Yıl 2025,
Cilt: 10 Sayı: 1, 363 - 373, 01.04.2025
Shashikant Patil
,
Arunkumar Devalapura Thimmappa
Arjit Tomar
Ashish Verma
Kaynakça
- Adriani, D., Dewi, R., Saleh, L., Heryadi, D. Y., Sarie, F., Sudipa, I. G. I., & Rahim, R. (2023). Using Distance Measure to Perform Optimal Mapping with the K-Medoids Method on Medicinal Plants, Aromatics, and Spices Export. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 14(3), 103-111. https://doi.org/10.58346/JOWUA.2023.I3.008
- Ahmadi, F., &Lackner, M. (2024). Green synthesis of AgNPs from Cannabis sativa: Properties, synthesis, mechanistic aspects, and applications. ChemEngineering, 8(4), 64. https://doi.org/10.3390/chemengineering8040064
- Al Baloushi, K. S. Y., Senthilkumar, A., Kandhan, K., Subramanian, R., Kizhakkayil, J., Ramachandran, T., ...&Jaleel, A. (2024). Green synthesis and characterization of AgNPsusing MoringaPeregrina and their toxicity on MCF-7 and Caco-2 Human Cancer Cells. International Journal of Nanomedicine, 3891-3905.
- Alomar, T. S., AlMasoud, N., Awad, M. A., AlOmar, R. S., Merghani, N. M., El-Zaidy, M., &Bhattarai, A. (2024). Designing Green Synthesis-Based AgNPs for Antimicrobial Theranostics and Cancer Invasion Prevention. International Journal of Nanomedicine, 4451-4464.
- Arshad, F., Naikoo, G. A., Hassan, I. U., Chava, S. R., El-Tanani, M., Aljabali, A. A., &Tambuwala, M. M. (2024). Bioinspired and green synthesis of AgNPs for medical applications: a green perspective. Applied Biochemistry and Biotechnology, 196(6), 3636-3669. https://doi.org/10.1007/s12010-023-04719-z
- Bhavi, S. M., Thokchom, B., Abbigeri, M. B., Bhat, S. S., Singh, S. R., Joshi, P., &Yarajarla, R. B. (2024). Green synthesis, characterization, antidiabetic, antioxidant, and antibacterial applications of AgNPs from Syzygiumcaryophyllatum (L.) Alston leaves. Process Biochemistry, 145, 89-103. https://doi.org/10.1016/j.procbio.2024.06.017
- Deonas, A. N., dos Santos Souza, L. M., Andrade, G. J. S., Germiniani-Cardozo, J., Dahmer, D., de Oliveira, A. G., ... & Kobayashi, R. K. T. (2024). Green Synthesis of Silver Nanoparticle from Anadenantheracolubrina Extract and Its Antimicrobial Action against ESKAPEE Group Bacteria. Antibiotics, 13(8), 777. https://doi.org/10.3390/antibiotics13080777
- Far, L. M. (2017). Regression Techniques Using Data Mining in Flowering Plant. International Academic Journal of Science and Engineering, 4(2), 190–197.
- Ghasemi, M., Govahi, M., &Litkohi, H. R. (2025). Green synthesis of AgNPs (AgNPs) and chitosan-coated AgNPs (CS-AgNPs) using Ferula gummosaBoiss. Gum extract: A green nano drug for potential applications in medicine. International Journal of Biological Macromolecules, 291, 138619. https://doi.org/10.1016/j.bbrc.2024.150967
- Gladkov, A. E., Tashlieva, I. I., & Gladkova, V. O. (2019). Copper Resistance of Lawn Grass and Chrysanthemum Carinatum Plants. Archives for Technical Sciences, 2(21), 63–68.
