Araştırma Makalesi
BibTex RIS Kaynak Göster

Hidrojen Enerjisi Depolama Teknolojisinin Uluslararası İlişkilere Etkileri

Yıl 2025, Cilt: 1 Sayı: 1, 17 - 29, 20.06.2025

Öz

Renksiz, son derece yanıcı bir gaz olan hidrojen, tüm elementlerin en hafifidir. Hidrojen sadece evrenin en hafif elementi olarak bulunmaz; amonyak ve metanol yapımında işe koyulur, petrol rafinasyonunu canlandırır, organik maddelere ivme kazandırır ve roketleri uçurur. Basınçlı veya kriyojenik depolama yöntemleriyle karşılaştırıldığında, hidrojenin katı hal depolaması çok daha güvenli ve verimlidir ve küresel olarak malzeme tabanlı hidrojen depolama teknolojilerine olan talebi artırma olasılığı yüksektir. Bu ayrıcalıklı özellikleriyle hidrojen enerjisi, küreselleşen dünyanın geleceğine ışık tutan en önemli unsurlardan biridir. Bilimsel ve teknolojik araştırmaların yanı sıra şirketler hidrojen enerjisini kullanarak öne çıkmaya çalışmaktadır. Ayrıca, dünyanın çeşitli bölgelerindeki devletler, özellikle ABD ve Çin, hidrojen enerjisi için rekabete girmiştir. Küresel hegemonyanın içeriğini değiştirdiği bu dönemde, hidrojen enerjisinin kullanımı uluslararası ilişkiler bağlamında belirleyici bir role sahiptir. Bu makale, hidrojen enerjisi depolama teknolojisini ve uluslararası ilişkiler üzerindeki etkilerini araştırarak literatüre katkıda bulunmayı amaçlamaktadır. Bu araştırma, hidrojen enerjisinin sürdürülebilir bir gelecek için küresel ve çok boyutlu ihtiyaçları karşılayıp karşılamadığı sorusuna cevap arayacaktır. Bu bağlamda, hidrojen enerjisi depolama teknolojisinin uluslararası ilişkileri nasıl etkilediğini analiz etmek için makalenin metodolojisi olarak nitel analiz yöntemi kullanılacaktır.

