Araştırma Makalesi
BibTex RIS Kaynak Göster

The Impact of Increased Platelet Count on Erythrocyte Aggregation in Obese Individuals without Cardiovascular Disease

Yıl 2025, Cilt: 26 Sayı: 2, 151 - 156, 23.06.2025
https://doi.org/10.69601/meandrosmdj.1607649

Öz

Introduction: Although obesity raises the risk of cardiovascular illnesses, it is an important issue for public health. Platelets play important role in thrombosis and inflammation, and elevated number of platelets has been noted in obese individuals. Erythrocyte aggregation process involving the clumping of red blood cells, is influenced factors, including platelet activation. To investigate the relationship amongst platelet levels and erythrocyte aggregation in obese individuals. Methods: Anthropometric measurements of obese individuals (n=101) and non-obese controls (n=37) were recorded. Erythrocyte aggregation parameters, such as aggregation index (AI%), aggregation half-time (t1/2), and aggregation amplitude (AMP), were measured using a laser-based aggregometer. Platelet counts were determined by automated hematology analyzer. We concerned the anthropometric parameters, platelet counts, and erythrocyte aggregation measures. Results: Obese individuals had significantly higher BMI, fat percentage, fat mass, and fat-free mass versus non-obese controls. In the obese group, Fat mass, increasing fat percentage and BMI, were associated with decreased AMP and t1/2 values, and increased AI% values. Platelet counts were also significantly elevated in the obese group and were inversely correlated with AMP and t1/2 values. No significant associations were observed between anthropometric parameters, platelet counts, and erythrocyte aggregation measures in the non-obese group. Conclusion: There was strong association between elevated platelet levels and altered erythrocyte aggregation in obese individuals. Findings suggest that obesity-induced increases in platelet count may contribute to increased erythrocyte aggregation, potentially leading to an elevated risk of thrombotic events. Targeting platelet-related pathways may be a promising therapeutic strategy to mitigate cardiovascular complications in obese individuals.

Etik Beyan

Ethical approval for this study was obtained from the Haydarpaşa Numune Training and Research Hospital Clinical Research Ethics Committee (HNEAH-KEAK2022/136).

