Araştırma Makalesi
BibTex RIS Kaynak Göster

Innovative application of marine biomaterials in microwave and antenna technologies: The study of Monodonta turbinata

Yıl 2025, Cilt: 7 Sayı: 1, 1 - 7, 30.06.2025
https://doi.org/10.51756/marlife.1628163

Öz

This study investigates to use electromagnetic properties of Monodonta turbinata shells as a sustainable biomaterial for microwave and antenna applications. Shells were collected from Iskenderun Bay, Türkiye, and processed by washing, drying, and grinding into fine powders. These powders were calcined at 800°C, 1000°C, and 1200°C to produce samples. The calcined powders were then analyzed for their complex dielectric properties within the 1GHz to 20 GHz frequency range. The dielectric measurements revealed significant changes in the electromagnetic properties with varying calcination temperatures, highlighting the potential of M. turbinata shells as tunable dielectric materials. The materials were further used as substrates in traditional patch antenna simulations. The results showed excellent behavior in terms of the S11 parameter, with a notably wider bandwidth compared to conventional dielectric substrates which are FR-4 and RT-5880. These findings demonstrate the feasibility of using M. turbinata shells as eco-friendly and cost-effective materials for advanced microwave and antenna technologies. The study not only suggests a novel application of marine biomaterials but also provides insights into the potential of sustainable alternatives in the development of broadband communication systems.

