Araştırma Makalesi
BibTex RIS Kaynak Göster

Sıçanlarda Glifosat İzopropilamin Akut Maruziyeti Sonrası DNA hasarı ve Oksidan/Antioksidan Denge Değerlendirmesi

Yıl 2025, Cilt: 18 Sayı: 2, 144 - 152, 27.06.2025

Öz

Bu çalışmada, glifosat izopropilamin (GI) tuzunun akut toksisitesini değerlendirmek amacıyla sıçanlara farklı dozlarda (LD50’nin 1/10 ve 1/2’si) oral olarak uygulanmasının, DNA hasarı, oksidan/antioksidan denge ve bazı biyokimyasal parametreler üzerindeki etkileri incelenmiştir. Sonuçlar, yüksek doz grubundaki sıçanlarda 8-hidroksi-2’-deoksiguanozin (8-OHdG) seviyelerinin belirgin şekilde arttığını, malondialdehit (MDA) düzeylerinin kan ve kalp dışındaki tüm dokularda yükseldiğini ve glutatyon (GSH) seviyelerinin ise azaldığını göstermiştir. Ayrıca, katalaz (CAT) ve süperoksit dismutaz (SOD) enzim aktivitelerinde anlamlı artışlar tespit edilmiştir. Biyokimyasal analizler, herbisite akut maruziyetin serum alkalen fosfataz (ALP), albümin ve üre seviyelerinde artışa yol açtığını ancak AST, ALT, GGT, total protein (Tp), kreatinin ve CK-MB seviyelerinde belirgin bir değişiklik oluşturmadığını ortaya koymuştur. Bu bulgular, yüksek dozda glifosata maruziyetin oksidatif stres ve DNA hasarını tetikleyerek toksik etkilere neden olabileceğini göstermektedir.