Kaynakça

  • Abe, J., Popoola, A., Ajenifuja, E., & Popoola, O. (2019). Hydrogen energy, economy and storage: Review and recommendation. International Journal of Hydrogen Energy, 44(29), 15072-15086. doi:https://doi.org/10.1016/j.ijhydene.2019.04.068
  • Aditiya, H. (2021). Prospect of Hydrogen Energy in Asia-Pasific: A Perspective Review on Tehno-Socio-Economy Nexus. International Journal of Hydrogen Energy,, 46(71), 35027-35056.
  • Alsaba, W., Al-Sobhi, S. A., & Qyyum, M. A. (2023). Recent advancements in the hydrogen value chain: Opportunities, challenges, and the way Forward–Middle East perspectives. International Journal of Hydrogen Energy, 48(68), 26408-26435.
  • Garcia, A.D., Barbanera, F., Cumo, F., Di Matteo, U., & Nastasi, B. (2016). Expert opinion analysis on renewable hydrogen storage systems potential in Europe. Energies, 9(11), 963. Atzori, D., Tiozzo, S., Vellini, M., Gambini, M., & Mazzoni, S. (2023). Industrial Technologies for CO2 Reduction Applicable to Glass Furnaces. Thermo, 3(4), 682-710.
  • Azarpour, A., Mohammadzadeh, O., Rezaei, N., & Zendehboudi, S. (2022). Current status and future prospects of renewable and sustainable energy in North America: Progress and challenges. Energy Conversion and Management, 269, 115945.
  • Aziz, M. (2021). Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety. Energies, 14(18), 1-29. doi:https://doi.org/10.3390/en14185917
  • Bataille, C., Åhman, M., Neuhoff, K., Nilsson, L. J., Fischedick, M., Lechtenböhmer, S., ... & Rahbar, S. (2018). A review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris Agreement. Journal of Cleaner Production, 187, 960-973.C.
  • Becher, M. H. (2003). Hydrogen Storage in Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 3(12), 3-17.
  • Boudellal, M. (2023). Power-to-gas: Renewable hydrogen economy for the energy transition. Walter de Gruyter GmbH & Co KG.
  • Capurso, T., Stefanizzi, M., Torresi, M., & Camporeale, S. (2022). Perspective of the role of hydrogen in the 21st century energy transition. Energy Conversion and Management, 251(43). doi:https://doi.org/10.1016/j.enconman.2021.114898
  • Cheng, H. M., Yang, Q. H., & Liu, C. (2001). Hydrogen storage in carbon nanotubes. Carbon, 39(10), 1447-1454.
  • Coppenolle, H. V. (2023). The Energy Crisis and Global Climate Goals: Popping Empty Promises? Gent: Ghent University.
  • Dahari, N. R. (2016). A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. International Journal of Hydrogen Energy, 41(28), 12108-12126.
  • Darkrim, F. L., Malbrunot, P., & Tartaglia, G. P. (2002). Review of hydrogen storage by adsorption in carbon nanotubes. International Journal of Hydrogen Energy, 27(2), 193-202.
  • Dinçer, M. Ö. (2021). A comprehensive review on power-to-gas with hydrogen options for cleaner applications. International Journal of Hydrogen Energy,, 46(62), 31511-31522.
  • Edwards, R. L., Font-Palma, C., & Howe, J. (2021). The status of hydrogen technologies in the UK: A multi-disciplinary review. Sustainable Energy Technologies and Assessments, 43, 100901.
  • Fox-Penner, P. (2020). Power after carbon: Building a clean, resilient grid. Harvard: Harvard University Press.
  • Gundiah, A. G. (2003). Hydrogen storage in carbon nanotubes and related materials. Journal of Materials Chemistry, 13(2), 209-213.
  • Gallardo, F. I., Ferrario, A. M., Lamagna, M., Bocci, E., Garcia, D. A., & Baeza-Jeria, T. E. (2021). A Techno-Economic Analysis of solar hydrogen production by electrolysis in the north of Chile and the case of exportation from Atacama Desert to Japan. international journal of hydrogen energy, 46(26), 13709-13728.
  • Gheorghe, I. F., & Ion, B. (2011). The effects of air pollutants on vegetation and the role of vegetation in reducing atmospheric pollution. The impact of air pollution on health, economy, environment and agricultural sources, 29, 241-80.
  • Giarola, S., Molar-Cruz, A., Vaillancourt, K., Bahn, O., Sarmiento, L., Hawkes, A., & Brown, M. (2021). The role of energy storage in the uptake of renewable energy: A model comparison approach. Energy Policy, 151, 112159.
  • Giddey, S., Badwal, S. P. S., Kulkarni, A., & Munnings, C. (2012). A comprehensive review of direct carbon fuel cell technology. Progress in Energy and Combustion Science, 38(3), 360-399.
  • Gielen, D., Taibi, E., & Miranda, R. (2019). Hydrogen: A reviewable energy perspective: Report prepared for the 2nd hydrogen energy ministerial meeting in tokyo, japan.
  • Gong, X., Quitzow, R., & Boute, A. (2023). China’s Emerging hydrogen economy: Policies, institutions, actors. Research Institute for Sustainability Stusy.