Kaynakça

  • Alyakrinskaya, I. O. (2010). Some adaptations of Monodonta turbinata (Born, 1780) (Gastropoda, Prosobranchia, Trochidae) to feeding and habitation in the littoral zone. Biology Bulletin, 37(1), 63-68. https://doi.org/10.1134/S1062359010010097
  • Baltacıoğlu, K., Başar, M., Karaaslan, M., Alkurt, F., & Aripek, S. (2021) Electromagnetic Analysis of Organic Waste and Blust Furnace Slag Mixtures. European Mechanical Science, 5(3), 148–152. https://doi.org/10.26701/ems.860949
  • Bedi, N., Srivastava, D. K., Srivastava, A., Mahapatra, S., Dkhar, D. S., Chandra, P., & Srivastava, A. (2022). Marine biological macromolecules as matrix material for biosensor fabrication. Biotechnology and Bioengineering, 119(8), 2046-2063. https://doi.org/10.1002/bit.28122
  • Belhaouarı, B., & Boutıba, Z. (2009). Approche écobiologique chez un Mollusque Gastéropode Monodonta turbinata dans la côte oranaise orientale. Bulletin de l’institut national des sciences et technologies de la mer de Tunisie, 13, 86-90.
  • Boucetta, S., Derbal, F., Boutiba, Z., & Kara, M. H. (2008). First Biological Data on the marine snails Monodonta turbinata (Gastropoda, Trochidae) of Eastern coasts of Algeria. Laboratoire Bioressources Marines, Université Badji-Mokhtar, Algeria. Laboratoire Réseau de Surveillance Environmental, Université Es-Senia, Oran, Algeria. http://doi.org/10.13140/RG.2.2.20639.36007
  • Conti, M. E., Iacobucci, M., Mecozzi, M., & Cecchetti, G. (2006). Trace metals in soft tissues of two marine gastropod molluscs: Monodonta turbinata B. and Patella caerulea L. collected in a marine reference ecosystem. Environmental problems in coastal regions VI, including oil and chemical spill studies. WIT Transactions on Ecology and the Environment, 88, 3-11. https://doi.org/10.2495/CENV060011
  • Conti, M. E., Mele, G., & Finoia, M. G. (2017). Baseline Trace Metals Concentration in Monodonta turbinata Throughout Pontine Islands Archipelago, Italy. International Journal of Environmental Research, 11, 13-23. http://doi.org/10.1007/s41742-017-0002-x
  • Duysak, O., & Ersoy, B. (2014). A Biomonitoring Study: Heavy Metals in Monodonta turbinata (Mollusca: Gastropoda) From Iskenderun Bay North-Eastern Mediterranean. Pakistan Journal of Zoology, 46(5), 1317-1322.
  • Habib Ullah, M., Mahadi, W. N. L., & Latef, T. A. (2015). Aerogel poly (butylene succinate) biomaterial substrate for RF and microwave applications. Scientific Reports, 5(1), 12868. https://doi.org/10.1038/srep12868
  • Hernández-Gómez, E. S., Olvera-Cervantes, J. L., Corona-Chávez, A., & Sosa-Morales, M. E. (2014, October). Development of a low cost dielectric permittivity sensor for organic and inorganic materials in the microwave frequency range. In 2014 IEEE 9th IberoAmerican Congress on Sensors (pp. 1-4). IEEE. http://doi.org/10.1109/IBERSENSOR.2014.6995539
  • Kaidarova, A., Geraldi, N. R., Wilson, R. P., Kosel, J., Meekan, M. G., Eguíluz, V. M., Hussain, M. M., Shamim, A., Liao, H., Srivastava, M., Saha, S. S., Strano, M. S., Zhang, X., Ooi, B. S., Holton, M., Hopkins, L. W., Jin, X., Gong, X., Quintana, F., Tovasarov, A., Tasmagambetevo, A., & Duarte, C. M. (2023). Wearable sensors for monitoring marine environments and their inhabitants. Nature Biotechnology, 41(9), 1208-1220. https://doi.org/10.1038/s41587-023-01827-3
  • Park, H. J., Jeong, S. W., Yang, J. K., Kim, B. G., & Lee, S. M. (2007). Removal of heavy metals using waste eggshell. Journal of Environmental Sciences, 19(12), 1436-1441. https://doi.org/10.1016/S1001-0742(07)60234-4
  • Raman, S., & Skrivervik, A. K. (2023). Biomaterial devices on Arecanut palm leaf for microwave applications. In 2023 17th European Conference on Antennas and Propagation (EuCAP) (pp. 1-5). IEEE. https://doi.org/10.23919/EuCAP57121.2023.10133639
  • Rupčić, S., Mandrić, V., Kovačić, Đ., & Varga, M. (2024). Measurements of Electromagnetic Radiation Propagation through Biomaterial Samples Based on Harvest Residues. Sustainability, 16(2), 499. https://doi.org/10.3390/su16020499
  • Marland, S., Merchant, A., & Rowson, N. (2001). Dielectric properties of coal. Fuel 80(13), 1839-1849. https://doi.org/10.1016/S0016-2361(01)00050-3
  • Şahin, E. İ., Emek, M., Ibrahim, J. E. F., Yumuşak, G., & Kartal, M. (2023). Shielding effectiveness performance of polyaniline-NiFe2O4: Cu composites for sub-8 GHz applications. Optical and Quantum Electronics, 55(6), 500. https://doi.org/10.1007/s11082-023-04791-z
  • Sun, J., Choi, H., Cha, S., Ahn, D., Choi, M., Park, S., Cho, Y., Lee, J., Park., T. E., & Park, J. J. (2022). Highly enhanced triboelectric performance from increased dielectric constant induced by ionic and interfacial polarization for chitosan based multi‐modal sensing system. Advanced Functional Materials, 32(7), 2109139. https://doi.org/10.1002/adfm.202109139
  • Uğurlu, E. (2024). Evaluation of Gastropods as Biomaterials: Monodonta turbinata (Born, 1780). Acta Aquatica Turcica, 20(2), 97-107. https://doi.org/10.22392/actaquatr.1301286
  • Wang, H., An, Q., Xiao, Z., Tong, Y., Guo, L., Zhai, S., Xiao, L-P., & Ha, C. S. (2022). Marine polysaccharide-based electromagnetic absorbing/shielding materials: design principles, structure, and properties. Journal of Materials Chemistry A, 10(33), 17023-17052. https://doi.org/10.1039/D2TA03529D
  • Wang, H., Xiao, X., Zhai, S., Xue, C., Zheng, G., Zhang, D., Che, H., & Cheng, J. (2025). Spontaneous orientation polarization of anisotropic equivalent dipoles harnessed by entropy engineering for ultra-thin electromagnetic wave absorber. Nano-Micro Letters, 17(1), 1-15. https://doi.org/10.1007/s40820-024-01507-0
  • Zulkifli, N. A., Wee, F. H., Mahrom, N., Yew, B. S., Lee, Y. S., Ibrahim, S. Z., & Am Phan, A. L. (2017). Analysis of dielectric properties on agricultural waste for microwave communication application. In MATEC Web of Conferences (Vol. 140, p. 01013). EDP Sciences. http://doi.org/10.1051/matecconf/201714001013

Mikrodalga ve Anten Teknolojilerinde Deniz Biyomalzemelerinin Yenilikçi Uygulamaları: Monodonta turbinata Çalışması

Yıl 2025, Cilt: 7 Sayı: 1, 1 - 7, 30.06.2025
https://doi.org/10.51756/marlife.1628163