Kaynakça

  • Aebi, H. (1974). Catalase in vitro. In: Bergmeyer, U. (Ed.), Methods of Enzymatic Analysis, Academic Press, New York and London, pp. 673–677.
  • Alvarez-Moya, C., Reynoso Silva, M., Villalobos Arámbula, A. R., Islas Sandoval, A., Castañeda Vasquez, H., & González Montes, R. M. (2011). Evaluation of genetic damage induced by glyphosate isopropylamine salt using Tradescantia bioassays. Genetics and Molecular Biology, 34, 127-130.
  • Amer, S. M., Aly, F. A. E., Farghaly, A. A., & Ibrahim, A. A. E. (2006). In vitro and in vivo evaluation of the genotoxicity of the herbicide glyphosate in mice. Bulletin of the National Research Centre 31(5), 427-446.
  • Astiz, M., de Alaniz, M. J., & Marra, C. A. (2009). Antioxidant defense system in rats simultaneously intoxicated with agrochemicals. Environmental Toxicology and Pharmacology, 28(3), 465-473.
  • Basarslan, S. K., & Basarslan, F. (2023). Intralipid and Caffeic Acid Phenethyl Ester Reverse the Neurotoxic Effects of Organophosphate Poisoning in Rats. Nigerian Journal of Clinical Practice, 26(6), 686-693.
  • Bayezit, M., & Kart, A. (2021). Serbest Radikaller, Oksidatif Stres ve Hücresel Hasar. Turkiye Klinikleri Veterinary Sciences-Pharmacology and Toxicology-Special Topics, 7(3), 1-16.
  • Benbrook, C. M. (2019). How did the US EPA and IARC reach diametrically opposed conclusions on the genotoxicity of glyphosate-based herbicides?. Environmental Sciences Europe, 31(1), 1-16.
  • Beutler, E., Duron, O., & Kelly, B.M. (1963). Improved method for the determination of blood glutathione. The Journal of Laboratory and Clinical Medicine, 61, 882–888.
  • Bou-Mitri, C., Dagher, S., Makkawi, A., Khreyss, Z., & Hassan, H. (2025). Glyphosate in Food: A Narrative Review. Journal of Agriculture and Food Research, 101643.
  • Bukowska, B. (2004). 2, 4, 5‐T and 2, 4, 5‐TCP induce oxidative damage in human erythrocytes: the role of glutathione. Cell Biology International, 28(7), 557-563.
  • Cathcart, R.F. (1985). Vitamin C: the nontoxic, nonrate-limited, antioxidant free radical scavenger. Medical Hypotheses, 18(1), 61-7
  • Chen, K., Liu, J. B., Tie, C. Z., & Wang, L. (2022). Trehalose prevents glyphosate-induced testicular damage in roosters via its antioxidative properties. Research in Veterinary Science, 152, 314-322.
  • Chhabra, S. K., Hashim, S., & Rao, A. R. (1993). Modulation of hepatic glutathione system of enzymes in suckling mouse pups exposed translactationally to malathion. Journal of Applied Toxicology, 13(6), 411-416.
  • Çavuşoğlu, K., Yapar, K., Oruc, E., & Yalçın, E. (2011). Protective effect of Ginkgo biloba L. leaf extract against glyphosate toxicity in Swiss albino mice. Journal of Medicinal Food, 14(10), 1263-1272.
  • Dar, M. A., Khan, A. M., Raina, R., Verma, P. K., & Wani, N. M. (2019). Effect of bifenthrin on oxidative stress parameters in the liver, kidneys, and lungs of rats. Environmental Science and Pollution Research, 26, 9365-9370. De La Casa-Resino, I., Hernández-Moreno, D., Navas, J. M., Soler, F., & Pérez-López, M. (2013). Non-destructive multibiomarker approach in European quail (Coturnix coturnix coturnix) exposed to the herbicide atrazine. Archives of Environmental Contamination and Toxicology, 65, 567-574.
  • Drabkin, D.L., & Austin, J.H. (1935). Spectrophotometric studies. II. Preparations from washed blood cells; nitric oxide hemoglobin and sulfhemoglobin. The Journal of Biological Chemistry., 112, 51–65.
  • Draper, H.H., & Hardley, M. (1990). Malondialdehyde determination as index of lipid peroxidation. Methods in Enzymology, 186, 421–431.
  • Fadel, H. H., Thabet, O. A., Darwish, A. A., & Gamal, M. (2022). Multiple organ dysfunction in mice exposed to glyphosate-based Herbicides. Egyptian Journal of Chemistry, 65(132), 417-426.
  • Gao, H., Chen, J., Ding, F., Chou, X., Zhang, X., Wan, Y., ... & Wu, Q. (2019). Activation of the N‐methyl‐d‐aspartate receptor is involved in glyphosate‐induced renal proximal tubule cell apoptosis. Journal of Applied Toxicology, 39(8), 1096-1107.
  • Graille, M., Wild, P., Sauvain, J. J., Hemmendinger, M., Guseva Canu, I., & Hopf, N. B. (2020). Urinary 8-OHdG as a biomarker for oxidative stress: a systematic literature review and meta-analysis. International Journal of Molecular Sciences, 21(11), 3743.
  • Halliwell, B., & Gutteridge, J. M. C. (2015). Free Radicals in Biology and Medicine (5th ed.). Oxford University Press.
  • Helal, A., & Moussa, H. (2005). Chromosomal aberrations induced by glyphosate isopropylamine herbicide and trials for diminuting its toxicity using some chemical inactivators and antioxidant. Veterinary Medical Journal (Giza), 53(2), 169-187.
  • Hernández-Moreno, D., Míguez, M. P., Soler, F., & Pérez-López, M. (2018). Influence of sex on biomarkers of oxidative stress in the kidney, lungs, and liver of rabbits after exposure to diazinon. Environmental Science and Pollution Research, 25, 32458-32465.
  • Ince, S., Arslan-Acaroz, D., Demirel, H. H., Varol, N., Ozyurek, H. A., Zemheri, F., & Kucukkurt, I. (2017). Taurine alleviates malathion induced lipid peroxidation, oxidative stress, and proinflammatory cytokine gene expressions in rats. Biomedicine & Pharmacotherapy, 96, 263-268.
  • Jasper, R., Locatelli, G. O., Pilati, C., & Locatelli, C. (2012). Evaluation of biochemical, hematological and oxidative parameters in mice exposed to the herbicide glyphosate-Roundup®. Interdisciplinary Toxicology, 5(3), 133.
  • Kanbur, M., Eraslan, G., & Silici, S. (2009). Antioxidant effect of propolis against exposure to propetamphos in rats. Ecotoxicology and Environmental Safety, 72(3), 909-915.
  • Khan, A. M., & Rampal, S. (2014). Effects of repeated oral administration of pazufloxacin mesylate and meloxicam on the antioxidant status in rabbits. Journal of the American Association for Laboratory Animal Science, 53(4), 399-403.