Destekleyen Kurum

NoN

Teşekkür

NoN

Kaynakça

  • 1. Kawai T, Autieri M V., and Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol - Cell Physiol 2021; 320:C375–C391.
  • 2. Purdy JC and Shatzel JJ. The hematologic consequences of obesity. Eur J Haematol 2021; 106:306–319.
  • 3. Piché ME, Tchernof A, and Després JP. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ Res 2020; 126:1477–1500.
  • 4. Kojta I, Chacińska M, and Błachnio-Zabielska A. Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance. Nutrients 2020; 12:1305.
  • 5. Sun H, Meng S, Chen J, and Wan Q. Effects of Hyperlipidemia on Osseointegration of Dental Implants and Its Strategies. J Funct Biomater 2023; 14:194.
  • 6. Litwin M and Kułaga Z. Obesity, metabolic syndrome, and primary hypertension. Pediatr Nephrol 2021; 36:825–837.
  • 7. Glatz JFC, Dyck JRB, and Des Rosiers C. Cardiac adaptations to obesity, diabetes and insulin resistance. Biochim Biophys Acta - Mol Basis Dis 2018; 1864:1905–1907.
  • 8. Zeng NF, Mancuso JE, Zivkovic AM, Smilowitz JT, and Ristenpart WD. Red blood cells from individuals with abdominal obesity or metabolic abnormalities exhibit less deformability upon entering a constriction. PLoS One 2016; 11.
  • 9. Baskurt OK and Meiselman HJ. Erythrocyte aggregation: Basic aspects and clinical importance. Clin Hemorheol Microcirc 2013; 53:23–37.
  • 10. Solá E, Vayá A, Corella D, Santaolaria ML, España F, Estellés A, et al. Erythrocyte hyperaggregation in obesity: Determining factors and weight loss influence. Obesity 2007; 15:2128–2134.
  • 11. Samocha-Bonet D, Lichtenberg D, Tomer A, Deutsch V, Mardi T, Goldin Y, et al. Enhanced erythrocyte adhesiveness/aggregation in obesity corresponds to low-grade inflammation. Obes Res 2003; 11:403–407.
  • 12. Çeçen S. Platelet activation is a risk factor for obesity. Turkish J Endocrinol Metab 2020; 24:132–137.
  • 13. Samad F and Ruf W. Inflammation, obesity, and thrombosis. Blood 2013; 122:3415–3422.
  • 14. Mandel J, Casari M, Stepanyan M, Martyanov A, and Deppermann C. Beyond Hemostasis: Platelet Innate Immune Interactions and Thromboinflammation. Int J Mol Sci 2022; 23.
  • 15. Hardeman MR, Goedhart PT, Dobbe JGG, and Lettinga KP. Laser-assisted optical rotational cell analyser (L.O.R.C.A.); I. A new instrument for measurement of various structural hemorheological parameters. Clin Hemorheol Microcirc 1994; 14:605–618.
  • 16. Dobbe JGG, Streekstra GJ, Strackee J, Rutten MCM, Stijnen JMA, and Grimbergen CA. Syllectometry: The effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation. IEEE Trans Biomed Eng 2003; 50:97–106.
  • 17. Ludwig RJ, Schön MP, and Boehncke WH. P-selectin: A common therapeutic target for cardiovascular disorders, inflammation and tumour metastasis. Expert Opin Ther Targets 2007; 11:1103–1117.
  • 18. Hamadi N, Beegam S, Zaaba NE, Elzaki O, Ali BH, and Nemmar A. Comparative Study on the Chronic Vascular Responses Induced by Regular Versus Occasional Waterpipe Smoke Inhalation in Mice. Cell Physiol Biochem 2022; 56:13–27.
  • 19. Ramirez GA, Manfredi AA, and Maugeri N. Misunderstandings between platelets and neutrophils build in chronic inflammation. Front Immunol 2019; 10:2491.
  • 20. Gawaz M, Langer H, and May AE. Platelets in inflammation and atherogenesis. J Clin Invest 2005; 115:3378–3384.
  • 21. Milstone DS, O’Donnell PE, Stavrakis G, Mortensen RM, and Davis VM. E-selectin expression and stimulation by inflammatory mediators are developmentally regulated during embryogenesis. Lab Investig 2000; 80:943–954.
  • 22. Pasquarelli-do-Nascimento G, Braz-de-Melo HA, Faria SS, Santos I de O, Kobinger GP, and Magalhães KG. Hypercoagulopathy and Adipose Tissue Exacerbated Inflammation May Explain Higher Mortality in COVID-19 Patients With Obesity. Front Endocrinol (Lausanne) 2020; 11:530.
  • 23. Lefrançais E and Looney MR. Platelet biogenesis in the lung circulation. Physiology 2019; 34:392–401.
  • 24. Colwell JA and Nesto RW. The platelet in diabetes: focus on prevention of ischemic events. Diabetes Care 2003; 26:2181–2188.
  • 25. Huilcaman R, Venturini W, Fuenzalida L, Cayo A, Segovia R, Valenzuela C, et al. Platelets, a Key Cell in Inflammation and Atherosclerosis Progression. Cells 2022; 11.
  • 26. Randriamboavonjy V. Mechanisms Involved in Diabetes-Associated Platelet Hyperactivation. Non-Thrombotic Role Platelets Heal Dis 2015.
  • 27. Ezzaty Mirhashemi M, Shah R V., Kitchen RR, Rong J, Spahillari A, Pico AR, et al. The Dynamic Platelet Transcriptome in Obesity and Weight Loss. Arterioscler Thromb Vasc Biol 2021; 41:854–864.
  • 28. Choi JL, Li S, and Han JY. Platelet function tests: A review of progresses in clinical application. Biomed Res Int 2014; 2014.
  • 29. Lominadze D and Dean WL. Involvement of fibrinogen specific binding in erythrocyte aggregation. FEBS Lett 2002; 517:41–44.
  • 30. Mantovani A and Garlanda C. Platelet-macrophage partnership in innate immunity and inflammation. Nat Immunol 2013; 14:768–770.
  • 31. Gear ARL and Camerini D. Platelet chemokines and chemokine receptors: Linking hemostasis, inflammation, and host defense. Microcirculation 2003; 10:335–350.
  • 32. Marín Oyarzún CP, Glembotsky AC, Goette NP, Lev PR, De Luca G, Baroni Pietto MC, et al. Platelet Toll-Like Receptors Mediate Thromboinflammatory Responses in Patients With Essential Thrombocythemia. Front Immunol 2020; 11.
  • 33. Roque M, Kim WJH, Gazdoin M, Malik A, Reis ED, Fallon JT, et al. CCR2 deficiency decreases intimal hyperplasia after arterial injury. Arterioscler Thromb Vasc Biol 2002; 22:554–559.
  • 34. Pamuk GE, Vural Ö, Turgut B, Demir M, Ümit H, and Tezel A. Increased circulating platelet-neutrophil, platelet-monocyte complexes, and platelet activation in patients with ulcerative colitis: A comparative study. Am J Hematol 2006; 81:753–759.
  • 35. Ceccarelli F, Perricone C, Cipriano E, Massaro L, Natalucci F, Spinelli FR, et al. Usefulness of composite indices in the assessment of joint involvement in systemic lupus erythematosus patients: correlation with ultrasonographic score. Lupus 2019; 28:383–388.
  • 36. Ribeiro LS, Branco LM, and Franklin BS. Regulation of innate immune responses by platelets. Front Immunol 2019; 10:460217.
  • 37. Duttaroy AK. Role of gut microbiota and their metabolites on atherosclerosis, hypertension and human blood platelet function: A review. Nutrients 2021; 13:1–17.

