Araştırma Makalesi
BibTex RIS Kaynak Göster

FDM ve SLA 3D Baskı Yöntemleriyle Üretilen Parçaların Yapıştırma Performansının İncelenmesi

Yıl 2025, Cilt: 6 Sayı: 1, 100 - 110, 30.04.2025
https://doi.org/10.52795/mateca.1635653

Öz

Bu çalışmada, günümüzde sıklıkla tercih edilen eklemeli imalat yöntemleri kullanılarak üretilen parçaların yapıştırma özellikleri incelenmiştir. Bu kapsamda Stereolitografi (SLA) ve Eriyik Yığma Modelleme (FDM) yöntemleri ile parçalar üretilmiştir. Üretilen malzemelerin mekanik özellikleri ASTM D638 standartına göre gerçekleştirilen çekme testi ile belirlenmiştir. Sonrasında bu parçalar farklı kombinasyonlarda yapıştırılarak bağlantıların mekanik özellikleri ASTM D1002 standartına göre belirlenmiştir. Sonuç olarak, FDM yöntemi ile üretilen Polylactic Acid (PLA) parçaların çekme dayanımları SLA yöntemi ile üretilen PhotoPolymer Resin (PPR) parçalara nazaran %65 oranında daha yüksek iken, PPR malzemelerinde şekil değiştirme oranlarının PLA malzemeye göre %85 oranında daha yüksek olduğu belirlenmiştir. Yapıştırma ile birleştirme işlemi yapılan bağlantı numunelerinin çekme işlemi sonrasında elde edilen hasar yükü değerleri incelendiğinde en iyi mekanik performans PLA ve kompozit malzeme birleşiminde 3086 N olarak elde edilmiştir. En düşük hasar yükü ise PPR ve PLA malzeme birleşiminde meydana gelmiştir. Hasar yükü sonucunda oluşan yer değiştirme verileri incelendiğinde ise PPR-PPR malzeme birleşiminde en yüksek değerler elde edilmiştir. Sonuç olarak, eklemeli imalatla üretilen parçaların birleştirilmesinde yapıştırma yöntemi kullanılabilir fakat malzeme seçiminin uygulamaya göre yapılması gerekmektedir.