  • Koureas, M., Tsezou, A., Tsakalof, A., Orfanidou, T., & Hadjichristodoulou, C. (2014). Increased levels of oxidative DNA damage in pesticide sprayers in Thessaly Region (Greece). Implications of pesticide exposure. Science of the Total Environment, 496, 358-364.
  • Kunapareddy, T., & Kalisetty, S. (2021). Glyphosate poisoning–a case report. Journal of postgraduate medicine, 67(1), 36-38.
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.
  • Luck, H. (1955). Catalase. In: Bergmeyer, H.U. (Ed.), Methods in Analysis. Academy Press, London.
  • Mansour, S. A., & Mossa, A. T. H. (2009). Lipid peroxidation and oxidative stress in rat erythrocytes induced by chlorpyrifos and the protective effect of zinc. Pesticide biochemistry and physiology, 93(1), 34-39.
  • Mazuryk, J., Klepacka, K., Kutner, W., & Sharma, P. S. (2024a). Glyphosate: hepatotoxicity, nephrotoxicity, hemotoxicity, carcinogenicity, and clinical cases of endocrine, reproductive, cardiovascular, and pulmonary system intoxication. ACS Pharmacology & Translational Science, 7(5), 1205-1236.
  • Mazuryk, J., Klepacka, K., Kutner, W., & Sharma, P. S. (2024b). Glyphosate: Impact on the microbiota-gut-brain axis and the immune-nervous system, and clinical cases of multiorgan toxicity. Ecotoxicology and Environmental Safety, 271, 115965.
  • Moon, J. M., Chun, B. J., Cho, Y. S., Lee, S. D., Hong, Y. J., Shin, M. H., ... & Ryu, H. H. (2018). Cardiovascular effects and fatality may differ according to the formulation of glyphosate salt herbicide. Cardiovascular Toxicology, 18, 99-107.
  • Noeman, S. A., Hamooda, H. E., & Baalash, A. A. (2011). Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats. Diabetology & metabolic syndrome, 3, 1-8.
  • Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95: 351–358.
  • Picetti, E., Generali, M., Mensi, F., Neri, G., Damia, R., Lippi, G., & Cervellin, G. (2017). Glyphosate ingestion causing multiple organ failure: a near-fatal case report. Acta Bio Medica: Atenei Parmensis, 88(4), 533.
  • Pieniążek, D., Bukowska, B., & Duda, W. (2004). Comparison of the effect of Roundup Ultra 360 SL pesticide and its active compound glyphosate on human erythrocytes. Pesticide Biochemistry and Physiology, 79(2), 58-63.
  • Roberts, D. M., Buckley, N. A., Mohamed, F., Eddleston, M., Goldstein, D. A., Mehrsheikh, A., ... & Dawson, A. H. (2010). A prospective observational study of the clinical toxicology of glyphosate-containing herbicides in adults with acute self-poisoning. Clinical Toxicology, 48(2), 129-136.
  • Sies, H., & Jones, D. P. (2020). Oxidative Stress: A Concept in Redox Biology and Medicine. Redox Biology, 1(1), 1-6. https://doi.org/10.1016/j.redox.2020.101418
  • Smith‐Roe, S. L., Swartz, C. D., Rashid, A., Christy, N. C., Sly, J. E., Chang, X., ... & Witt, K. L. (2023). Evaluation of the herbicide glyphosate,(aminomethyl) phosphonic acid, and glyphosate‐based formulations for genotoxic activity using in vitro assays. Environmental and Molecular Mutagenesis, 64(4), 202-233.
  • Sule, R. O., Condon, L., & Gomes, A. V. (2022). A common feature of pesticides: oxidative stress—the role of oxidative stress in pesticide‐induced toxicity. Oxidative Medicine and Cellular Longevity, 2022(1), 5563759.
  • Sun, Y., Oberley, L.W., & Li ,Y. (1988). A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34, 497–500.
  • Tarım ve Orman Bakanlığı. (2025a). Resmi tarımsal ilaç istatistikleri. Tarım ve Orman Bakanlığı. Erişim adresi: https://www.tarimorman.gov.tr/GKGM/Menu/115/Resmi-Tarimsal-Ilac-Istatistikleri, [Erişim Tarihi: 04.06.2025].
  • Tarım ve Orman Bakanlığı. (2025b). Aktif madde: Glifosat izopropilamin tuzu. Erişim adresi: https://bku.tarimorman.gov.tr/AktifMadde/Details/388?utm_source, [Erişim Tarihi: 04.06.2025].
  • Thompson, M., Jaiswal, Y., Wang, I., & Williams, L. (2017). Hepatotoxicity: treatment, causes and applications of medicinal plants as therapeutic agents. The Journal of Phytopharmacology, 6(3), 186-93.
  • Trasande, L., Aldana, S. I., Trachtman, H., Kannan, K., Morrison, D., Christakis, D. A., ... & Sathyanarayana, S. (2020). Glyphosate exposures and kidney injury biomarkers in infants and young children. Environmental Pollution, 256, 113334.
  • Turkmen, R., & Dogan, I. (2020). Determination of acute oral toxicity of glyphosate isopropylamine salt in rats. Environmental Science and Pollution Research, 27(16), 19298-19303.
  • Turkmen, R., Birdane, Y. O., Demirel, H. H., Kabu, M., & Ince, S. (2019a). Protective effects of resveratrol on biomarkers of oxidative stress, biochemical and histopathological changes induced by sub-chronic oral glyphosate-based herbicide in rats. Toxicology Research, 8(2), 238-245.
  • Turkmen, R., Birdane, Y. O., Demirel, H. H., Yavuz, H., Kabu, M., & Ince, S. (2019b). Antioxidant and cytoprotective effects of N-acetylcysteine against subchronic oral glyphosate-based herbicide-induced oxidative stress in rats. Environmental Science and Pollution Research, 26, 11427-11437.
  • Williams, G. M., Kroes, R., & Munro, I. C. (2000). Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regulatory Toxicology and Pharmacology, 31(2), 117-165.
  • Winterbourn, C.C., Hawkins, R.E., Brain, M., Carrell, R.W. (1975). The estimation of red cell superoxide activity. The Journal of Laboratory and Clinical Medicine, 55, 337–341.
  • Wunnapuk, K., Gobe, G., Endre, Z., Peake, P., Grice, J. E., Roberts, M. S., ... & Liu, X. (2014). Use of a glyphosate-based herbicide-induced nephrotoxicity model to investigate a panel of kidney injury biomarkers. Toxicology Letters, 225(1), 192-200.
  • Zanchi, M. M., Marafon, F., Marins, K., Bagatini, M. D., & Zamoner, A. (2024). Redox imbalance and inflammation: A link to depression risk in brazilian pesticide-exposed farmers. Toxicology, 501, 153706.