Kardiyovasküler Hastalığı Olmayan Obez Bireylerde Artmış Trombosit Sayısının Eritrosit Agregasyonu Üzerindeki Etkisi

Yıl 2025, Cilt: 26 Sayı: 2, 151 - 156, 23.06.2025
https://doi.org/10.69601/meandrosmdj.1607649

Öz

Amaç: Obezite kardiyovasküler hastalık riskini artmasına neden olan halk sağlığı açısından önemli bir konudur. Trombositler tromboz ve inflamasyonda önemli rol oynamaktadır ve obez bireylerde trombosit sayısında artış kaydedilmiştir. Kırmızı kan hücrelerinin kümelenmesini içeren eritrosit agregasyon süreci, trombosit aktivasyonunu da içeren faktörlerden etkilenmektedir. Bu çalışmada obez bireylerde trombosit düzeyleri ve eritrosit agregasyonu arasındaki ilişki araştırılmıştır. Materyal ve Metot: Obez bireylerin (n=101) ve obez olmayan kontrollerin (n=37) antropometrik ölçümleri kaydedilmiştir. Agregasyon indeksi (AI%), agregasyon yarı zamanı (t1/2) ve agregasyon genliği (AMP) gibi eritrosit agregasyon parametreleri lazer tabanlı bir agregometre kullanılarak ölçüldü. Trombosit sayıları otomatik hematoloji analizörü ile belirlenmiştir. Antropometrik parametreler, trombosit sayıları ve eritrosit agregasyon ölçümleri yapıldı. Sonuç: Obez bireyler, obez olmayan kontrollere kıyasla önemli ölçüde daha yüksek BMI, yağ yüzdesi, yağ kütlesi ve yağsız kütleye sahipti. Obez grupta, yağ kütlesi, artan yağ yüzdesi ve VKİ, AMP ve t1/2 değerlerinde azalma ve AI% değerlerinde artış ile ilişkiliydi. Trombosit sayıları da obez grupta önemli ölçüde yükselmiş ve AMP ve t1/2 değerleri ile ters korelasyon göstermiştir. Obez olmayan grupta antropometrik parametreler, trombosit sayıları ve eritrosit agregasyon ölçümleri arasında anlamlı bir ilişki gözlenmemiştir. Tartışma: Obez bireylerde yüksek trombosit seviyeleri ile değişmiş eritrosit agregasyonu arasında güçlü bir ilişki vardı. Bulgular, trombosit sayısında obeziteye bağlı artışların eritrosit agregasyonunun artmasına katkıda bulunabileceğini ve potansiyel olarak trombotik olay riskinin artmasına neden olabileceğini düşündürmektedir. Trombositle ilişkili yolakların hedeflenmesi, obez bireylerde kardiyovasküler komplikasyonların azaltılması için umut verici bir terapötik strateji olabilir.