Kaynakça

  • O. Abdulhameed, A. Al-Ahmari, W. Ameen, S.H. Mian, Additive manufacturing: Challenges, trends, and applications, Adv. Mech. Eng. 11, (2019), 1687814018822880.
  • H.K. Sürmen, Eklemeli İMALAT (3B baski):Teknoloji̇ler ve uygulamalar, Uludağ Univ. J. Fac. Eng. 24 (2019) 373–392. https://doi.org/10.17482/uumfd.519147.
  • T. Ma, Y. Zhang, K. Ruan, H. Guo, M. He, X. Shi, Y. Guo, J. Kong, J. Gu, Advances in 3D printing for polymer composites: A review, InfoMat, (2024), e12568.
  • Ü.G. Başcı, R. Yamanoğlu, Yeni nesil üretim teknolojisi: FDM ı̇le eklemeli̇ ı̇malat, Int. J. 3D Print. Technol. Digit. Ind. 5, (2021), 339–352. https://doi.org/10.46519/ij3dptdi.838281.
  • K. V Wong, A. Hernandez, A review of additive manufacturing, Int. Sch. Res. Not., (2012) 208760.
  • S. Hartomacıoğlu, E. Kaya, B. Eker, S. Dağlı, M. Sarıkaya, Characterization, generative design, and fabrication of a carbon fiber-reinforced industrial robot gripper via additive manufacturing, J. Mater. Res. Technol., 33 (2024) 3714–3727.
  • O. Özsolak, Eklemeli imalat yöntemleri ve kullanılan malzemeler, Int. J. Innov. Eng. Appl., 3 (2019) 9–14.
  • D.S. Aydın, Ç.V. Yıldırım, Ş. Şirin, Üretim parametrelerinin seçici lazer ergitme yöntemi ile Ti6Al4V alaşımının çekme dayanımı, elastisite modülü ve uzama özelliklerine etkisi, Düzce Üniversitesi Bilim ve Teknol. Derg., 12 (2024) 1-17. https://doi.org/10.29130/dubited.1134020.
  • J. Jin, J. Yang, H. Mao, Y. Chen, A vibration-assisted method to reduce separation force for stereolithography, J. Manuf. Process, 34 (2018) 793-801. https://doi.org/https://doi.org/10.1016/j.jmapro.2018.03.052.
  • J.Z. Manapat, Q. Chen, P. Ye, R.C. Advincula, 3D printing of polymer nanocomposites via stereolithography, macromol, Mater. Eng., 302 (2017) 1-13. https://doi.org/10.1002/mame.201600553.
  • G. Taormina, C. Sciancalepore, F. Bondioli, M. Messori, Special resins for stereolithography: In situ generation of silver nanoparticles, Polymers (Basel). 10, (2018). https://doi.org/10.3390/polym10020212.
  • A. Husna, S. Ashrafi, A.A. Tomal, N.T. Tuli, A. Bin Rashid, Recent advancements in stereolithography (SLA) and their optimization of process parameters for sustainable manufacturing, Hybrid Adv., 7 (2024) 100307. https://doi.org/10.1016/j.hybadv.2024.100307.
  • I. Khan, I. Barsoum, M. Abas, A. Al Rashid, M. Koç, M. Tariq, A review of extrusion-based additive manufacturing of multi-materials-based polymeric laminated structures, Compos. Struct. (2024), 118490.
  • A. Rasheed, et al., Experimental investigation and Taguchi optimization of FDM process parameters for the enhancement of tensile properties of Bi-layered printed PLA-ABS, Mater. Res. Express, 10 (2023) 95307.
  • E. Brancewicz-Steinmetz, J. Sawicki, Bonding and strengthening the PLA biopolymer in multi-material additive manufacturing, Materials (Basel). 15, (2022). https://doi.org/10.3390/ma15165563.
  • I. Khan, M. Tariq, M. Abas, M. Shakeel, F. Hira, A. Al Rashid, M. Koç, Parametric investigation and optimisation of mechanical properties of thick tri-material based composite of PLA-PETG-ABS 3D-printed using fused filament fabrication, Compos. Part C Open Access, 12 (2023) 100392.
  • Y. Korkmaz, K. Gültekin, Improving the mechanical performance of adhesively bonded CFRP composite joints exposed to harsh mediums with the reinforcement of boron nanostructures, J. Adhes. Sci. Technol., 37 (2023) 1959-1982.
  • A.Y. Kanani, X. Hou, J. Ye, A novel dissimilar single-lap joint with interfacial stiffness improvement, Compos. Struct. 252, (2020), 112741.
  • İ. Saraç, H. Adin, Ş. Temiz, Experimental determination of the static and fatigue strength of the adhesive joints bonded by epoxy adhesive including different particles, Compos. Part B Eng., 155 (2018) 92-103.
  • I. Manoj, A. Jain, Strength improvement and failure analysis of dissimilar FDM printed single-lap joints with tailored interface geometry, Int. J. Adhes. Adhes. 136, (2025), 103876.
  • K. Gültekin, B. Özakın, F. Yüksel, E. Danışmaz, Farklı Baskı Açıları ve Dolgu Oranlarında Üretilen Polilaktik Asit Plakalarla Birleştirilmiş Yapıştırma Bağlantılarının Deneysel Analizi TT-Experimental Analysis of Adhesive Joints Bonded with Polylactic Acid Plates Produced with Different Printing Ang, Karadeniz Fen Bilim. Derg., 14 (2024) 789-801. https://doi.org/10.31466/kfbd.1436278.
  • M.R. Khosravani, P. Soltani, K. Weinberg, T. Reinicke, Structural integrity of adhesively bonded 3D-printed joints, Polym. Test., 100 (2021) 107262.
  • N. Polat Çoban, N. Anaç, F. Mert, Eklemeli imalat ile üretilen pla parçaların yapıştırılmasında yapıştırma parametrelerinin mekanik dayanımına etkisinin incelenmesi, J. Polytech, 26, (2023).
  • M.G. Atahan, M.K. Apalak, Loading-rate effect on tensile and bending strength of 3D-printed polylactic acid adhesively bonded joints, J. Adhes. Sci. Technol., 36 (2022) 317-344.
  • T. Dhilipkumar, R. Venkatesan, V.S. Hiremath, S. Kesavan, K. P, K. V Shankar, O. Alduhaish, Enhancing structural performance of 3D-printed adhesively bonded flat-joggle-flat polymer joints with graphene-reinforced adhesive, Polym. Compos. 45 (2024) 16335–16346. https://doi.org/https://doi.org/10.1002/pc.29037.
  • I.A. Akpinar, K. Gültekin, S. Akpinar, H. Akbulut, A. Ozel, Research on strength of nanocomposite adhesively bonded composite joints, Compos. Part B Eng., 126 (2017) 143-152.
  • R. Niu, Y. Yang, Z. Liu, Z. Ding, H. Peng, Y. Fan, Durability of two epoxy adhesive BFRP joints dipped in seawater under high temperature environment, Polymers (Basel), 15 (2023) 3232.