Assessment of DNA Damage and Oxidant/Antioxidant Balance After Acute Exposure to Glyphosate Isopropylamine in Rats

Yıl 2025, Cilt: 18 Sayı: 2, 144 - 152, 27.06.2025

Öz

In this study, the effects of oral administration of glyphosate isopropylamine (GI) salt at different doses (1/10 and 1/2 of LD50) on DNA damage, oxidant/antioxidant balance and some biochemical parameters were investigated to evaluate the acute toxicity of glyphosate isopropylamine salt. The results showed that 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels were significantly increased, malondialdehyde (MDA) levels were increased in all tissues except blood and heart and glutathione (GSH) levels were decreased in rats in the high dose group. In addition, significant increases in catalase (CAT) and superoxide dismutase (SOD) enzyme activities were detected. Biochemical analyses demonstrated that acute exposure to herbicides led to a significant elevation in serum alkaline phosphatase (ALP), albumin and urea levels, but no significant changes in AST, ALT, GGT, total protein (Tp), creatinine and CK-MB levels. These findings suggest that exposure to high doses of glyphosate may cause toxic effects by triggering oxidative stress and DNA damage.

Etik Beyan

This study was carried out at Afyon Kocatepe University Reserch Animals Application Center. This research was approved by The Ethics Committee of the Faculty of Veterinary Medicine, Afyon Kocatepe University (AKUHADYEK, Ref No: 94/19, Tarih: 09/2019)

Teşekkür

In this study would like to thank the Afyon Kocatepe University Reserch Animals Application Center.