Kaynakça

  • 1. Kawai T, Autieri M V., and Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol - Cell Physiol 2021; 320:C375–C391.
  • 2. Purdy JC and Shatzel JJ. The hematologic consequences of obesity. Eur J Haematol 2021; 106:306–319.
  • 3. Piché ME, Tchernof A, and Després JP. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ Res 2020; 126:1477–1500.
  • 4. Kojta I, Chacińska M, and Błachnio-Zabielska A. Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance. Nutrients 2020; 12:1305.
  • 5. Sun H, Meng S, Chen J, and Wan Q. Effects of Hyperlipidemia on Osseointegration of Dental Implants and Its Strategies. J Funct Biomater 2023; 14:194.
  • 6. Litwin M and Kułaga Z. Obesity, metabolic syndrome, and primary hypertension. Pediatr Nephrol 2021; 36:825–837.
  • 7. Glatz JFC, Dyck JRB, and Des Rosiers C. Cardiac adaptations to obesity, diabetes and insulin resistance. Biochim Biophys Acta - Mol Basis Dis 2018; 1864:1905–1907.
  • 8. Zeng NF, Mancuso JE, Zivkovic AM, Smilowitz JT, and Ristenpart WD. Red blood cells from individuals with abdominal obesity or metabolic abnormalities exhibit less deformability upon entering a constriction. PLoS One 2016; 11.
  • 9. Baskurt OK and Meiselman HJ. Erythrocyte aggregation: Basic aspects and clinical importance. Clin Hemorheol Microcirc 2013; 53:23–37.
  • 10. Solá E, Vayá A, Corella D, Santaolaria ML, España F, Estellés A, et al. Erythrocyte hyperaggregation in obesity: Determining factors and weight loss influence. Obesity 2007; 15:2128–2134.
  • 11. Samocha-Bonet D, Lichtenberg D, Tomer A, Deutsch V, Mardi T, Goldin Y, et al. Enhanced erythrocyte adhesiveness/aggregation in obesity corresponds to low-grade inflammation. Obes Res 2003; 11:403–407.
  • 12. Çeçen S. Platelet activation is a risk factor for obesity. Turkish J Endocrinol Metab 2020; 24:132–137.
  • 13. Samad F and Ruf W. Inflammation, obesity, and thrombosis. Blood 2013; 122:3415–3422.
  • 14. Mandel J, Casari M, Stepanyan M, Martyanov A, and Deppermann C. Beyond Hemostasis: Platelet Innate Immune Interactions and Thromboinflammation. Int J Mol Sci 2022; 23.
  • 15. Hardeman MR, Goedhart PT, Dobbe JGG, and Lettinga KP. Laser-assisted optical rotational cell analyser (L.O.R.C.A.); I. A new instrument for measurement of various structural hemorheological parameters. Clin Hemorheol Microcirc 1994; 14:605–618.
  • 16. Dobbe JGG, Streekstra GJ, Strackee J, Rutten MCM, Stijnen JMA, and Grimbergen CA. Syllectometry: The effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation. IEEE Trans Biomed Eng 2003; 50:97–106.
  • 17. Ludwig RJ, Schön MP, and Boehncke WH. P-selectin: A common therapeutic target for cardiovascular disorders, inflammation and tumour metastasis. Expert Opin Ther Targets 2007; 11:1103–1117.
  • 18. Hamadi N, Beegam S, Zaaba NE, Elzaki O, Ali BH, and Nemmar A. Comparative Study on the Chronic Vascular Responses Induced by Regular Versus Occasional Waterpipe Smoke Inhalation in Mice. Cell Physiol Biochem 2022; 56:13–27.
  • 19. Ramirez GA, Manfredi AA, and Maugeri N. Misunderstandings between platelets and neutrophils build in chronic inflammation. Front Immunol 2019; 10:2491.
  • 20. Gawaz M, Langer H, and May AE. Platelets in inflammation and atherogenesis. J Clin Invest 2005; 115:3378–3384.
  • 21. Milstone DS, O’Donnell PE, Stavrakis G, Mortensen RM, and Davis VM. E-selectin expression and stimulation by inflammatory mediators are developmentally regulated during embryogenesis. Lab Investig 2000; 80:943–954.