Öz

Bu çalışma, Monodonta turbinata kabuklarının elektromanyetik özelliklerinin mikrodalga ve anten uygulamaları için sürdürülebilir bir biyomalzeme olarak kullanılmasını araştırmaktadır. Kabuklar Türkiye, İskenderun Körfezi'nden toplanmış ve yıkama, kurutma ve ince toz haline getirme yoluyla işlenmiştir. Bu tozlar numuneler üretmek için 800 °C, 1000 °C ve 1200 °C'de kalsine edilmiştir. Kalsine edilmiş tozlar daha sonra 1GHz ila 20 GHz frekans aralığında karmaşık dielektrik özellikleri açısından analiz edilmiştir. Dielektrik ölçümleri, değişen kalsinasyon sıcaklıklarında elektromanyetik özelliklerde önemli değişiklikler olduğunu ortaya koyarak, M. turbinata kabuklarının ayarlanabilir dielektrik malzemeler olarak potansiyelini vurgulamıştır. Malzemeler ayrıca geleneksel yama anten simülasyonlarında alt tabaka olarak kullanılmıştır. Sonuçlar, FR-4 ve RT-5880 olan geleneksel dielektrik alt tabakalara kıyasla belirgin şekilde daha geniş bir bant genişliğine sahip olan S11 parametresi açısından mükemmel davranış göstermiştir. Bu bulgular, M. turbinata kabuklarının gelişmiş mikrodalga ve anten teknolojileri için çevre dostu ve uygun maliyetli malzemeler olarak kullanılmasının uygulanabilirliğini göstermektedir. Çalışma, yalnızca deniz biyomalzemelerinin yeni bir uygulamasını önermekle kalmayıp aynı zamanda geniş bant iletişim sistemlerinin geliştirilmesinde sürdürülebilir alternatiflerin potansiyeline dair içgörüler de sunmaktadır.

