In this study, some characterizations for developable Bertrand o - sets of a spacelike ruled surface are introduced. It is shown that if there exist more than one developable Bertrand o sets of a developable spacelike ruled surface, then the striction curve of reference surface is a general helix in the Minkowski 3-space R3 1.
[1] Beem, J.K., Ehrlich, P.E., Global Lorentzian Geometry, Marcel Dekker, New York, 1981.
[2] Chen, Y.J., Ravani, B., Oset Surface Generation and Contouring in Computer Aided Design,
ASME Journal of Mechanisms, Transmissions and Automation in Design, 1987.
[3] Farouki, R.T., The Approximation of Non-Degenerate oset Surfaces, Computer Aided Geometric
Design, 3(1) (1986) 15-43.
[4] Kasap E., Kuruoglu, N., The Bertrand Osets of Ruled Surfaces in R3
1, ACTA MATHEMATICA
VIETNAMICA, 31(1) (2006) 39-48.
[5] Kim, Y.H., Yoon, W.D., Classication of ruled surfaces in Minkowski 3-space, J. of Geom.
and Physics, 49(1) (2004) 89-100.
[6] Kucuk, A., On the developable timelike trajectory ruled surfaces in Lorentz 3-space R3
1, App.
Math. and Comp., 157(2) (2004) 483-489.
[7] Kucuk, A., On the developable of Bertrand Trajectory Ruled Surface Osets, Intern. Math.
Journal, 4(1) (2003) 57-64.
[8] O'Neill, B., Semi Riemannian Geometry with Applications to Relativity, Academic Press,
New York-London, 1983.
[9] Onder, M., Ugurlu, H.H., Frenet frames and invariants of timelike ruled surfaces, Ain Shams
Eng J. 4(4) (2013) 507-513.
[10] Ratclie, J.G., Foundations of Hyperbolic Manifolds, Springer, (2006).
[11] Ravani, B., Ku, T.S., Bertrand Osets of ruled and developable surfaces, Comp. Aided Geom.
Design, 23(2) (1991) 147-152.
[12] Ugurlu, H.H., Onder, M., On Frenet Frames and Frenet Invariants of Skew Spacelike Ruled
Surfaces, VII. Geometry Symposium, Krehir, Turkey, 07-10 July 2009.
[13] Ugurlu, H.H., C alskan, A., Darboux Ani Donme Vektorleri ile Spacelike ve Timelike Yuzeyler
Geometrisi, Celal Bayar Universitesi Yaynlar, Yayn No: 0006, 2012.
[14] Yang, A.T., Kirson Y., Both B., On a Kinematics Theory for Ruled Surface, Proceedings of
Fourth World Congress on the Theory of Machines and Mechanisms, Newcastle Upon Tyne,
England, 737-742, 1975.
[1] Beem, J.K., Ehrlich, P.E., Global Lorentzian Geometry, Marcel Dekker, New York, 1981.
[2] Chen, Y.J., Ravani, B., Oset Surface Generation and Contouring in Computer Aided Design,
ASME Journal of Mechanisms, Transmissions and Automation in Design, 1987.
[3] Farouki, R.T., The Approximation of Non-Degenerate oset Surfaces, Computer Aided Geometric
Design, 3(1) (1986) 15-43.
[4] Kasap E., Kuruoglu, N., The Bertrand Osets of Ruled Surfaces in R3
1, ACTA MATHEMATICA
VIETNAMICA, 31(1) (2006) 39-48.
[5] Kim, Y.H., Yoon, W.D., Classication of ruled surfaces in Minkowski 3-space, J. of Geom.
and Physics, 49(1) (2004) 89-100.
[6] Kucuk, A., On the developable timelike trajectory ruled surfaces in Lorentz 3-space R3
1, App.
Math. and Comp., 157(2) (2004) 483-489.
[7] Kucuk, A., On the developable of Bertrand Trajectory Ruled Surface Osets, Intern. Math.
Journal, 4(1) (2003) 57-64.
[8] O'Neill, B., Semi Riemannian Geometry with Applications to Relativity, Academic Press,
New York-London, 1983.
[9] Onder, M., Ugurlu, H.H., Frenet frames and invariants of timelike ruled surfaces, Ain Shams
Eng J. 4(4) (2013) 507-513.
[10] Ratclie, J.G., Foundations of Hyperbolic Manifolds, Springer, (2006).
[11] Ravani, B., Ku, T.S., Bertrand Osets of ruled and developable surfaces, Comp. Aided Geom.
Design, 23(2) (1991) 147-152.
[12] Ugurlu, H.H., Onder, M., On Frenet Frames and Frenet Invariants of Skew Spacelike Ruled
Surfaces, VII. Geometry Symposium, Krehir, Turkey, 07-10 July 2009.
[13] Ugurlu, H.H., C alskan, A., Darboux Ani Donme Vektorleri ile Spacelike ve Timelike Yuzeyler
Geometrisi, Celal Bayar Universitesi Yaynlar, Yayn No: 0006, 2012.
[14] Yang, A.T., Kirson Y., Both B., On a Kinematics Theory for Ruled Surface, Proceedings of
Fourth World Congress on the Theory of Machines and Mechanisms, Newcastle Upon Tyne,
England, 737-742, 1975.
Önder, M., Ekinci, Z., & Küçük, A. (2016). DEVELOPABLE BERTRAND OFFSETS OF TRAJECTORY SPACELIKE RULED SURFACES. Konuralp Journal of Mathematics, 4(1), 140-147.
AMA
Önder M, Ekinci Z, Küçük A. DEVELOPABLE BERTRAND OFFSETS OF TRAJECTORY SPACELIKE RULED SURFACES. Konuralp J. Math. Nisan 2016;4(1):140-147.
Chicago
Önder, Mehmet, Zehra Ekinci, ve Ahmet Küçük. “DEVELOPABLE BERTRAND OFFSETS OF TRAJECTORY SPACELIKE RULED SURFACES”. Konuralp Journal of Mathematics 4, sy. 1 (Nisan 2016): 140-47.
EndNote
Önder M, Ekinci Z, Küçük A (01 Nisan 2016) DEVELOPABLE BERTRAND OFFSETS OF TRAJECTORY SPACELIKE RULED SURFACES. Konuralp Journal of Mathematics 4 1 140–147.
IEEE
M. Önder, Z. Ekinci, ve A. Küçük, “DEVELOPABLE BERTRAND OFFSETS OF TRAJECTORY SPACELIKE RULED SURFACES”, Konuralp J. Math., c. 4, sy. 1, ss. 140–147, 2016.
ISNAD
Önder, Mehmet vd. “DEVELOPABLE BERTRAND OFFSETS OF TRAJECTORY SPACELIKE RULED SURFACES”. Konuralp Journal of Mathematics 4/1 (Nisan 2016), 140-147.
JAMA
Önder M, Ekinci Z, Küçük A. DEVELOPABLE BERTRAND OFFSETS OF TRAJECTORY SPACELIKE RULED SURFACES. Konuralp J. Math. 2016;4:140–147.
MLA
Önder, Mehmet vd. “DEVELOPABLE BERTRAND OFFSETS OF TRAJECTORY SPACELIKE RULED SURFACES”. Konuralp Journal of Mathematics, c. 4, sy. 1, 2016, ss. 140-7.
Vancouver
Önder M, Ekinci Z, Küçük A. DEVELOPABLE BERTRAND OFFSETS OF TRAJECTORY SPACELIKE RULED SURFACES. Konuralp J. Math. 2016;4(1):140-7.