Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2016, Cilt: 4 Sayı: 1, 69 - 76, 15.04.2016
https://doi.org/10.36753/mathenot.421405

Öz

Kaynakça

  • [1] Bjelica, M., Refinement and converse of Brunk-Olkin inequality. Journal of Mathematical Analysis and Applications 272 (1998), 462-467.
  • [2] Chen, F., A Note on Hermite-Hadamard inequalities for products of convex functions. Journal of Applied Mathematics 2013 (2013), Article ID 935020.
  • [3] Dragomir, S. S. and Pearce, Ch. E. M., Selected Topics on Hermite-Hadamard Inequalities and Applications. RGMIA Monographs. Victoria University, Melbourne, AU, 2000.
  • [4] Hadamard, J., Étude sur les propriétés des fonctions entières et en particulier d’une fonction considerée par Riemann. Journal de Mathématiques Pures et Appliquées 58 (1893), 171-215.
  • [5] Hermite, Ch., Sur deux limites d’une intégrale définie. Mathesis 3 (1883), 82.
  • [6] Jensen, J. L. W. V., Om konvekse Funktioner og Uligheder mellem Middelværdier. Nyt tidsskrift for matematik. B. 16 (1905), 49-68.
  • [7] Jensen, J. L. W. V., Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica 30 (1906), 175-193
  • [8] Lyu, S. L., On the Hermite-Hadamard inequality for convex functions of two variables. Numerical Algebra, Control and Optimization 4 (2014), 1-8.
  • [9] Niculescu, C. P. and Persson, L. E., Convex Functions and Their Applications. Canadian Mathematical Society. Springer, New York, USA, 2006.
  • [10] Niculescu, C. P. and Persson, L. E., Old and new on the Hermite-Hadamard inequality. Real Analysis Exchange 29 (2003), 663-685.
  • [11] Pavic, Z., Generalizations of Jensen-Mercer’s inequality. Journal of Pure and Applied Mathematics: Advances and Applications 11 (2014), 19-36.
  • [12] Pavic, Z., Extension of Jensen’s inequality to affine combinations. Journal of Inequalities and Applications 2014 (2014), Article 298.
  • [13] Pecaric, J. E., A simple proof of the Jensen-Steffensen inequality. American Mathematical Monthly 91 (1984), 195-196.
  • [14] Wang, J., Li, X., Feckan, M. and Zhou, Y., Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity. Applicable Analysis 92 (2013), 2241-2253. Affiliations

Geometric and Analytic Connections of the Jensen and Hermite-Hadamard Inequality

Yıl 2016, Cilt: 4 Sayı: 1, 69 - 76, 15.04.2016
https://doi.org/10.36753/mathenot.421405

Öz

The aim of this paper is to present connections between the Jensen and Hermite-Hadamard inequality.
The study includes convex functions of one and several variables. The basis of the research are convex
combinations with the common center.

Kaynakça

  • [1] Bjelica, M., Refinement and converse of Brunk-Olkin inequality. Journal of Mathematical Analysis and Applications 272 (1998), 462-467.
  • [2] Chen, F., A Note on Hermite-Hadamard inequalities for products of convex functions. Journal of Applied Mathematics 2013 (2013), Article ID 935020.
  • [3] Dragomir, S. S. and Pearce, Ch. E. M., Selected Topics on Hermite-Hadamard Inequalities and Applications. RGMIA Monographs. Victoria University, Melbourne, AU, 2000.
  • [4] Hadamard, J., Étude sur les propriétés des fonctions entières et en particulier d’une fonction considerée par Riemann. Journal de Mathématiques Pures et Appliquées 58 (1893), 171-215.
  • [5] Hermite, Ch., Sur deux limites d’une intégrale définie. Mathesis 3 (1883), 82.
  • [6] Jensen, J. L. W. V., Om konvekse Funktioner og Uligheder mellem Middelværdier. Nyt tidsskrift for matematik. B. 16 (1905), 49-68.
  • [7] Jensen, J. L. W. V., Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica 30 (1906), 175-193
  • [8] Lyu, S. L., On the Hermite-Hadamard inequality for convex functions of two variables. Numerical Algebra, Control and Optimization 4 (2014), 1-8.
  • [9] Niculescu, C. P. and Persson, L. E., Convex Functions and Their Applications. Canadian Mathematical Society. Springer, New York, USA, 2006.
  • [10] Niculescu, C. P. and Persson, L. E., Old and new on the Hermite-Hadamard inequality. Real Analysis Exchange 29 (2003), 663-685.
  • [11] Pavic, Z., Generalizations of Jensen-Mercer’s inequality. Journal of Pure and Applied Mathematics: Advances and Applications 11 (2014), 19-36.
  • [12] Pavic, Z., Extension of Jensen’s inequality to affine combinations. Journal of Inequalities and Applications 2014 (2014), Article 298.
  • [13] Pecaric, J. E., A simple proof of the Jensen-Steffensen inequality. American Mathematical Monthly 91 (1984), 195-196.
  • [14] Wang, J., Li, X., Feckan, M. and Zhou, Y., Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity. Applicable Analysis 92 (2013), 2241-2253. Affiliations
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Zlatko Pavić

Yayımlanma Tarihi 15 Nisan 2016
Gönderilme Tarihi 16 Şubat 2015
Yayımlandığı Sayı Yıl 2016 Cilt: 4 Sayı: 1

Kaynak Göster

APA Pavić, Z. (2016). Geometric and Analytic Connections of the Jensen and Hermite-Hadamard Inequality. Mathematical Sciences and Applications E-Notes, 4(1), 69-76. https://doi.org/10.36753/mathenot.421405
AMA Pavić Z. Geometric and Analytic Connections of the Jensen and Hermite-Hadamard Inequality. Math. Sci. Appl. E-Notes. Nisan 2016;4(1):69-76. doi:10.36753/mathenot.421405
Chicago Pavić, Zlatko. “Geometric and Analytic Connections of the Jensen and Hermite-Hadamard Inequality”. Mathematical Sciences and Applications E-Notes 4, sy. 1 (Nisan 2016): 69-76. https://doi.org/10.36753/mathenot.421405.
EndNote Pavić Z (01 Nisan 2016) Geometric and Analytic Connections of the Jensen and Hermite-Hadamard Inequality. Mathematical Sciences and Applications E-Notes 4 1 69–76.
IEEE Z. Pavić, “Geometric and Analytic Connections of the Jensen and Hermite-Hadamard Inequality”, Math. Sci. Appl. E-Notes, c. 4, sy. 1, ss. 69–76, 2016, doi: 10.36753/mathenot.421405.
ISNAD Pavić, Zlatko. “Geometric and Analytic Connections of the Jensen and Hermite-Hadamard Inequality”. Mathematical Sciences and Applications E-Notes 4/1 (Nisan 2016), 69-76. https://doi.org/10.36753/mathenot.421405.
JAMA Pavić Z. Geometric and Analytic Connections of the Jensen and Hermite-Hadamard Inequality. Math. Sci. Appl. E-Notes. 2016;4:69–76.
MLA Pavić, Zlatko. “Geometric and Analytic Connections of the Jensen and Hermite-Hadamard Inequality”. Mathematical Sciences and Applications E-Notes, c. 4, sy. 1, 2016, ss. 69-76, doi:10.36753/mathenot.421405.
Vancouver Pavić Z. Geometric and Analytic Connections of the Jensen and Hermite-Hadamard Inequality. Math. Sci. Appl. E-Notes. 2016;4(1):69-76.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.