Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2015, Cilt: 3 Sayı: 2, 45 - 53, 30.10.2015
https://doi.org/10.36753/mathenot.421329

Öz

Kaynakça

  • [1] Agarwal, P., Chand, M., (2013), On new sequence of functions involving pFq, South Asian Journal of Mathematics , Vol. 3 ( 3 ) : 199-210.
  • [2] Agarwal, P., Chand, M., (2013), A new sequence of functions involving pjFqj , MathematicalSciences And Applications E-Notes, Volume 1 No. 2 pp. 173-190.
  • [3] Agarwal, P., Chand, M.,(2013), Graphical Interpretation of the New Sequence of Functions Involving Mittage-Leffler Function Using Matlab, American Journal of Mathematics and Statistics 2013, 3(2): 73-83 DOI: 10.5923/j.ajms.20130302.02.
  • [4] Agarwal, P., Chand, M. and Dwivedi, S.,(2014), A Study on New Sequence of Functions Involving H-Function, American Journal of Applied Mathematics and Statistics, Vol. 2, No. ¯ 1, 34-39.
  • [5] Chak, A. M., (1956) A class of polynomials and generalization of stirling numbers, Duke J. Math., 23, 45-55.
  • [6] Chandel, R.C.S., (1973) A new class of polynomials, Indian J. Math., 15(1), 41-49.
  • [7] Chandel, R.C.S., (1974) A further note on the class of polynomials T α,kn (x, r, p), Indian J.Math.,16(1), 39-48.
  • [8] Chatterjea, S. K., (1964) On generalization of Laguerre polynomials, Rend. Mat. Univ. Padova, 34, 180-190.
  • [9] Gould, H. W. and Hopper, A. T., (1962) Operational formulas connected with two generalizations of Hermite polynomials, Duck Math. J., 29, 51-63.
  • [10] Joshi, C. M. and Prajapat, M. L., (1975) The operator Ta,k, and a generalization of certain classical polynomials, Kyungpook Math. J., 15, 191-199.
  • [11] Mittal, H. B., (1971) A generalization of Laguerre polynomial, Publ. Math. Debrecen, 18, 53-58.
  • [12] Mittal, H. B., (1971) Operational representations for the generalized Laguerre polynomial, Glasnik Mat.Ser III, 26(6), 45-53.
  • [13] Mittal, H. B., (1977) Bilinear and Bilateral generating relations, American J. Math., 99, 23-45.
  • [14] O¨zergin, E., Some properties of hypergeometric functions,Ph.D. Thesis, Eastern Mediterranean University, North Cyprus, February 2011.
  • [15] Patil, K. R. and Thakare, N. K., (1975) Operational formulas for a function defined by a generalized Rodrigues formula-II, Sci. J. Shivaji Univ. 15, 1-10.
  • [16] Shrivastava, P. N., (1974) Some operational formulas and generalized generating function, The Math. Education, 8, 19-22.
  • [17] Shukla, A. K. and Prajapati J. C., (2007) On some properties of a class of Polynomials suggested by Mittal, Proyecciones J. Math., 26(2), 145-156.
  • [18] Srivastava, H. M. and Choi,J., (2012) Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York.
  • [19] Srivastava, A. N. and Singh, S. N., (1979) Some generating relations connected with a function defined by a Generalized Rodrigues formula, Indian J. Pure Appl. Math., 10(10), 1312-1317.
  • [20] Srivastava, H. M. and Singh, J. P., (1971) A class of polynomials defined by generalized, Rodrigues formula, Ann. Mat. Pura Appl., 90(4), 75-85.
  • [21] Wright, E.M., (1935a) The asymptotic expansion of the generalized hypergeometric function. J. London Math. Soc. 10. 286-293.
  • [22] E.Özergin, Some properties of hypergeometric functions,Ph.D. Thesis, Eastern Mediterranean University, North Cyprus, February 2011.
  • [23] E. Özergin, M. A. O¨zarslan and A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235(2011), 4601-4610.

CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS

Yıl 2015, Cilt: 3 Sayı: 2, 45 - 53, 30.10.2015
https://doi.org/10.36753/mathenot.421329

Öz

A remarkably large number of operational techniques have drawn
the attention of several researchers in the study of sequence of functions and
polynomials. In this sequel, here, we aim to introduce a new sequence of
functions involving the generalized Gauss hypergeometric function by using
operational techniques. Some generating relations and finite summation formula
of the sequence presented here are also considered.