Investigation of the Bonding Performance of Parts Produced by FDM and SLA 3D Printing Methods

Yıl 2025, Cilt: 6 Sayı: 1, 100 - 110, 30.04.2025
https://doi.org/10.52795/mateca.1635653

Öz

In this study, the bonding properties of parts produced using additive manufacturing methods, which are frequently preferred today, were investigated. In this context, parts were produced by Stereolithography (SLA) and Fused Deposition Modelling (FDM) methods. The mechanical properties of the produced materials were determined by tensile test according to ASTM D638 standard. Afterwards, these parts were bonded in different combinations and the mechanical properties of the joints were determined according to ASTM D1002 standard. As a result, the tensile strength of Polylactic Acid (PLA) parts produced by FDM method was 65% higher than that of PhotoPolymer Resin (PPR) parts produced by SLA method, while the strain rates of PPR materials were 85% higher than PLA materials. When the failure load values obtained after the tensile test of the bonded joint specimens were examined, the best mechanical performance was obtained as 3086 N in the combination of PLA and composite material. The lowest damage load occurred in the combination of PPR and PLA material. When the displacement data resulting from the failure load were analysed, the highest values were obtained in the PPR-PPR material combination. In conclusion, bonding can be used for joining parts produced by additive manufacturing, but the choice of material should be based on the application.

