on Rock Fragmentation by Blasting, Lulea, Sweden, pp. 505–531.
  • [5] Özkahraman, H.T. & Bilgin, H.A. (1996). Hâkim süreksizlik yönünün patlatmaya etkisi: Yerinde inceleme. Proceedings of the 2nd Drilling and Blasting Symposium, Ankara.
  • [6] Lande, G. (1983). Influence of structural geology on controlled blasting in sedimentary rocks: Case history. Proceedings of the International Symposium on Rock Fragmentation by Blasting, Lulea, Sweden.
  • [7] Bilgin, H.A., Paşamehmetoğlu, A.G., & Özkahraman, H.T. (1993). Optimum burden determination and fragmentation evaluation by full scale slab blasting. Proceedings of the 4th International Symposium on Rock Fragmentation by Blasting, Vienna, Austria.
  • [8] Fairhurst, C. (2019). Rock engineering: where is the laboratory?. Rock Mechanics and Rock Engineering, 52(12), 4865-4888.
  • [9] Sinha, S. (2020). Advancing continuum and discontinuum models of brittle rock damage and rock-support interaction (Doctoral dissertation, Colorado School of Mines).
  • [10] Patterson, J. (2009). Human error in mining: A multivariable analysis of mining accidents/incidents in Queensland, Australia and the United States of America using the human factors analysis and classification system framework.
  • [11] Pekin, A. (2010). Ercan Taş Ocağı delme-patlatma sisteminin incelenmesi. Balıkesir University, Institute of Science and Technology, MSc Thesis, Balıkesir.
  • [12] Topal, İ., Elevli, B., Akçakoca, H., & Oğul, K. (2011). Bir kırmataş işletmesinde patlatma delik düzeni değişiminin kayaç parçalanmasına etkisi. Proceedings of the 22nd International Mining Congress and Exhibition of Turkey, Ankara.
  • [13] Gupta, R.N. & Adhikari, G.R. (1989). Influence of discontinuity structure on rock fragmentation by blasting. International Journal of Mining and Geological Engineering, pp. 239–248.
  • [14] Jochmans, K. (2022). Heteroscedasticity-robust inference in linear regression models with many covariates. Journal of the American Statistical Association, 117(538), 887-896.
  • [15] Özkahraman, H.T. (1994). Critical evaluation of blast design parameters for discontinuous rocks by blasting. Ph.D. Thesis, Middle East Technical University (METU), Ankara.
  • [16] Rout, M., & Parida, C. K. (2007). Optimization of blasting parameters in opencast mines (Doctoral dissertation).
  • [17] Kong, D., Saroglou, C., Wu, F., Sha, P., & Li, B. (2021). Development and application of UAV-SfM photogrammetry for quantitative characterization of rock mass discontinuities. International Journal of Rock Mechanics and Mining Sciences, 141, 104729.
  • [18] Kong, D., Saroglou, C., Wu, F., Sha, P., & Li, B. (2021). Development and application of UAV-SfM photogrammetry for quantitative characterization of rock mass discontinuities. International Journal of Rock Mechanics and Mining Sciences, 141, 104729.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Maden Tasarımı, İşletme ve Ekonomisi
Bölüm Araştırma Makalesi
Yazarlar

Abdurrahman Tosun

Yayımlanma Tarihi 27 Haziran 2025
Gönderilme Tarihi 29 Mayıs 2025
Kabul Tarihi 27 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 2 Sayı: 1

Kaynak Göster

IEEE A. Tosun, “Evaluation of the Amount of Boulder in the Pile as a Result of Blasting”, KETBTD, c. 2, sy. 1, ss. 51–60, 2025.