Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 10 Sayı: 2, 368 - 374, 31.10.2022

Öz

Kaynakça

  • [1] R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda stalike and convex functions, Appl. Math. Lett., 25(2012), no. 3, 344–351.
  • [2] M. K. Aouf, Bounded spiral-like functions with fixed second coefficient, Internat. J. Math. Math. Sci., 12(1989), no. 1, 113-118.
  • [3] M.K. Aouf, Bounded p􀀀valent Robertson functions of order a, Indian J. Pure Appl. Math., 16 (2001), no. 7, 775–790.
  • [4] M.K. Aouf and T.M. Seoudy, Certain class of bi–Bazilevic functions with bounded boundary rotation involving Salagean operator, Constructive Math. Anal., 3(2020), no. 4, 139–149.
  • [5] D. A. Brannan and T.S. Taha, D.A.Brannan,T.S.Taha,On some classes of bi-univalent functions, Studia Univ. Babe¸s-Bolyai Math.,31(1986), no. 2, 70–77.
  • [6] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24(2011), no. 9, 1569–1573.
  • [7] S. P. Goyal and P. Goswami, Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc., 20(2012), no.3, 179–182.
  • [8] P. K. Kulshrestha, Bounded Rebertson functions, Rend. Mat., 6 (1976), no. 7, 137–150.
  • [9] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18(1967), 63–68.
  • [10] R. J. Libera and A. E. Livingston, Bounded functions with postive real part, Czechoslovak Math. J., 22(1972), no. 97, 195-209.
  • [11] A. M. Nasr and M. K. Aouf, Bounded convex functions of complex order, Mansoura Sci. Bull., 10 (1983), 513–526.
  • [12] A. M. Nasr and M. K. Aouf, Bounded starlike functions of complex order, Proc. Indian Acad. Sci. (Math. Sci.), 92 (1983), no. 2, 97–102.
  • [13] M. S. Robertson, On the theory of univalent functions, Ann. Math., 37 (1936), 374–408.
  • [14] R. Singh and V. Singh, On a class of bounded starlike functions, Indian J. Pure Appl. Math., 5 (1974), 733–754.
  • [15] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(2010), 1188–1192.
  • [16] T. S. Taha, Topics in univalent function theory, Ph. D. Thesis, University of London,1981.

Classes of bi-Starlike and bi-Convex Bounded Functions with Complex Order

Yıl 2022, Cilt: 10 Sayı: 2, 368 - 374, 31.10.2022

Öz

In this paper, estimates for second and third coefficients of certain classes of bi-starlike and bi-convex bounded functions with complex order in the open unit disk are determined, and certain special cases are also indicated.

Kaynakça

  • [1] R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda stalike and convex functions, Appl. Math. Lett., 25(2012), no. 3, 344–351.
  • [2] M. K. Aouf, Bounded spiral-like functions with fixed second coefficient, Internat. J. Math. Math. Sci., 12(1989), no. 1, 113-118.
  • [3] M.K. Aouf, Bounded p􀀀valent Robertson functions of order a, Indian J. Pure Appl. Math., 16 (2001), no. 7, 775–790.
  • [4] M.K. Aouf and T.M. Seoudy, Certain class of bi–Bazilevic functions with bounded boundary rotation involving Salagean operator, Constructive Math. Anal., 3(2020), no. 4, 139–149.
  • [5] D. A. Brannan and T.S. Taha, D.A.Brannan,T.S.Taha,On some classes of bi-univalent functions, Studia Univ. Babe¸s-Bolyai Math.,31(1986), no. 2, 70–77.
  • [6] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24(2011), no. 9, 1569–1573.
  • [7] S. P. Goyal and P. Goswami, Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc., 20(2012), no.3, 179–182.
  • [8] P. K. Kulshrestha, Bounded Rebertson functions, Rend. Mat., 6 (1976), no. 7, 137–150.
  • [9] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18(1967), 63–68.
  • [10] R. J. Libera and A. E. Livingston, Bounded functions with postive real part, Czechoslovak Math. J., 22(1972), no. 97, 195-209.
  • [11] A. M. Nasr and M. K. Aouf, Bounded convex functions of complex order, Mansoura Sci. Bull., 10 (1983), 513–526.
  • [12] A. M. Nasr and M. K. Aouf, Bounded starlike functions of complex order, Proc. Indian Acad. Sci. (Math. Sci.), 92 (1983), no. 2, 97–102.
  • [13] M. S. Robertson, On the theory of univalent functions, Ann. Math., 37 (1936), 374–408.
  • [14] R. Singh and V. Singh, On a class of bounded starlike functions, Indian J. Pure Appl. Math., 5 (1974), 733–754.
  • [15] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(2010), 1188–1192.
  • [16] T. S. Taha, Topics in univalent function theory, Ph. D. Thesis, University of London,1981.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Articles
Yazarlar

Mohamed Kamal Aouf

Tamer Seoudy

Yayımlanma Tarihi 31 Ekim 2022
Gönderilme Tarihi 22 Şubat 2021
Kabul Tarihi 10 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 2

Kaynak Göster

APA Aouf, M. K., & Seoudy, T. (2022). Classes of bi-Starlike and bi-Convex Bounded Functions with Complex Order. Konuralp Journal of Mathematics, 10(2), 368-374.
AMA Aouf MK, Seoudy T. Classes of bi-Starlike and bi-Convex Bounded Functions with Complex Order. Konuralp J. Math. Ekim 2022;10(2):368-374.
Chicago Aouf, Mohamed Kamal, ve Tamer Seoudy. “Classes of Bi-Starlike and Bi-Convex Bounded Functions With Complex Order”. Konuralp Journal of Mathematics 10, sy. 2 (Ekim 2022): 368-74.
EndNote Aouf MK, Seoudy T (01 Ekim 2022) Classes of bi-Starlike and bi-Convex Bounded Functions with Complex Order. Konuralp Journal of Mathematics 10 2 368–374.
IEEE M. K. Aouf ve T. Seoudy, “Classes of bi-Starlike and bi-Convex Bounded Functions with Complex Order”, Konuralp J. Math., c. 10, sy. 2, ss. 368–374, 2022.
ISNAD Aouf, Mohamed Kamal - Seoudy, Tamer. “Classes of Bi-Starlike and Bi-Convex Bounded Functions With Complex Order”. Konuralp Journal of Mathematics 10/2 (Ekim 2022), 368-374.
JAMA Aouf MK, Seoudy T. Classes of bi-Starlike and bi-Convex Bounded Functions with Complex Order. Konuralp J. Math. 2022;10:368–374.
MLA Aouf, Mohamed Kamal ve Tamer Seoudy. “Classes of Bi-Starlike and Bi-Convex Bounded Functions With Complex Order”. Konuralp Journal of Mathematics, c. 10, sy. 2, 2022, ss. 368-74.
Vancouver Aouf MK, Seoudy T. Classes of bi-Starlike and bi-Convex Bounded Functions with Complex Order. Konuralp J. Math. 2022;10(2):368-74.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.