  • Greene, D. L., Ogden, J. M., & Lin, Z. (2020). Challenges in the designing, planning and deployment of hydrogen refueling infrastructure for fuel cell electric vehicles. ETransportation, 6, 100086.
  • Hart, D., Jones, S., & Lewis, J. (2020). The fuel cell industry review 2020.ERM
  • Hasan, A. A., Hanieh, A. A., & Juaidi, A. (2024). Energy storage: Status and future perspective in Arab countries. Energy Storage, 6(1), e550.
  • Helberg, J. (2021). The Wires of War: Technology and the Global Struggle for Power,. New York: Avid Reader Press.
  • Houghton-Alico, D. (2019). Alcohol fuels: policies, production, and potential. Routledge.
  • Kar, S. K., Harichandan, S., & Roy, B. (2022). Bibliometric analysis of the research on hydrogen economy: An analysis of current findings and roadmap ahead. International journal of hydrogen energy, 47(20), 10803-10824.
  • Khare, M., & Sharma, P. (2003). Fuel options. In Handbook of Transport and the Environment (pp. 159-183). Emerald Group Publishing Limited.
  • Koohi-Kamali, S., Tyagi, V. V., Rahim, N. A., Panwar, N. L., & Mokhlis, H. (2013). Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review. Renewable and Sustainable Energy Reviews, 25, 135-165.
  • Lemieux, A., Sharp, K., & Shkarupin, A. (2019). Preliminary assessment of underground hydrogen storage sites in Ontario, Canada. International Journal of Hydrogen Energy, 44(29), 15193-15204.
  • Lemieux, A., Shkarupin, A., & Sharp, K. (2020). Geologic feasibility of underground hydrogen storage in Canada. International Journal of Hydrogen Energy, 45(56), 32243-32259. Li, Y., Suryadi, B., Yan, J., Feng, J., & Bhaskoro, A. G. (2023). A strategic roadmap for ASEAN to develop hydrogen energy: Economic prospects and carbon emission reduction. International Journal of Hydrogen Energy, 48(30), 11113-11130.
  • Li, V. S. (2023). Evaluation and outlook for Australian renewable energy export via circular liquid hydrogen carriers. International Journal of Hydrogen Energy, 49, 1509-1527.
  • Lim, K. L., Kazemian, H., Yaakob, Z., & Daud, W. W. (2010). Solid‐state materials and methods for hydrogen storage: a critical review. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 33(2), 213-226.
  • Longden, T. (2020). Analysis of the Australian Hydrogen Strategy. Periscope–Occasional Analysis Brief Series, 2.
  • Lüth, A., Seifert, P. E., Egging-Bratseth, R., & Weibezahn, J. (2023). How to connect energy islands: Trade-offs between hydrogen and electricity infrastructure. Applied Energy, 341, 121045.
  • Makepeace, R. W., Tabandeh, A., Hossain, M. J., & Asaduz-Zaman, M. (2024). Techno-economic analysis of green hydrogen export. International Journal of Hydrogen Energy, 56, 1183-1192.
  • Meyer-Ohlendorf, N., Voß, P., Velten, E., & Görlach, B. (2018). EU greenhouse gas emission budget: implications for EU climate policies. What Does, 2050.
  • Mohan, M., Sharma, V. K., Kumar, E. A., & Gayathri, V. J. E. S. (2019). Hydrogen storage in carbon materials—A review. Energy Storage, 1(2), e35.
  • Neumann, F., Zeyen, E., Victoria, M., & Brown, T. (2023). The potential role of a hydrogen network in Europe. Joule, 7(8), 1793-1817.
  • Normann, F., Andersson, K., Leckner, B., & Johnsson, F. (2009). Emission control of nitrogen oxides in the oxy-fuel process. Progress in Energy and Combustion Science, 35(5), 385-397.
  • Nunez-Jimenez, A., & De Blasio, N. (2022). The future of renewable hydrogen in the European Union: Market and geopolitical implications. Environment and Natural Resources Program Reports.
  • Olanrewaju, J. A. (2023). Towards a Common Methodology and Modelling Tool for 100% Renewable Energy Analysis: A Review. Energies, 16(8), 1-42.
  • Pathak, P. K., Yadav, A. K., & Padmanaban, S. (2023). Transition Toward Emission-Free Energy Systems by 2050: Potential Role of Hydrogen. International Journal of Hydrogen Energy, 48(26), 9921-9927. doi:https://doi.org/10.1016/j.ijhydene.2022.12.058
  • Posdziech, O., Schwarze, K., & Brabandt, J. (2019). Efficient hydrogen production for industry and electricity storage via high-temperature electrolysis. International Journal of Hydrogen Energy, 44(35), 19089-19101.
  • Rahman, M. A., Kim, J. H., & Hossain, S. (2022). Recent advances of energy storage technologies for grid: A comprehensive review. Energy Storage, 4(6), e322.
  • Rajalakshmi, N., Balaji, R., & Ramakrishnan, S. (2021). Recent developments in hydrogen fuel cells: Strengths and weaknesses. Sustainable Fuel Technologies Handbook, 431-456.
  • Rath, R., Kumar, P., Mohanty, S., & Nayak, S. K. (2019). Recent advances, unsolved deficiencies, and future perspectives of hydrogen fuel cells in transportation and portable sectors. International Journal of Energy Research, 43(15), 8931-8955.