  • 22. Pasquarelli-do-Nascimento G, Braz-de-Melo HA, Faria SS, Santos I de O, Kobinger GP, and Magalhães KG. Hypercoagulopathy and Adipose Tissue Exacerbated Inflammation May Explain Higher Mortality in COVID-19 Patients With Obesity. Front Endocrinol (Lausanne) 2020; 11:530.
  • 23. Lefrançais E and Looney MR. Platelet biogenesis in the lung circulation. Physiology 2019; 34:392–401.
  • 24. Colwell JA and Nesto RW. The platelet in diabetes: focus on prevention of ischemic events. Diabetes Care 2003; 26:2181–2188.
  • 25. Huilcaman R, Venturini W, Fuenzalida L, Cayo A, Segovia R, Valenzuela C, et al. Platelets, a Key Cell in Inflammation and Atherosclerosis Progression. Cells 2022; 11.
  • 26. Randriamboavonjy V. Mechanisms Involved in Diabetes-Associated Platelet Hyperactivation. Non-Thrombotic Role Platelets Heal Dis 2015.
  • 27. Ezzaty Mirhashemi M, Shah R V., Kitchen RR, Rong J, Spahillari A, Pico AR, et al. The Dynamic Platelet Transcriptome in Obesity and Weight Loss. Arterioscler Thromb Vasc Biol 2021; 41:854–864.
  • 28. Choi JL, Li S, and Han JY. Platelet function tests: A review of progresses in clinical application. Biomed Res Int 2014; 2014.
  • 29. Lominadze D and Dean WL. Involvement of fibrinogen specific binding in erythrocyte aggregation. FEBS Lett 2002; 517:41–44.
  • 30. Mantovani A and Garlanda C. Platelet-macrophage partnership in innate immunity and inflammation. Nat Immunol 2013; 14:768–770.
  • 31. Gear ARL and Camerini D. Platelet chemokines and chemokine receptors: Linking hemostasis, inflammation, and host defense. Microcirculation 2003; 10:335–350.
  • 32. Marín Oyarzún CP, Glembotsky AC, Goette NP, Lev PR, De Luca G, Baroni Pietto MC, et al. Platelet Toll-Like Receptors Mediate Thromboinflammatory Responses in Patients With Essential Thrombocythemia. Front Immunol 2020; 11.
  • 33. Roque M, Kim WJH, Gazdoin M, Malik A, Reis ED, Fallon JT, et al. CCR2 deficiency decreases intimal hyperplasia after arterial injury. Arterioscler Thromb Vasc Biol 2002; 22:554–559.
  • 34. Pamuk GE, Vural Ö, Turgut B, Demir M, Ümit H, and Tezel A. Increased circulating platelet-neutrophil, platelet-monocyte complexes, and platelet activation in patients with ulcerative colitis: A comparative study. Am J Hematol 2006; 81:753–759.
  • 35. Ceccarelli F, Perricone C, Cipriano E, Massaro L, Natalucci F, Spinelli FR, et al. Usefulness of composite indices in the assessment of joint involvement in systemic lupus erythematosus patients: correlation with ultrasonographic score. Lupus 2019; 28:383–388.
  • 36. Ribeiro LS, Branco LM, and Franklin BS. Regulation of innate immune responses by platelets. Front Immunol 2019; 10:460217.
  • 37. Duttaroy AK. Role of gut microbiota and their metabolites on atherosclerosis, hypertension and human blood platelet function: A review. Nutrients 2021; 13:1–17.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyokimya ve Hücre Biyolojisi (Diğer), Hayvan Fizyolojisi - Biyofizik, Klinik Tıp Bilimleri (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Serpil Çeçen 0000-0002-7908-5208

Zozan Güleken 0000-0002-4136-4447

Erken Görünüm Tarihi 22 Haziran 2025
Yayımlanma Tarihi 23 Haziran 2025
Gönderilme Tarihi 26 Aralık 2024
Kabul Tarihi 15 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 26 Sayı: 2

Kaynak Göster

EndNote Çeçen S, Güleken Z (01 Haziran 2025) The Impact of Increased Platelet Count on Erythrocyte Aggregation in Obese Individuals without Cardiovascular Disease. Meandros Medical And Dental Journal 26 2 151–156.