- Harisma, B. R., Annis, C. J. J., Begum, S. B., Kalpana, R., &Rm, M. (2024). Utilization of herbivore defensive latex from the weed Calotropisprocera L in the green synthesis of AgNPs and its potential application in the control of dengue vector Aedesaegypti. Journal of Natural Pesticide Research, 100073. https://doi.org/10.1016/j.napere.2024.100073
- Jallali, I., Hédi, A., Nouir, R., Hannachi, H., &Essghaier, B. (2024). Green synthesis of AgNPs from FraxinusangustifoliaVahl. Extract: Characterization and assessment of their biological activities. Biocatalysis and Agricultural Biotechnology, 57, 103086. https://doi.org/10.1016/j.bcab.2024.103086
- Karan, T., Gonulalan, Z., Erenler, R., Kolemen, U., &Eminagaoglu, O. (2024). Green synthesis of AgNPs using Sambucusebulus leaves extract: characterization, quantitative analysis of bioactive molecules, antioxidant and antibacterial activities. Journal of Molecular Structure, 1296, 136836. https://doi.org/10.1016/j.molstruc.2023.136836
- Kaur, N., Kumar, R., Alhan, S., Sharma, H., Singh, N., Yogi, R., ...& Kumar, A. (2024). Lyciumshawii mediated green synthesis of AgNPs, characterization, and assessments of their phytochemical, antioxidant, and antimicrobial properties. Inorganic Chemistry Communications, 159, 111735. https://doi.org/10.1016/j.inoche.2023.111735
- Mazumder, D., Mittal, R., &Nath, S. K. (2024). Green synthesis of AgNPs from waste Vignamungo plant and evaluation of its antioxidant and antibacterial activity. Biomass Conversion and Biorefinery, 1-12. https://doi.org/10.1007/s13399-024-05375-x
- Mehrotra, S., Goyal, V., Dimkpa, C. O., &Chhokar, V. (2024). Green Synthesis and Characterization of Ginger-Derived AgNPs and Evaluation of Their Antioxidant, Antibacterial, and Anticancer Activities. Plants, 13(9), 1255. https://doi.org/10.3389/fbioe.2023.1324805
- Mejía-Méndez, J. L., Sánchez-Ante, G., Cerro-López, M., Minutti-Calva, Y., Navarro-López, D. E., Lozada-Ramírez, J. D., ...& Sánchez-Arreola, E. (2024). Green synthesis of AgNPs with extracts from Kalanchoefedtschenkoi: characterization and bioactivities. Biomolecules, 14(7), 782. https://doi.org/10.3390/biom14070782
- Mir, R. H., Maqbool, M., Mir, P. A., Hussain, M. S., Wani, S. U. D., Pottoo, F. H., &Mohi-Ud-Din, R. (2024). Green synthesis of AgNPs and their potential applications in mitigating cancer. Current pharmaceutical design, 30(31), 2445-2467. https://doi.org/10.2174/0113816128291705240428060456
- Mooraki, N., Batmany, Y., Zoriehzahra, S. J., & Kakoolaki, S. (2021). Evaluating the effect of using turmeric (Curcuma longa) on growth performance and hematological parameters of the ornamental fish, Green Terror (Andinocara rivulatus). International Journal of Aquatic Research and Environmental Studies, 1(1), 49-59. https://doi.org/10.70102/IJARES/V1I1/5
- Shereen, M. A., Ahmad, A., Khan, H., Satti, S. M., Kazmi, A., Bashir, N., ...&Zouidi, F. (2024). Plant extracts preparation and green synthesis of AgNPs using Swertiachirata: Characterization and antimicrobial activity against selected human pathogens. Heliyon, 10(6).
- Somda, D., Bargul, J. L., Wesonga, J. M., &Wachira, S. W. (2024). Green synthesis of Brassica carinatamicrogreenAgNPs, characterization, safety assessment, and antimicrobial activities. Scientific Reports, 14(1), 29273. https://doi.org/10.1038/s41598-024-80528-6
- Uzakbaeva, G. B., & Ajiev, A. B. (2022). Legal Regulation of the Use and Protection of Wild Relatives of Cultivated Plants in the Republic of Uzbekistan. International Academic Journal of Social Sciences, 9(1), 43–46. https://doi.org/10.9756/IAJSS/V9I1/IAJSS0905
- Wu, C., Peng, J., Song, T., & Fu, M. (2024). Green synthesis approach: Utilizing chrysanthemum extract as a reducing and stabilizing agent for the fabrication of AgNPs and their antimicrobial properties study. Alexandria Engineering Journal, 96, 149-155. https://doi.org/10.1016/j.aej.2024.04.005
- Yıldız, H., & Miçooğulları, Ü. (2022). Effects of Propolis on Serum Biochemical Parameters in Azaserine Treated Rats. Natural and Engineering Sciences, 7(2), 89-96. http://doi.org/10.28978/nesciences.1142700
Plant-Based Green Synthesis of AgNPs and Their Structural and Antimicrobial Characterization
Yıl 2025,
Cilt: 10 Sayı: 1, 363 - 373, 01.04.2025
Shashikant Patil
,
Arunkumar Devalapura Thimmappa
Arjit Tomar
Ashish Verma
Öz
The growing request for ecologically safe and maintainable approaches in the area of the synthesis of nanomaterials has drawn attention to green chemistry techniques. Being part of this category, AgNPs have been recognized for their antimicrobial capabilities. The ability to incorporate plant extracts for their synthesis offers a viable, more environmentally-favorable alternative to conventional chemical methods. This investigation will be confined to the green synthesis of AgNPs from leaf extracts of Azadirachta indica towards an eco-friendly synthesis compared with traditional methods. SPR provided evidence for AgNPs, showing a peak in the 450 nm spectral range for freshly extracted leaf samples while it was at 440 nm for freeze-dried leaf samples. The observed change in SPR peak was attributed to what occurred in the phytochemical composition during the drying process, thereby affecting the improvement and stability of particles. The use of X-ray crystallographic investigation revealed that AgNPs derived from both fresh and freeze-dried leaf extracts had mean sizes of 15 and 18 nm, respectively. The crystallinity and morphology of the nanoparticles were further confirmed by SEM using energy dispersive EDX, and TEM. Antimicrobial potential against bacterial and fungal strains in vitro showed significant antibacterial action of the synthesized nanoparticles. These findings show that AgNPs synthesized from Azadirachta indica leaf extracts have considerable potential as broad-spectrum antibacterial agents that will provide an answer for sustainable development in creating biodegradable antimicrobial solutions. Such a biosynthetic approach is promising for future applications in the medical and industrial arena, thereby reducing the environmental impact of established synthesis methods.