Kaynakça

  • Alyakrinskaya, I. O. (2010). Some adaptations of Monodonta turbinata (Born, 1780) (Gastropoda, Prosobranchia, Trochidae) to feeding and habitation in the littoral zone. Biology Bulletin, 37(1), 63-68. https://doi.org/10.1134/S1062359010010097
  • Baltacıoğlu, K., Başar, M., Karaaslan, M., Alkurt, F., & Aripek, S. (2021) Electromagnetic Analysis of Organic Waste and Blust Furnace Slag Mixtures. European Mechanical Science, 5(3), 148–152. https://doi.org/10.26701/ems.860949
  • Bedi, N., Srivastava, D. K., Srivastava, A., Mahapatra, S., Dkhar, D. S., Chandra, P., & Srivastava, A. (2022). Marine biological macromolecules as matrix material for biosensor fabrication. Biotechnology and Bioengineering, 119(8), 2046-2063. https://doi.org/10.1002/bit.28122
  • Belhaouarı, B., & Boutıba, Z. (2009). Approche écobiologique chez un Mollusque Gastéropode Monodonta turbinata dans la côte oranaise orientale. Bulletin de l’institut national des sciences et technologies de la mer de Tunisie, 13, 86-90.
  • Boucetta, S., Derbal, F., Boutiba, Z., & Kara, M. H. (2008). First Biological Data on the marine snails Monodonta turbinata (Gastropoda, Trochidae) of Eastern coasts of Algeria. Laboratoire Bioressources Marines, Université Badji-Mokhtar, Algeria. Laboratoire Réseau de Surveillance Environmental, Université Es-Senia, Oran, Algeria. http://doi.org/10.13140/RG.2.2.20639.36007
  • Conti, M. E., Iacobucci, M., Mecozzi, M., & Cecchetti, G. (2006). Trace metals in soft tissues of two marine gastropod molluscs: Monodonta turbinata B. and Patella caerulea L. collected in a marine reference ecosystem. Environmental problems in coastal regions VI, including oil and chemical spill studies. WIT Transactions on Ecology and the Environment, 88, 3-11. https://doi.org/10.2495/CENV060011
  • Conti, M. E., Mele, G., & Finoia, M. G. (2017). Baseline Trace Metals Concentration in Monodonta turbinata Throughout Pontine Islands Archipelago, Italy. International Journal of Environmental Research, 11, 13-23. http://doi.org/10.1007/s41742-017-0002-x
  • Duysak, O., & Ersoy, B. (2014). A Biomonitoring Study: Heavy Metals in Monodonta turbinata (Mollusca: Gastropoda) From Iskenderun Bay North-Eastern Mediterranean. Pakistan Journal of Zoology, 46(5), 1317-1322.
  • Habib Ullah, M., Mahadi, W. N. L., & Latef, T. A. (2015). Aerogel poly (butylene succinate) biomaterial substrate for RF and microwave applications. Scientific Reports, 5(1), 12868. https://doi.org/10.1038/srep12868
  • Hernández-Gómez, E. S., Olvera-Cervantes, J. L., Corona-Chávez, A., & Sosa-Morales, M. E. (2014, October). Development of a low cost dielectric permittivity sensor for organic and inorganic materials in the microwave frequency range. In 2014 IEEE 9th IberoAmerican Congress on Sensors (pp. 1-4). IEEE. http://doi.org/10.1109/IBERSENSOR.2014.6995539
  • Kaidarova, A., Geraldi, N. R., Wilson, R. P., Kosel, J., Meekan, M. G., Eguíluz, V. M., Hussain, M. M., Shamim, A., Liao, H., Srivastava, M., Saha, S. S., Strano, M. S., Zhang, X., Ooi, B. S., Holton, M., Hopkins, L. W., Jin, X., Gong, X., Quintana, F., Tovasarov, A., Tasmagambetevo, A., & Duarte, C. M. (2023). Wearable sensors for monitoring marine environments and their inhabitants. Nature Biotechnology, 41(9), 1208-1220. https://doi.org/10.1038/s41587-023-01827-3
  • Park, H. J., Jeong, S. W., Yang, J. K., Kim, B. G., & Lee, S. M. (2007). Removal of heavy metals using waste eggshell. Journal of Environmental Sciences, 19(12), 1436-1441. https://doi.org/10.1016/S1001-0742(07)60234-4
  • Raman, S., & Skrivervik, A. K. (2023). Biomaterial devices on Arecanut palm leaf for microwave applications. In 2023 17th European Conference on Antennas and Propagation (EuCAP) (pp. 1-5). IEEE. https://doi.org/10.23919/EuCAP57121.2023.10133639
  • Rupčić, S., Mandrić, V., Kovačić, Đ., & Varga, M. (2024). Measurements of Electromagnetic Radiation Propagation through Biomaterial Samples Based on Harvest Residues. Sustainability, 16(2), 499. https://doi.org/10.3390/su16020499
  • Marland, S., Merchant, A., & Rowson, N. (2001). Dielectric properties of coal. Fuel 80(13), 1839-1849. https://doi.org/10.1016/S0016-2361(01)00050-3
  • Şahin, E. İ., Emek, M., Ibrahim, J. E. F., Yumuşak, G., & Kartal, M. (2023). Shielding effectiveness performance of polyaniline-NiFe2O4: Cu composites for sub-8 GHz applications. Optical and Quantum Electronics, 55(6), 500. https://doi.org/10.1007/s11082-023-04791-z
  • Sun, J., Choi, H., Cha, S., Ahn, D., Choi, M., Park, S., Cho, Y., Lee, J., Park., T. E., & Park, J. J. (2022). Highly enhanced triboelectric performance from increased dielectric constant induced by ionic and interfacial polarization for chitosan based multi‐modal sensing system. Advanced Functional Materials, 32(7), 2109139. https://doi.org/10.1002/adfm.202109139
  • Uğurlu, E. (2024). Evaluation of Gastropods as Biomaterials: Monodonta turbinata (Born, 1780). Acta Aquatica Turcica, 20(2), 97-107. https://doi.org/10.22392/actaquatr.1301286
  • Wang, H., An, Q., Xiao, Z., Tong, Y., Guo, L., Zhai, S., Xiao, L-P., & Ha, C. S. (2022). Marine polysaccharide-based electromagnetic absorbing/shielding materials: design principles, structure, and properties. Journal of Materials Chemistry A, 10(33), 17023-17052. https://doi.org/10.1039/D2TA03529D
  • Wang, H., Xiao, X., Zhai, S., Xue, C., Zheng, G., Zhang, D., Che, H., & Cheng, J. (2025). Spontaneous orientation polarization of anisotropic equivalent dipoles harnessed by entropy engineering for ultra-thin electromagnetic wave absorber. Nano-Micro Letters, 17(1), 1-15. https://doi.org/10.1007/s40820-024-01507-0
  • Zulkifli, N. A., Wee, F. H., Mahrom, N., Yew, B. S., Lee, Y. S., Ibrahim, S. Z., & Am Phan, A. L. (2017). Analysis of dielectric properties on agricultural waste for microwave communication application. In MATEC Web of Conferences (Vol. 140, p. 01013). EDP Sciences. http://doi.org/10.1051/matecconf/201714001013
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ekoloji (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Erkan Uğurlu 0000-0001-8940-8421

Muharrem Karaaslan 0000-0003-0923-1959

Fatih Özkan Alkurt 0000-0002-9940-0658

Önder Duysak 0000-0002-7484-3102

Erken Görünüm Tarihi 30 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 27 Ocak 2025
Kabul Tarihi 24 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 1

Kaynak Göster

APA Uğurlu, E., Karaaslan, M., Alkurt, F. Ö., Duysak, Ö. (2025). Innovative application of marine biomaterials in microwave and antenna technologies: The study of Monodonta turbinata. Marine and Life Sciences, 7(1), 1-7. https://doi.org/10.51756/marlife.1628163
Flag Counter