Kaynakça

  • Aebi, H. (1974). Catalase in vitro. In: Bergmeyer, U. (Ed.), Methods of Enzymatic Analysis, Academic Press, New York and London, pp. 673–677.
  • Alvarez-Moya, C., Reynoso Silva, M., Villalobos Arámbula, A. R., Islas Sandoval, A., Castañeda Vasquez, H., & González Montes, R. M. (2011). Evaluation of genetic damage induced by glyphosate isopropylamine salt using Tradescantia bioassays. Genetics and Molecular Biology, 34, 127-130.
  • Amer, S. M., Aly, F. A. E., Farghaly, A. A., & Ibrahim, A. A. E. (2006). In vitro and in vivo evaluation of the genotoxicity of the herbicide glyphosate in mice. Bulletin of the National Research Centre 31(5), 427-446.
  • Astiz, M., de Alaniz, M. J., & Marra, C. A. (2009). Antioxidant defense system in rats simultaneously intoxicated with agrochemicals. Environmental Toxicology and Pharmacology, 28(3), 465-473.
  • Basarslan, S. K., & Basarslan, F. (2023). Intralipid and Caffeic Acid Phenethyl Ester Reverse the Neurotoxic Effects of Organophosphate Poisoning in Rats. Nigerian Journal of Clinical Practice, 26(6), 686-693.
  • Bayezit, M., & Kart, A. (2021). Serbest Radikaller, Oksidatif Stres ve Hücresel Hasar. Turkiye Klinikleri Veterinary Sciences-Pharmacology and Toxicology-Special Topics, 7(3), 1-16.
  • Benbrook, C. M. (2019). How did the US EPA and IARC reach diametrically opposed conclusions on the genotoxicity of glyphosate-based herbicides?. Environmental Sciences Europe, 31(1), 1-16.
  • Beutler, E., Duron, O., & Kelly, B.M. (1963). Improved method for the determination of blood glutathione. The Journal of Laboratory and Clinical Medicine, 61, 882–888.
  • Bou-Mitri, C., Dagher, S., Makkawi, A., Khreyss, Z., & Hassan, H. (2025). Glyphosate in Food: A Narrative Review. Journal of Agriculture and Food Research, 101643.
  • Bukowska, B. (2004). 2, 4, 5‐T and 2, 4, 5‐TCP induce oxidative damage in human erythrocytes: the role of glutathione. Cell Biology International, 28(7), 557-563.
  • Cathcart, R.F. (1985). Vitamin C: the nontoxic, nonrate-limited, antioxidant free radical scavenger. Medical Hypotheses, 18(1), 61-7
  • Chen, K., Liu, J. B., Tie, C. Z., & Wang, L. (2022). Trehalose prevents glyphosate-induced testicular damage in roosters via its antioxidative properties. Research in Veterinary Science, 152, 314-322.
  • Chhabra, S. K., Hashim, S., & Rao, A. R. (1993). Modulation of hepatic glutathione system of enzymes in suckling mouse pups exposed translactationally to malathion. Journal of Applied Toxicology, 13(6), 411-416.
  • Çavuşoğlu, K., Yapar, K., Oruc, E., & Yalçın, E. (2011). Protective effect of Ginkgo biloba L. leaf extract against glyphosate toxicity in Swiss albino mice. Journal of Medicinal Food, 14(10), 1263-1272.
  • Dar, M. A., Khan, A. M., Raina, R., Verma, P. K., & Wani, N. M. (2019). Effect of bifenthrin on oxidative stress parameters in the liver, kidneys, and lungs of rats. Environmental Science and Pollution Research, 26, 9365-9370. De La Casa-Resino, I., Hernández-Moreno, D., Navas, J. M., Soler, F., & Pérez-López, M. (2013). Non-destructive multibiomarker approach in European quail (Coturnix coturnix coturnix) exposed to the herbicide atrazine. Archives of Environmental Contamination and Toxicology, 65, 567-574.
  • Drabkin, D.L., & Austin, J.H. (1935). Spectrophotometric studies. II. Preparations from washed blood cells; nitric oxide hemoglobin and sulfhemoglobin. The Journal of Biological Chemistry., 112, 51–65.
  • Draper, H.H., & Hardley, M. (1990). Malondialdehyde determination as index of lipid peroxidation. Methods in Enzymology, 186, 421–431.
  • Fadel, H. H., Thabet, O. A., Darwish, A. A., & Gamal, M. (2022). Multiple organ dysfunction in mice exposed to glyphosate-based Herbicides. Egyptian Journal of Chemistry, 65(132), 417-426.
  • Gao, H., Chen, J., Ding, F., Chou, X., Zhang, X., Wan, Y., ... & Wu, Q. (2019). Activation of the N‐methyl‐d‐aspartate receptor is involved in glyphosate‐induced renal proximal tubule cell apoptosis. Journal of Applied Toxicology, 39(8), 1096-1107.