Kaynakça

  • O. Abdulhameed, A. Al-Ahmari, W. Ameen, S.H. Mian, Additive manufacturing: Challenges, trends, and applications, Adv. Mech. Eng. 11, (2019), 1687814018822880.
  • H.K. Sürmen, Eklemeli İMALAT (3B baski):Teknoloji̇ler ve uygulamalar, Uludağ Univ. J. Fac. Eng. 24 (2019) 373–392. https://doi.org/10.17482/uumfd.519147.
  • T. Ma, Y. Zhang, K. Ruan, H. Guo, M. He, X. Shi, Y. Guo, J. Kong, J. Gu, Advances in 3D printing for polymer composites: A review, InfoMat, (2024), e12568.
  • Ü.G. Başcı, R. Yamanoğlu, Yeni nesil üretim teknolojisi: FDM ı̇le eklemeli̇ ı̇malat, Int. J. 3D Print. Technol. Digit. Ind. 5, (2021), 339–352. https://doi.org/10.46519/ij3dptdi.838281.
  • K. V Wong, A. Hernandez, A review of additive manufacturing, Int. Sch. Res. Not., (2012) 208760.
  • S. Hartomacıoğlu, E. Kaya, B. Eker, S. Dağlı, M. Sarıkaya, Characterization, generative design, and fabrication of a carbon fiber-reinforced industrial robot gripper via additive manufacturing, J. Mater. Res. Technol., 33 (2024) 3714–3727.
  • O. Özsolak, Eklemeli imalat yöntemleri ve kullanılan malzemeler, Int. J. Innov. Eng. Appl., 3 (2019) 9–14.
  • D.S. Aydın, Ç.V. Yıldırım, Ş. Şirin, Üretim parametrelerinin seçici lazer ergitme yöntemi ile Ti6Al4V alaşımının çekme dayanımı, elastisite modülü ve uzama özelliklerine etkisi, Düzce Üniversitesi Bilim ve Teknol. Derg., 12 (2024) 1-17. https://doi.org/10.29130/dubited.1134020.
  • J. Jin, J. Yang, H. Mao, Y. Chen, A vibration-assisted method to reduce separation force for stereolithography, J. Manuf. Process, 34 (2018) 793-801. https://doi.org/https://doi.org/10.1016/j.jmapro.2018.03.052.
  • J.Z. Manapat, Q. Chen, P. Ye, R.C. Advincula, 3D printing of polymer nanocomposites via stereolithography, macromol, Mater. Eng., 302 (2017) 1-13. https://doi.org/10.1002/mame.201600553.
  • G. Taormina, C. Sciancalepore, F. Bondioli, M. Messori, Special resins for stereolithography: In situ generation of silver nanoparticles, Polymers (Basel). 10, (2018). https://doi.org/10.3390/polym10020212.
  • A. Husna, S. Ashrafi, A.A. Tomal, N.T. Tuli, A. Bin Rashid, Recent advancements in stereolithography (SLA) and their optimization of process parameters for sustainable manufacturing, Hybrid Adv., 7 (2024) 100307. https://doi.org/10.1016/j.hybadv.2024.100307.
  • I. Khan, I. Barsoum, M. Abas, A. Al Rashid, M. Koç, M. Tariq, A review of extrusion-based additive manufacturing of multi-materials-based polymeric laminated structures, Compos. Struct. (2024), 118490.
  • A. Rasheed, et al., Experimental investigation and Taguchi optimization of FDM process parameters for the enhancement of tensile properties of Bi-layered printed PLA-ABS, Mater. Res. Express, 10 (2023) 95307.
  • E. Brancewicz-Steinmetz, J. Sawicki, Bonding and strengthening the PLA biopolymer in multi-material additive manufacturing, Materials (Basel). 15, (2022). https://doi.org/10.3390/ma15165563.
  • I. Khan, M. Tariq, M. Abas, M. Shakeel, F. Hira, A. Al Rashid, M. Koç, Parametric investigation and optimisation of mechanical properties of thick tri-material based composite of PLA-PETG-ABS 3D-printed using fused filament fabrication, Compos. Part C Open Access, 12 (2023) 100392.
  • Y. Korkmaz, K. Gültekin, Improving the mechanical performance of adhesively bonded CFRP composite joints exposed to harsh mediums with the reinforcement of boron nanostructures, J. Adhes. Sci. Technol., 37 (2023) 1959-1982.
  • A.Y. Kanani, X. Hou, J. Ye, A novel dissimilar single-lap joint with interfacial stiffness improvement, Compos. Struct. 252, (2020), 112741.
  • İ. Saraç, H. Adin, Ş. Temiz, Experimental determination of the static and fatigue strength of the adhesive joints bonded by epoxy adhesive including different particles, Compos. Part B Eng., 155 (2018) 92-103.
  • I. Manoj, A. Jain, Strength improvement and failure analysis of dissimilar FDM printed single-lap joints with tailored interface geometry, Int. J. Adhes. Adhes. 136, (2025), 103876.
  • K. Gültekin, B. Özakın, F. Yüksel, E. Danışmaz, Farklı Baskı Açıları ve Dolgu Oranlarında Üretilen Polilaktik Asit Plakalarla Birleştirilmiş Yapıştırma Bağlantılarının Deneysel Analizi TT-Experimental Analysis of Adhesive Joints Bonded with Polylactic Acid Plates Produced with Different Printing Ang, Karadeniz Fen Bilim. Derg., 14 (2024) 789-801. https://doi.org/10.31466/kfbd.1436278.
  • M.R. Khosravani, P. Soltani, K. Weinberg, T. Reinicke, Structural integrity of adhesively bonded 3D-printed joints, Polym. Test., 100 (2021) 107262.
  • N. Polat Çoban, N. Anaç, F. Mert, Eklemeli imalat ile üretilen pla parçaların yapıştırılmasında yapıştırma parametrelerinin mekanik dayanımına etkisinin incelenmesi, J. Polytech, 26, (2023).
  • M.G. Atahan, M.K. Apalak, Loading-rate effect on tensile and bending strength of 3D-printed polylactic acid adhesively bonded joints, J. Adhes. Sci. Technol., 36 (2022) 317-344.
  • T. Dhilipkumar, R. Venkatesan, V.S. Hiremath, S. Kesavan, K. P, K. V Shankar, O. Alduhaish, Enhancing structural performance of 3D-printed adhesively bonded flat-joggle-flat polymer joints with graphene-reinforced adhesive, Polym. Compos. 45 (2024) 16335–16346. https://doi.org/https://doi.org/10.1002/pc.29037.
  • I.A. Akpinar, K. Gültekin, S. Akpinar, H. Akbulut, A. Ozel, Research on strength of nanocomposite adhesively bonded composite joints, Compos. Part B Eng., 126 (2017) 143-152.
  • R. Niu, Y. Yang, Z. Liu, Z. Ding, H. Peng, Y. Fan, Durability of two epoxy adhesive BFRP joints dipped in seawater under high temperature environment, Polymers (Basel), 15 (2023) 3232.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Katmanlı Üretim
Bölüm Araştırma Makaleleri
Yazarlar