  • Reddi, K., Mintz, M., Elgowainy, A., & Sutherland, E. 2. (2016). Building a hydrogen infrastructure in the United States. In Compendium of hydrogen energy (pp. 293-319). Woodhead Publishing.
  • Rissman, J., Bataille, C., Masanet, E., Aden, N., Morrow III, W. R., Zhou, N., ... & Helseth, J. (2020). Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Applied energy, 266, 114848.
  • Roszak, R., Firlej, L., Roszak, S., Pfeifer, P., & Kuchta, B. (2016). Hydrogen storage by adsorption in porous materials: Is it possible? Colloids and Surfaces A Physicochemical and Engineering Aspects, 496, 69-76. doi:https://doi.org/10.1016/j.colsurfa.2015.10.046
  • Saidi, K., & Omri, A. (2020). The impact of renewable energy on carbon emissions and economic growth in 15 major renewable energy-consuming countries. Environmental research, 186, 109567.
  • Schneemann, A., White, J. L., Kang, S., Jeong, S., Wan, L. F., Cho, E. S., ... & Stavila, V. (2018). Nanostructured metal hydrides for hydrogen storage. Chemical reviews, 118(22), 10775-10839.
  • Scita, R., Raimondi, P. P., & Noussan, M. (2020). Green hydrogen: the holy grail of decarbonisation? An analysis of the technical and geopolitical implications of the future hydrogen economy.
  • Shah, Y. (2021). Hybrid energy systems: Strategy for industrial decarbonization. Florida: CRC Press.
  • Sijm, J., Morales-España, G., & Hernández-Serna, R. (2022). The role of demand response in the power system of the Netherlands, 2030-2050. tech. rep.
  • Sikiru, S., Oladosu, T. L., Amosa, T. I., Olutoki, J. O., Ansari, M., Abioye, K. J., . . . Soleimani, H. (2024). Hydrogen-powered horizons: Transformative technologies in clean energy generation, distribution, and storage for sustainable innovation. International Journal of Hydrogen Energy, 56, 1152-1182. doi:https://doi.org/10.1016/j.ijhydene.2023.12.186
  • Singh, S., Jain, S., Tiwari, A. K., Nouni, M. R., Pandey, J. K., & Goel, S. (2015). Hydrogen: A sustainable fuel for future of the transport sector. Renewable and sustainable energy reviews, 51, 623-633.
  • Stathopoulou, M. (2021). Alternative sources of energy as marine fuels; the effect on the environment and the financial perspectives for a more sustainable future in the shipping industry (Master's thesis, Πανεπιστήμιο Πειραιώς).
  • Stolten, M. C. (2019). Energy storage using hydrogen produced from excess renewable electricity: Power to Hydrogen. Science and Engineering of Hydrogen-Based Energy Technologies (s. 165-199). içinde Cambridge Academic Press.
  • Taibi, E., Miranda, R., Vanhoudt, W., Winkel, T., Lanoix, J. C., & Barth, F. (2018). Hydrogen from renewable power: Technology outlook for the energy transition.
  • Takach, M., Sarajlić, M., Peters, D., Kroener, M., Schuldt, F., & von Maydell, K. (2022). Review of hydrogen production techniques from water using renewable energy sources and its storage in salt caverns. Energies, 15(4), 1415.
  • Tollefson, J. (2008). Car industry: charging up the future. Nature, 456, 436–440
  • van der Spek, M., Banet, C., Bauer, C., Gabrielli, P., Goldthorpe, W., Mazzotti, M., ... & Gazzani, M. (2022). Perspective on the hydrogen economy as a pathway to reach net-zero CO 2 emissions in Europe. Energy & Environmental Science, 15(3), 1034-1077.
  • Wijk, A. v. (2023). Hydrogen as carbon-free energy carrier and commodity . Handbook on the Geopolitics of the Energy Transition. Cheltenham: Edward Elgar Publishing.
  • Yartys, V. (2005). An Overview of Hydrogen Storage Methods. Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, 24(3), 197-209. doi:https://doi.org/10.1007/1-4020-2669-2_7
  • Yun, S., Lee, J., Cho, H., & Kim, J. (2023). Process design and improvement for hydrogen production based on thermodynamic analysis: Practical application to real-world on-site hydrogen refueling stations. Journal of Cleaner Production, 423, 138745.
  • Zakaria, Z., Kamarudin, S. K., & Wahid, K. A. A. (2021). Fuel cells as an advanced alternative energy source for the residential sector applications in Malaysia. International Journal of Energy Research, 45(4), 5032-5057.
  • Zang, G., Sun, P., Elgowainy, A., & Wang, M. (2021). Technoeconomic and life cycle analysis of synthetic methanol production from hydrogen and industrial byproduct CO2. Environmental science & technology, 55(8), 5248-5257.
  • Zhang, F., & Cooke, P. (2010). Hydrogen and fuel cell development in China: A review. European Planning Studies, 18(7), 1153-1168.
  • Zou, C. (2020). Hydrogen Energy. New Energy, 281-313.
  • Züttel, A., Remhof, A., Borgschulte, A., & Friedrichs, O. (2010). Hydrogen: the future energy carrier. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1923), 3329-3342.