  • Graille, M., Wild, P., Sauvain, J. J., Hemmendinger, M., Guseva Canu, I., & Hopf, N. B. (2020). Urinary 8-OHdG as a biomarker for oxidative stress: a systematic literature review and meta-analysis. International Journal of Molecular Sciences, 21(11), 3743.
  • Halliwell, B., & Gutteridge, J. M. C. (2015). Free Radicals in Biology and Medicine (5th ed.). Oxford University Press.
  • Helal, A., & Moussa, H. (2005). Chromosomal aberrations induced by glyphosate isopropylamine herbicide and trials for diminuting its toxicity using some chemical inactivators and antioxidant. Veterinary Medical Journal (Giza), 53(2), 169-187.
  • Hernández-Moreno, D., Míguez, M. P., Soler, F., & Pérez-López, M. (2018). Influence of sex on biomarkers of oxidative stress in the kidney, lungs, and liver of rabbits after exposure to diazinon. Environmental Science and Pollution Research, 25, 32458-32465.
  • Ince, S., Arslan-Acaroz, D., Demirel, H. H., Varol, N., Ozyurek, H. A., Zemheri, F., & Kucukkurt, I. (2017). Taurine alleviates malathion induced lipid peroxidation, oxidative stress, and proinflammatory cytokine gene expressions in rats. Biomedicine & Pharmacotherapy, 96, 263-268.
  • Jasper, R., Locatelli, G. O., Pilati, C., & Locatelli, C. (2012). Evaluation of biochemical, hematological and oxidative parameters in mice exposed to the herbicide glyphosate-Roundup®. Interdisciplinary Toxicology, 5(3), 133.
  • Kanbur, M., Eraslan, G., & Silici, S. (2009). Antioxidant effect of propolis against exposure to propetamphos in rats. Ecotoxicology and Environmental Safety, 72(3), 909-915.
  • Khan, A. M., & Rampal, S. (2014). Effects of repeated oral administration of pazufloxacin mesylate and meloxicam on the antioxidant status in rabbits. Journal of the American Association for Laboratory Animal Science, 53(4), 399-403.
  • Koureas, M., Tsezou, A., Tsakalof, A., Orfanidou, T., & Hadjichristodoulou, C. (2014). Increased levels of oxidative DNA damage in pesticide sprayers in Thessaly Region (Greece). Implications of pesticide exposure. Science of the Total Environment, 496, 358-364.
  • Kunapareddy, T., & Kalisetty, S. (2021). Glyphosate poisoning–a case report. Journal of postgraduate medicine, 67(1), 36-38.
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.
  • Luck, H. (1955). Catalase. In: Bergmeyer, H.U. (Ed.), Methods in Analysis. Academy Press, London.
  • Mansour, S. A., & Mossa, A. T. H. (2009). Lipid peroxidation and oxidative stress in rat erythrocytes induced by chlorpyrifos and the protective effect of zinc. Pesticide biochemistry and physiology, 93(1), 34-39.
  • Mazuryk, J., Klepacka, K., Kutner, W., & Sharma, P. S. (2024a). Glyphosate: hepatotoxicity, nephrotoxicity, hemotoxicity, carcinogenicity, and clinical cases of endocrine, reproductive, cardiovascular, and pulmonary system intoxication. ACS Pharmacology & Translational Science, 7(5), 1205-1236.
  • Mazuryk, J., Klepacka, K., Kutner, W., & Sharma, P. S. (2024b). Glyphosate: Impact on the microbiota-gut-brain axis and the immune-nervous system, and clinical cases of multiorgan toxicity. Ecotoxicology and Environmental Safety, 271, 115965.
  • Moon, J. M., Chun, B. J., Cho, Y. S., Lee, S. D., Hong, Y. J., Shin, M. H., ... & Ryu, H. H. (2018). Cardiovascular effects and fatality may differ according to the formulation of glyphosate salt herbicide. Cardiovascular Toxicology, 18, 99-107.
  • Noeman, S. A., Hamooda, H. E., & Baalash, A. A. (2011). Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats. Diabetology & metabolic syndrome, 3, 1-8.
  • Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95: 351–358.
  • Picetti, E., Generali, M., Mensi, F., Neri, G., Damia, R., Lippi, G., & Cervellin, G. (2017). Glyphosate ingestion causing multiple organ failure: a near-fatal case report. Acta Bio Medica: Atenei Parmensis, 88(4), 533.