Kaynakça
- Adriani, D., Dewi, R., Saleh, L., Heryadi, D. Y., Sarie, F., Sudipa, I. G. I., & Rahim, R. (2023). Using Distance Measure to Perform Optimal Mapping with the K-Medoids Method on Medicinal Plants, Aromatics, and Spices Export. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 14(3), 103-111. https://doi.org/10.58346/JOWUA.2023.I3.008
- Ahmadi, F., &Lackner, M. (2024). Green synthesis of AgNPs from Cannabis sativa: Properties, synthesis, mechanistic aspects, and applications. ChemEngineering, 8(4), 64. https://doi.org/10.3390/chemengineering8040064
- Al Baloushi, K. S. Y., Senthilkumar, A., Kandhan, K., Subramanian, R., Kizhakkayil, J., Ramachandran, T., ...&Jaleel, A. (2024). Green synthesis and characterization of AgNPsusing MoringaPeregrina and their toxicity on MCF-7 and Caco-2 Human Cancer Cells. International Journal of Nanomedicine, 3891-3905.
- Alomar, T. S., AlMasoud, N., Awad, M. A., AlOmar, R. S., Merghani, N. M., El-Zaidy, M., &Bhattarai, A. (2024). Designing Green Synthesis-Based AgNPs for Antimicrobial Theranostics and Cancer Invasion Prevention. International Journal of Nanomedicine, 4451-4464.
- Arshad, F., Naikoo, G. A., Hassan, I. U., Chava, S. R., El-Tanani, M., Aljabali, A. A., &Tambuwala, M. M. (2024). Bioinspired and green synthesis of AgNPs for medical applications: a green perspective. Applied Biochemistry and Biotechnology, 196(6), 3636-3669. https://doi.org/10.1007/s12010-023-04719-z
- Bhavi, S. M., Thokchom, B., Abbigeri, M. B., Bhat, S. S., Singh, S. R., Joshi, P., &Yarajarla, R. B. (2024). Green synthesis, characterization, antidiabetic, antioxidant, and antibacterial applications of AgNPs from Syzygiumcaryophyllatum (L.) Alston leaves. Process Biochemistry, 145, 89-103. https://doi.org/10.1016/j.procbio.2024.06.017
- Deonas, A. N., dos Santos Souza, L. M., Andrade, G. J. S., Germiniani-Cardozo, J., Dahmer, D., de Oliveira, A. G., ... & Kobayashi, R. K. T. (2024). Green Synthesis of Silver Nanoparticle from Anadenantheracolubrina Extract and Its Antimicrobial Action against ESKAPEE Group Bacteria. Antibiotics, 13(8), 777. https://doi.org/10.3390/antibiotics13080777
- Far, L. M. (2017). Regression Techniques Using Data Mining in Flowering Plant. International Academic Journal of Science and Engineering, 4(2), 190–197.
- Ghasemi, M., Govahi, M., &Litkohi, H. R. (2025). Green synthesis of AgNPs (AgNPs) and chitosan-coated AgNPs (CS-AgNPs) using Ferula gummosaBoiss. Gum extract: A green nano drug for potential applications in medicine. International Journal of Biological Macromolecules, 291, 138619. https://doi.org/10.1016/j.bbrc.2024.150967
- Gladkov, A. E., Tashlieva, I. I., & Gladkova, V. O. (2019). Copper Resistance of Lawn Grass and Chrysanthemum Carinatum Plants. Archives for Technical Sciences, 2(21), 63–68.