The Impacts of Hydrogen Energy Storage Technology on International Relations

Yıl 2025, Cilt: 1 Sayı: 1, 17 - 29, 20.06.2025

Öz

Hydrogen, a colorless, highly flammable gas, is the lightest of all elements. Hydrogen does not just sit as the universe's lightest element; it gets down to business in making ammonia and methanol, spruces up oil refining, gives organic substances a boost, and sends rockets soaring. Compared to pressurized or cryogenic storage methods, solid-state storage of hydrogen is much safer and efficient, and is likely to increase the demand for material-based hydrogen storage technologies globally. With such privileged properties, hydrogen energy is one of the most important elements that shed light on the future of the globalizing world. In addition to scientific and technological research, companies are trying to stand out by using hydrogen energy. Furthermore, states from various parts of the world, especially the United States and China, have entered into a rivalry for hydrogen energy. In this period when global hegemony changes its content, the use of hydrogen energy has a decisive role in the context of international relations. This article aims to contribute to the literature by investigating hydrogen energy storage technology and its effects on international relations. This research will seek to answer the question of whether hydrogen energy meets global and multidimensional needs for a sustainable future. In this context, the qualitative analysis method will be used as the methodology of the article to analyze how hydrogen energy storage technology affects international relations.

Kaynakça

  • Abe, J., Popoola, A., Ajenifuja, E., & Popoola, O. (2019). Hydrogen energy, economy and storage: Review and recommendation. International Journal of Hydrogen Energy, 44(29), 15072-15086. doi:https://doi.org/10.1016/j.ijhydene.2019.04.068
  • Aditiya, H. (2021). Prospect of Hydrogen Energy in Asia-Pasific: A Perspective Review on Tehno-Socio-Economy Nexus. International Journal of Hydrogen Energy,, 46(71), 35027-35056.
  • Alsaba, W., Al-Sobhi, S. A., & Qyyum, M. A. (2023). Recent advancements in the hydrogen value chain: Opportunities, challenges, and the way Forward–Middle East perspectives. International Journal of Hydrogen Energy, 48(68), 26408-26435.
  • Garcia, A.D., Barbanera, F., Cumo, F., Di Matteo, U., & Nastasi, B. (2016). Expert opinion analysis on renewable hydrogen storage systems potential in Europe. Energies, 9(11), 963. Atzori, D., Tiozzo, S., Vellini, M., Gambini, M., & Mazzoni, S. (2023). Industrial Technologies for CO2 Reduction Applicable to Glass Furnaces. Thermo, 3(4), 682-710.
  • Azarpour, A., Mohammadzadeh, O., Rezaei, N., & Zendehboudi, S. (2022). Current status and future prospects of renewable and sustainable energy in North America: Progress and challenges. Energy Conversion and Management, 269, 115945.
  • Aziz, M. (2021). Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety. Energies, 14(18), 1-29. doi:https://doi.org/10.3390/en14185917
  • Bataille, C., Åhman, M., Neuhoff, K., Nilsson, L. J., Fischedick, M., Lechtenböhmer, S., ... & Rahbar, S. (2018). A review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris Agreement. Journal of Cleaner Production, 187, 960-973.C.
  • Becher, M. H. (2003). Hydrogen Storage in Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 3(12), 3-17.
  • Boudellal, M. (2023). Power-to-gas: Renewable hydrogen economy for the energy transition. Walter de Gruyter GmbH & Co KG.
  • Capurso, T., Stefanizzi, M., Torresi, M., & Camporeale, S. (2022). Perspective of the role of hydrogen in the 21st century energy transition. Energy Conversion and Management, 251(43). doi:https://doi.org/10.1016/j.enconman.2021.114898
  • Cheng, H. M., Yang, Q. H., & Liu, C. (2001). Hydrogen storage in carbon nanotubes. Carbon, 39(10), 1447-1454.
  • Coppenolle, H. V. (2023). The Energy Crisis and Global Climate Goals: Popping Empty Promises? Gent: Ghent University.