  • Pieniążek, D., Bukowska, B., & Duda, W. (2004). Comparison of the effect of Roundup Ultra 360 SL pesticide and its active compound glyphosate on human erythrocytes. Pesticide Biochemistry and Physiology, 79(2), 58-63.
  • Roberts, D. M., Buckley, N. A., Mohamed, F., Eddleston, M., Goldstein, D. A., Mehrsheikh, A., ... & Dawson, A. H. (2010). A prospective observational study of the clinical toxicology of glyphosate-containing herbicides in adults with acute self-poisoning. Clinical Toxicology, 48(2), 129-136.
  • Sies, H., & Jones, D. P. (2020). Oxidative Stress: A Concept in Redox Biology and Medicine. Redox Biology, 1(1), 1-6. https://doi.org/10.1016/j.redox.2020.101418
  • Smith‐Roe, S. L., Swartz, C. D., Rashid, A., Christy, N. C., Sly, J. E., Chang, X., ... & Witt, K. L. (2023). Evaluation of the herbicide glyphosate,(aminomethyl) phosphonic acid, and glyphosate‐based formulations for genotoxic activity using in vitro assays. Environmental and Molecular Mutagenesis, 64(4), 202-233.
  • Sule, R. O., Condon, L., & Gomes, A. V. (2022). A common feature of pesticides: oxidative stress—the role of oxidative stress in pesticide‐induced toxicity. Oxidative Medicine and Cellular Longevity, 2022(1), 5563759.
  • Sun, Y., Oberley, L.W., & Li ,Y. (1988). A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34, 497–500.
  • Tarım ve Orman Bakanlığı. (2025a). Resmi tarımsal ilaç istatistikleri. Tarım ve Orman Bakanlığı. Erişim adresi: https://www.tarimorman.gov.tr/GKGM/Menu/115/Resmi-Tarimsal-Ilac-Istatistikleri, [Erişim Tarihi: 04.06.2025].
  • Tarım ve Orman Bakanlığı. (2025b). Aktif madde: Glifosat izopropilamin tuzu. Erişim adresi: https://bku.tarimorman.gov.tr/AktifMadde/Details/388?utm_source, [Erişim Tarihi: 04.06.2025].
  • Thompson, M., Jaiswal, Y., Wang, I., & Williams, L. (2017). Hepatotoxicity: treatment, causes and applications of medicinal plants as therapeutic agents. The Journal of Phytopharmacology, 6(3), 186-93.
  • Trasande, L., Aldana, S. I., Trachtman, H., Kannan, K., Morrison, D., Christakis, D. A., ... & Sathyanarayana, S. (2020). Glyphosate exposures and kidney injury biomarkers in infants and young children. Environmental Pollution, 256, 113334.
  • Turkmen, R., & Dogan, I. (2020). Determination of acute oral toxicity of glyphosate isopropylamine salt in rats. Environmental Science and Pollution Research, 27(16), 19298-19303.
  • Turkmen, R., Birdane, Y. O., Demirel, H. H., Kabu, M., & Ince, S. (2019a). Protective effects of resveratrol on biomarkers of oxidative stress, biochemical and histopathological changes induced by sub-chronic oral glyphosate-based herbicide in rats. Toxicology Research, 8(2), 238-245.
  • Turkmen, R., Birdane, Y. O., Demirel, H. H., Yavuz, H., Kabu, M., & Ince, S. (2019b). Antioxidant and cytoprotective effects of N-acetylcysteine against subchronic oral glyphosate-based herbicide-induced oxidative stress in rats. Environmental Science and Pollution Research, 26, 11427-11437.
  • Williams, G. M., Kroes, R., & Munro, I. C. (2000). Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regulatory Toxicology and Pharmacology, 31(2), 117-165.
  • Winterbourn, C.C., Hawkins, R.E., Brain, M., Carrell, R.W. (1975). The estimation of red cell superoxide activity. The Journal of Laboratory and Clinical Medicine, 55, 337–341.
  • Wunnapuk, K., Gobe, G., Endre, Z., Peake, P., Grice, J. E., Roberts, M. S., ... & Liu, X. (2014). Use of a glyphosate-based herbicide-induced nephrotoxicity model to investigate a panel of kidney injury biomarkers. Toxicology Letters, 225(1), 192-200.
  • Zanchi, M. M., Marafon, F., Marins, K., Bagatini, M. D., & Zamoner, A. (2024). Redox imbalance and inflammation: A link to depression risk in brazilian pesticide-exposed farmers. Toxicology, 501, 153706.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Veteriner Farmakoloji
Bölüm ARAŞTIRMA MAKALESİ
Yazarlar