- Harisma, B. R., Annis, C. J. J., Begum, S. B., Kalpana, R., &Rm, M. (2024). Utilization of herbivore defensive latex from the weed Calotropisprocera L in the green synthesis of AgNPs and its potential application in the control of dengue vector Aedesaegypti. Journal of Natural Pesticide Research, 100073. https://doi.org/10.1016/j.napere.2024.100073
- Jallali, I., Hédi, A., Nouir, R., Hannachi, H., &Essghaier, B. (2024). Green synthesis of AgNPs from FraxinusangustifoliaVahl. Extract: Characterization and assessment of their biological activities. Biocatalysis and Agricultural Biotechnology, 57, 103086. https://doi.org/10.1016/j.bcab.2024.103086
- Karan, T., Gonulalan, Z., Erenler, R., Kolemen, U., &Eminagaoglu, O. (2024). Green synthesis of AgNPs using Sambucusebulus leaves extract: characterization, quantitative analysis of bioactive molecules, antioxidant and antibacterial activities. Journal of Molecular Structure, 1296, 136836. https://doi.org/10.1016/j.molstruc.2023.136836
- Kaur, N., Kumar, R., Alhan, S., Sharma, H., Singh, N., Yogi, R., ...& Kumar, A. (2024). Lyciumshawii mediated green synthesis of AgNPs, characterization, and assessments of their phytochemical, antioxidant, and antimicrobial properties. Inorganic Chemistry Communications, 159, 111735. https://doi.org/10.1016/j.inoche.2023.111735
- Mazumder, D., Mittal, R., &Nath, S. K. (2024). Green synthesis of AgNPs from waste Vignamungo plant and evaluation of its antioxidant and antibacterial activity. Biomass Conversion and Biorefinery, 1-12. https://doi.org/10.1007/s13399-024-05375-x
- Mehrotra, S., Goyal, V., Dimkpa, C. O., &Chhokar, V. (2024). Green Synthesis and Characterization of Ginger-Derived AgNPs and Evaluation of Their Antioxidant, Antibacterial, and Anticancer Activities. Plants, 13(9), 1255. https://doi.org/10.3389/fbioe.2023.1324805
- Mejía-Méndez, J. L., Sánchez-Ante, G., Cerro-López, M., Minutti-Calva, Y., Navarro-López, D. E., Lozada-Ramírez, J. D., ...& Sánchez-Arreola, E. (2024). Green synthesis of AgNPs with extracts from Kalanchoefedtschenkoi: characterization and bioactivities. Biomolecules, 14(7), 782. https://doi.org/10.3390/biom14070782
- Mir, R. H., Maqbool, M., Mir, P. A., Hussain, M. S., Wani, S. U. D., Pottoo, F. H., &Mohi-Ud-Din, R. (2024). Green synthesis of AgNPs and their potential applications in mitigating cancer. Current pharmaceutical design, 30(31), 2445-2467. https://doi.org/10.2174/0113816128291705240428060456
- Mooraki, N., Batmany, Y., Zoriehzahra, S. J., & Kakoolaki, S. (2021). Evaluating the effect of using turmeric (Curcuma longa) on growth performance and hematological parameters of the ornamental fish, Green Terror (Andinocara rivulatus). International Journal of Aquatic Research and Environmental Studies, 1(1), 49-59. https://doi.org/10.70102/IJARES/V1I1/5
- Shereen, M. A., Ahmad, A., Khan, H., Satti, S. M., Kazmi, A., Bashir, N., ...&Zouidi, F. (2024). Plant extracts preparation and green synthesis of AgNPs using Swertiachirata: Characterization and antimicrobial activity against selected human pathogens. Heliyon, 10(6).
- Somda, D., Bargul, J. L., Wesonga, J. M., &Wachira, S. W. (2024). Green synthesis of Brassica carinatamicrogreenAgNPs, characterization, safety assessment, and antimicrobial activities. Scientific Reports, 14(1), 29273. https://doi.org/10.1038/s41598-024-80528-6
- Uzakbaeva, G. B., & Ajiev, A. B. (2022). Legal Regulation of the Use and Protection of Wild Relatives of Cultivated Plants in the Republic of Uzbekistan. International Academic Journal of Social Sciences, 9(1), 43–46. https://doi.org/10.9756/IAJSS/V9I1/IAJSS0905
- Wu, C., Peng, J., Song, T., & Fu, M. (2024). Green synthesis approach: Utilizing chrysanthemum extract as a reducing and stabilizing agent for the fabrication of AgNPs and their antimicrobial properties study. Alexandria Engineering Journal, 96, 149-155. https://doi.org/10.1016/j.aej.2024.04.005
- Yıldız, H., & Miçooğulları, Ü. (2022). Effects of Propolis on Serum Biochemical Parameters in Azaserine Treated Rats. Natural and Engineering Sciences, 7(2), 89-96. http://doi.org/10.28978/nesciences.1142700