  • Dahari, N. R. (2016). A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. International Journal of Hydrogen Energy, 41(28), 12108-12126.
  • Darkrim, F. L., Malbrunot, P., & Tartaglia, G. P. (2002). Review of hydrogen storage by adsorption in carbon nanotubes. International Journal of Hydrogen Energy, 27(2), 193-202.
  • Dinçer, M. Ö. (2021). A comprehensive review on power-to-gas with hydrogen options for cleaner applications. International Journal of Hydrogen Energy,, 46(62), 31511-31522.
  • Edwards, R. L., Font-Palma, C., & Howe, J. (2021). The status of hydrogen technologies in the UK: A multi-disciplinary review. Sustainable Energy Technologies and Assessments, 43, 100901.
  • Fox-Penner, P. (2020). Power after carbon: Building a clean, resilient grid. Harvard: Harvard University Press.
  • Gundiah, A. G. (2003). Hydrogen storage in carbon nanotubes and related materials. Journal of Materials Chemistry, 13(2), 209-213.
  • Gallardo, F. I., Ferrario, A. M., Lamagna, M., Bocci, E., Garcia, D. A., & Baeza-Jeria, T. E. (2021). A Techno-Economic Analysis of solar hydrogen production by electrolysis in the north of Chile and the case of exportation from Atacama Desert to Japan. international journal of hydrogen energy, 46(26), 13709-13728.
  • Gheorghe, I. F., & Ion, B. (2011). The effects of air pollutants on vegetation and the role of vegetation in reducing atmospheric pollution. The impact of air pollution on health, economy, environment and agricultural sources, 29, 241-80.
  • Giarola, S., Molar-Cruz, A., Vaillancourt, K., Bahn, O., Sarmiento, L., Hawkes, A., & Brown, M. (2021). The role of energy storage in the uptake of renewable energy: A model comparison approach. Energy Policy, 151, 112159.
  • Giddey, S., Badwal, S. P. S., Kulkarni, A., & Munnings, C. (2012). A comprehensive review of direct carbon fuel cell technology. Progress in Energy and Combustion Science, 38(3), 360-399.
  • Gielen, D., Taibi, E., & Miranda, R. (2019). Hydrogen: A reviewable energy perspective: Report prepared for the 2nd hydrogen energy ministerial meeting in tokyo, japan.
  • Gong, X., Quitzow, R., & Boute, A. (2023). China’s Emerging hydrogen economy: Policies, institutions, actors. Research Institute for Sustainability Stusy.
  • Greene, D. L., Ogden, J. M., & Lin, Z. (2020). Challenges in the designing, planning and deployment of hydrogen refueling infrastructure for fuel cell electric vehicles. ETransportation, 6, 100086.
  • Hart, D., Jones, S., & Lewis, J. (2020). The fuel cell industry review 2020.ERM
  • Hasan, A. A., Hanieh, A. A., & Juaidi, A. (2024). Energy storage: Status and future perspective in Arab countries. Energy Storage, 6(1), e550.
  • Helberg, J. (2021). The Wires of War: Technology and the Global Struggle for Power,. New York: Avid Reader Press.
  • Houghton-Alico, D. (2019). Alcohol fuels: policies, production, and potential. Routledge.
  • Kar, S. K., Harichandan, S., & Roy, B. (2022). Bibliometric analysis of the research on hydrogen economy: An analysis of current findings and roadmap ahead. International journal of hydrogen energy, 47(20), 10803-10824.
  • Khare, M., & Sharma, P. (2003). Fuel options. In Handbook of Transport and the Environment (pp. 159-183). Emerald Group Publishing Limited.
  • Koohi-Kamali, S., Tyagi, V. V., Rahim, N. A., Panwar, N. L., & Mokhlis, H. (2013). Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review. Renewable and Sustainable Energy Reviews, 25, 135-165.
  • Lemieux, A., Sharp, K., & Shkarupin, A. (2019). Preliminary assessment of underground hydrogen storage sites in Ontario, Canada. International Journal of Hydrogen Energy, 44(29), 15193-15204.
  • Lemieux, A., Shkarupin, A., & Sharp, K. (2020). Geologic feasibility of underground hydrogen storage in Canada. International Journal of Hydrogen Energy, 45(56), 32243-32259. Li, Y., Suryadi, B., Yan, J., Feng, J., & Bhaskoro, A. G. (2023). A strategic roadmap for ASEAN to develop hydrogen energy: Economic prospects and carbon emission reduction. International Journal of Hydrogen Energy, 48(30), 11113-11130.