Kaynakça

  • [1] Agarwal, P., Chand, M., (2013), On new sequence of functions involving pFq, South Asian Journal of Mathematics , Vol. 3 ( 3 ) : 199-210.
  • [2] Agarwal, P., Chand, M., (2013), A new sequence of functions involving pjFqj , MathematicalSciences And Applications E-Notes, Volume 1 No. 2 pp. 173-190.
  • [3] Agarwal, P., Chand, M.,(2013), Graphical Interpretation of the New Sequence of Functions Involving Mittage-Leffler Function Using Matlab, American Journal of Mathematics and Statistics 2013, 3(2): 73-83 DOI: 10.5923/j.ajms.20130302.02.
  • [4] Agarwal, P., Chand, M. and Dwivedi, S.,(2014), A Study on New Sequence of Functions Involving H-Function, American Journal of Applied Mathematics and Statistics, Vol. 2, No. ¯ 1, 34-39.
  • [5] Chak, A. M., (1956) A class of polynomials and generalization of stirling numbers, Duke J. Math., 23, 45-55.
  • [6] Chandel, R.C.S., (1973) A new class of polynomials, Indian J. Math., 15(1), 41-49.
  • [7] Chandel, R.C.S., (1974) A further note on the class of polynomials T α,kn (x, r, p), Indian J.Math.,16(1), 39-48.
  • [8] Chatterjea, S. K., (1964) On generalization of Laguerre polynomials, Rend. Mat. Univ. Padova, 34, 180-190.
  • [9] Gould, H. W. and Hopper, A. T., (1962) Operational formulas connected with two generalizations of Hermite polynomials, Duck Math. J., 29, 51-63.
  • [10] Joshi, C. M. and Prajapat, M. L., (1975) The operator Ta,k, and a generalization of certain classical polynomials, Kyungpook Math. J., 15, 191-199.
  • [11] Mittal, H. B., (1971) A generalization of Laguerre polynomial, Publ. Math. Debrecen, 18, 53-58.
  • [12] Mittal, H. B., (1971) Operational representations for the generalized Laguerre polynomial, Glasnik Mat.Ser III, 26(6), 45-53.
  • [13] Mittal, H. B., (1977) Bilinear and Bilateral generating relations, American J. Math., 99, 23-45.
  • [14] O¨zergin, E., Some properties of hypergeometric functions,Ph.D. Thesis, Eastern Mediterranean University, North Cyprus, February 2011.
  • [15] Patil, K. R. and Thakare, N. K., (1975) Operational formulas for a function defined by a generalized Rodrigues formula-II, Sci. J. Shivaji Univ. 15, 1-10.
  • [16] Shrivastava, P. N., (1974) Some operational formulas and generalized generating function, The Math. Education, 8, 19-22.
  • [17] Shukla, A. K. and Prajapati J. C., (2007) On some properties of a class of Polynomials suggested by Mittal, Proyecciones J. Math., 26(2), 145-156.
  • [18] Srivastava, H. M. and Choi,J., (2012) Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York.
  • [19] Srivastava, A. N. and Singh, S. N., (1979) Some generating relations connected with a function defined by a Generalized Rodrigues formula, Indian J. Pure Appl. Math., 10(10), 1312-1317.
  • [20] Srivastava, H. M. and Singh, J. P., (1971) A class of polynomials defined by generalized, Rodrigues formula, Ann. Mat. Pura Appl., 90(4), 75-85.
  • [21] Wright, E.M., (1935a) The asymptotic expansion of the generalized hypergeometric function. J. London Math. Soc. 10. 286-293.
  • [22] E.Özergin, Some properties of hypergeometric functions,Ph.D. Thesis, Eastern Mediterranean University, North Cyprus, February 2011.
  • [23] E. Özergin, M. A. O¨zarslan and A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235(2011), 4601-4610.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

P. Agarwal

S. Jaın

İ. O. Kıymaz

M. Chand

S.k.q. Al-omarı

Yayımlanma Tarihi 30 Ekim 2015
Gönderilme Tarihi 13 Ağustos 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 3 Sayı: 2

Kaynak Göster

APA Agarwal, P., Jaın, S., Kıymaz, İ. O., Chand, M., vd. (2015). CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS. Mathematical Sciences and Applications E-Notes, 3(2), 45-53. https://doi.org/10.36753/mathenot.421329
AMA Agarwal P, Jaın S, Kıymaz İO, Chand M, Al-omarı S. CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS. Math. Sci. Appl. E-Notes. Ekim 2015;3(2):45-53. doi:10.36753/mathenot.421329
Chicago Agarwal, P., S. Jaın, İ. O. Kıymaz, M. Chand, ve S.k.q. Al-omarı. “CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS”. Mathematical Sciences and Applications E-Notes 3, sy. 2 (Ekim 2015): 45-53. https://doi.org/10.36753/mathenot.421329.
EndNote Agarwal P, Jaın S, Kıymaz İO, Chand M, Al-omarı S (01 Ekim 2015) CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS. Mathematical Sciences and Applications E-Notes 3 2 45–53.
IEEE P. Agarwal, S. Jaın, İ. O. Kıymaz, M. Chand, ve S. Al-omarı, “CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS”, Math. Sci. Appl. E-Notes, c. 3, sy. 2, ss. 45–53, 2015, doi: 10.36753/mathenot.421329.
ISNAD Agarwal, P. vd. “CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS”. Mathematical Sciences and Applications E-Notes 3/2 (Ekim 2015), 45-53. https://doi.org/10.36753/mathenot.421329.
JAMA Agarwal P, Jaın S, Kıymaz İO, Chand M, Al-omarı S. CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS. Math. Sci. Appl. E-Notes. 2015;3:45–53.
MLA Agarwal, P. vd. “CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS”. Mathematical Sciences and Applications E-Notes, c. 3, sy. 2, 2015, ss. 45-53, doi:10.36753/mathenot.421329.
Vancouver Agarwal P, Jaın S, Kıymaz İO, Chand M, Al-omarı S. CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS. Math. Sci. Appl. E-Notes. 2015;3(2):45-53.

INDEXING & ABSTRACTING & ARCHIVING

34771           




20477   The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.