Salih Dağlı 0000-0003-3805-5130

Erken Görünüm Tarihi 30 Nisan 2025
Yayımlanma Tarihi 30 Nisan 2025
Gönderilme Tarihi 7 Şubat 2025
Kabul Tarihi 1 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 1

Kaynak Göster

APA Dağlı, S. (2025). Investigation of the Bonding Performance of Parts Produced by FDM and SLA 3D Printing Methods. Manufacturing Technologies and Applications, 6(1), 100-110. https://doi.org/10.52795/mateca.1635653
AMA Dağlı S. Investigation of the Bonding Performance of Parts Produced by FDM and SLA 3D Printing Methods. MATECA. Nisan 2025;6(1):100-110. doi:10.52795/mateca.1635653
Chicago Dağlı, Salih. “Investigation of the Bonding Performance of Parts Produced by FDM and SLA 3D Printing Methods”. Manufacturing Technologies and Applications 6, sy. 1 (Nisan 2025): 100-110. https://doi.org/10.52795/mateca.1635653.
EndNote Dağlı S (01 Nisan 2025) Investigation of the Bonding Performance of Parts Produced by FDM and SLA 3D Printing Methods. Manufacturing Technologies and Applications 6 1 100–110.
IEEE S. Dağlı, “Investigation of the Bonding Performance of Parts Produced by FDM and SLA 3D Printing Methods”, MATECA, c. 6, sy. 1, ss. 100–110, 2025, doi: 10.52795/mateca.1635653.
ISNAD Dağlı, Salih. “Investigation of the Bonding Performance of Parts Produced by FDM and SLA 3D Printing Methods”. Manufacturing Technologies and Applications 6/1 (Nisan 2025), 100-110. https://doi.org/10.52795/mateca.1635653.
JAMA Dağlı S. Investigation of the Bonding Performance of Parts Produced by FDM and SLA 3D Printing Methods. MATECA. 2025;6:100–110.
MLA Dağlı, Salih. “Investigation of the Bonding Performance of Parts Produced by FDM and SLA 3D Printing Methods”. Manufacturing Technologies and Applications, c. 6, sy. 1, 2025, ss. 100-1, doi:10.52795/mateca.1635653.
Vancouver Dağlı S. Investigation of the Bonding Performance of Parts Produced by FDM and SLA 3D Printing Methods. MATECA. 2025;6(1):100-1.