  • Li, V. S. (2023). Evaluation and outlook for Australian renewable energy export via circular liquid hydrogen carriers. International Journal of Hydrogen Energy, 49, 1509-1527.
  • Lim, K. L., Kazemian, H., Yaakob, Z., & Daud, W. W. (2010). Solid‐state materials and methods for hydrogen storage: a critical review. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 33(2), 213-226.
  • Longden, T. (2020). Analysis of the Australian Hydrogen Strategy. Periscope–Occasional Analysis Brief Series, 2.
  • Lüth, A., Seifert, P. E., Egging-Bratseth, R., & Weibezahn, J. (2023). How to connect energy islands: Trade-offs between hydrogen and electricity infrastructure. Applied Energy, 341, 121045.
  • Makepeace, R. W., Tabandeh, A., Hossain, M. J., & Asaduz-Zaman, M. (2024). Techno-economic analysis of green hydrogen export. International Journal of Hydrogen Energy, 56, 1183-1192.
  • Meyer-Ohlendorf, N., Voß, P., Velten, E., & Görlach, B. (2018). EU greenhouse gas emission budget: implications for EU climate policies. What Does, 2050.
  • Mohan, M., Sharma, V. K., Kumar, E. A., & Gayathri, V. J. E. S. (2019). Hydrogen storage in carbon materials—A review. Energy Storage, 1(2), e35.
  • Neumann, F., Zeyen, E., Victoria, M., & Brown, T. (2023). The potential role of a hydrogen network in Europe. Joule, 7(8), 1793-1817.
  • Normann, F., Andersson, K., Leckner, B., & Johnsson, F. (2009). Emission control of nitrogen oxides in the oxy-fuel process. Progress in Energy and Combustion Science, 35(5), 385-397.
  • Nunez-Jimenez, A., & De Blasio, N. (2022). The future of renewable hydrogen in the European Union: Market and geopolitical implications. Environment and Natural Resources Program Reports.
  • Olanrewaju, J. A. (2023). Towards a Common Methodology and Modelling Tool for 100% Renewable Energy Analysis: A Review. Energies, 16(8), 1-42.
  • Pathak, P. K., Yadav, A. K., & Padmanaban, S. (2023). Transition Toward Emission-Free Energy Systems by 2050: Potential Role of Hydrogen. International Journal of Hydrogen Energy, 48(26), 9921-9927. doi:https://doi.org/10.1016/j.ijhydene.2022.12.058
  • Posdziech, O., Schwarze, K., & Brabandt, J. (2019). Efficient hydrogen production for industry and electricity storage via high-temperature electrolysis. International Journal of Hydrogen Energy, 44(35), 19089-19101.
  • Rahman, M. A., Kim, J. H., & Hossain, S. (2022). Recent advances of energy storage technologies for grid: A comprehensive review. Energy Storage, 4(6), e322.
  • Rajalakshmi, N., Balaji, R., & Ramakrishnan, S. (2021). Recent developments in hydrogen fuel cells: Strengths and weaknesses. Sustainable Fuel Technologies Handbook, 431-456.
  • Rath, R., Kumar, P., Mohanty, S., & Nayak, S. K. (2019). Recent advances, unsolved deficiencies, and future perspectives of hydrogen fuel cells in transportation and portable sectors. International Journal of Energy Research, 43(15), 8931-8955.
  • Reddi, K., Mintz, M., Elgowainy, A., & Sutherland, E. 2. (2016). Building a hydrogen infrastructure in the United States. In Compendium of hydrogen energy (pp. 293-319). Woodhead Publishing.
  • Rissman, J., Bataille, C., Masanet, E., Aden, N., Morrow III, W. R., Zhou, N., ... & Helseth, J. (2020). Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Applied energy, 266, 114848.
  • Roszak, R., Firlej, L., Roszak, S., Pfeifer, P., & Kuchta, B. (2016). Hydrogen storage by adsorption in porous materials: Is it possible? Colloids and Surfaces A Physicochemical and Engineering Aspects, 496, 69-76. doi:https://doi.org/10.1016/j.colsurfa.2015.10.046
  • Saidi, K., & Omri, A. (2020). The impact of renewable energy on carbon emissions and economic growth in 15 major renewable energy-consuming countries. Environmental research, 186, 109567.
  • Schneemann, A., White, J. L., Kang, S., Jeong, S., Wan, L. F., Cho, E. S., ... & Stavila, V. (2018). Nanostructured metal hydrides for hydrogen storage. Chemical reviews, 118(22), 10775-10839.
  • Scita, R., Raimondi, P. P., & Noussan, M. (2020). Green hydrogen: the holy grail of decarbonisation? An analysis of the technical and geopolitical implications of the future hydrogen economy.