Ruhi Türkmen 0000-0003-4726-3900

Yavuz Osman Birdane 0000-0003-0754-7909

Orkun Atik 0000-0003-2411-7492

Erken Görünüm Tarihi 11 Haziran 2025
Yayımlanma Tarihi 27 Haziran 2025
Gönderilme Tarihi 19 Mart 2025
Kabul Tarihi 4 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 18 Sayı: 2

Kaynak Göster

APA Türkmen, R., Birdane, Y. O., & Atik, O. (2025). Sıçanlarda Glifosat İzopropilamin Akut Maruziyeti Sonrası DNA hasarı ve Oksidan/Antioksidan Denge Değerlendirmesi. Kocatepe Veterinary Journal, 18(2), 144-152.
AMA Türkmen R, Birdane YO, Atik O. Sıçanlarda Glifosat İzopropilamin Akut Maruziyeti Sonrası DNA hasarı ve Oksidan/Antioksidan Denge Değerlendirmesi. kvj. Haziran 2025;18(2):144-152.
Chicago Türkmen, Ruhi, Yavuz Osman Birdane, ve Orkun Atik. “Sıçanlarda Glifosat İzopropilamin Akut Maruziyeti Sonrası DNA Hasarı Ve Oksidan/Antioksidan Denge Değerlendirmesi”. Kocatepe Veterinary Journal 18, sy. 2 (Haziran 2025): 144-52.
EndNote Türkmen R, Birdane YO, Atik O (01 Haziran 2025) Sıçanlarda Glifosat İzopropilamin Akut Maruziyeti Sonrası DNA hasarı ve Oksidan/Antioksidan Denge Değerlendirmesi. Kocatepe Veterinary Journal 18 2 144–152.
IEEE R. Türkmen, Y. O. Birdane, ve O. Atik, “Sıçanlarda Glifosat İzopropilamin Akut Maruziyeti Sonrası DNA hasarı ve Oksidan/Antioksidan Denge Değerlendirmesi”, kvj, c. 18, sy. 2, ss. 144–152, 2025.
ISNAD Türkmen, Ruhi vd. “Sıçanlarda Glifosat İzopropilamin Akut Maruziyeti Sonrası DNA Hasarı Ve Oksidan/Antioksidan Denge Değerlendirmesi”. Kocatepe Veterinary Journal 18/2 (Haziran 2025), 144-152.
JAMA Türkmen R, Birdane YO, Atik O. Sıçanlarda Glifosat İzopropilamin Akut Maruziyeti Sonrası DNA hasarı ve Oksidan/Antioksidan Denge Değerlendirmesi. kvj. 2025;18:144–152.
MLA Türkmen, Ruhi vd. “Sıçanlarda Glifosat İzopropilamin Akut Maruziyeti Sonrası DNA Hasarı Ve Oksidan/Antioksidan Denge Değerlendirmesi”. Kocatepe Veterinary Journal, c. 18, sy. 2, 2025, ss. 144-52.
Vancouver Türkmen R, Birdane YO, Atik O. Sıçanlarda Glifosat İzopropilamin Akut Maruziyeti Sonrası DNA hasarı ve Oksidan/Antioksidan Denge Değerlendirmesi. kvj. 2025;18(2):144-52.

13520    13521       13522   1352314104

14105         14106        14107       14108