  • Shah, Y. (2021). Hybrid energy systems: Strategy for industrial decarbonization. Florida: CRC Press.
  • Sijm, J., Morales-España, G., & Hernández-Serna, R. (2022). The role of demand response in the power system of the Netherlands, 2030-2050. tech. rep.
  • Sikiru, S., Oladosu, T. L., Amosa, T. I., Olutoki, J. O., Ansari, M., Abioye, K. J., . . . Soleimani, H. (2024). Hydrogen-powered horizons: Transformative technologies in clean energy generation, distribution, and storage for sustainable innovation. International Journal of Hydrogen Energy, 56, 1152-1182. doi:https://doi.org/10.1016/j.ijhydene.2023.12.186
  • Singh, S., Jain, S., Tiwari, A. K., Nouni, M. R., Pandey, J. K., & Goel, S. (2015). Hydrogen: A sustainable fuel for future of the transport sector. Renewable and sustainable energy reviews, 51, 623-633.
  • Stathopoulou, M. (2021). Alternative sources of energy as marine fuels; the effect on the environment and the financial perspectives for a more sustainable future in the shipping industry (Master's thesis, Πανεπιστήμιο Πειραιώς).
  • Stolten, M. C. (2019). Energy storage using hydrogen produced from excess renewable electricity: Power to Hydrogen. Science and Engineering of Hydrogen-Based Energy Technologies (s. 165-199). içinde Cambridge Academic Press.
  • Taibi, E., Miranda, R., Vanhoudt, W., Winkel, T., Lanoix, J. C., & Barth, F. (2018). Hydrogen from renewable power: Technology outlook for the energy transition.
  • Takach, M., Sarajlić, M., Peters, D., Kroener, M., Schuldt, F., & von Maydell, K. (2022). Review of hydrogen production techniques from water using renewable energy sources and its storage in salt caverns. Energies, 15(4), 1415.
  • Tollefson, J. (2008). Car industry: charging up the future. Nature, 456, 436–440
  • van der Spek, M., Banet, C., Bauer, C., Gabrielli, P., Goldthorpe, W., Mazzotti, M., ... & Gazzani, M. (2022). Perspective on the hydrogen economy as a pathway to reach net-zero CO 2 emissions in Europe. Energy & Environmental Science, 15(3), 1034-1077.
  • Wijk, A. v. (2023). Hydrogen as carbon-free energy carrier and commodity . Handbook on the Geopolitics of the Energy Transition. Cheltenham: Edward Elgar Publishing.
  • Yartys, V. (2005). An Overview of Hydrogen Storage Methods. Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, 24(3), 197-209. doi:https://doi.org/10.1007/1-4020-2669-2_7
  • Yun, S., Lee, J., Cho, H., & Kim, J. (2023). Process design and improvement for hydrogen production based on thermodynamic analysis: Practical application to real-world on-site hydrogen refueling stations. Journal of Cleaner Production, 423, 138745.
  • Zakaria, Z., Kamarudin, S. K., & Wahid, K. A. A. (2021). Fuel cells as an advanced alternative energy source for the residential sector applications in Malaysia. International Journal of Energy Research, 45(4), 5032-5057.
  • Zang, G., Sun, P., Elgowainy, A., & Wang, M. (2021). Technoeconomic and life cycle analysis of synthetic methanol production from hydrogen and industrial byproduct CO2. Environmental science & technology, 55(8), 5248-5257.
  • Zhang, F., & Cooke, P. (2010). Hydrogen and fuel cell development in China: A review. European Planning Studies, 18(7), 1153-1168.
  • Zou, C. (2020). Hydrogen Energy. New Energy, 281-313.
  • Züttel, A., Remhof, A., Borgschulte, A., & Friedrichs, O. (2010). Hydrogen: the future energy carrier. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1923), 3329-3342.
Toplam 74 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uluslararası İlişkiler (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Yüksel Kamacı Erkan 0000-0002-2741-2764

Nevin Taşaltın 0000-0001-6788-1605

Yayımlanma Tarihi 20 Haziran 2025
Gönderilme Tarihi 6 Mart 2025
Kabul Tarihi 4 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 1 Sayı: 1

Kaynak Göster

APA Kamacı Erkan, Y., & Taşaltın, N. (2025). The Impacts of Hydrogen Energy Storage Technology on International Relations. Maltepe Üniversitesi Akademik Bakış Dergisi, 1(1), 17-29.