Design, Simulation and Experimental Analysis of a Passive Cooling Heat Sink for Photovoltaic Solar Panels
Yıl 2024,
Cilt: 5 Sayı: 2, 98 - 112, 30.03.2025
Feyzullah Behlül Özkul
,
Fatih Mehmet Ulu
,
Erhan Kayabaşı
Öz
In this investigation, a novel thermal management solution was engineered for the purpose of enhancing the cooling efficiency of photovoltaic (PV) panels. First, a simulation study was conducted utilizing ANSYS software to evaluate fin configurations. Building upon the simulated data, a prototype reflecting the most advantageous design that is providing the less temperature values was selected the validation stage was performed by experiments. This phase employed two distinct PV panels: one interfaced with the fabricated heat sink (HS) and the other devoid of any thermal management system. Key performance metrics such as thermal gradients, electrical output, and operational efficiency were meticulously recorded. The temperature, voltage and current values of the PV panels were measured and recorded at 20-minute intervals from 10:00 to 16:00. The temperature, voltage and current values of the PV panels were measured and recorded at 20-minute intervals from 10:00 to 16:00. As a result, it was observed that the solar panel equipped with a HS worked 15-21.5 % more efficiently throughout the day than the PV panel without a HS.
Destekleyen Kurum
KARABÜK üNİVERSİTESİ
Proje Numarası
FYL-2019-2079
Teşekkür
This study was financially supported by Karabük University Scientific Research Projects Coordination Unit with the project number FYL-2019-2079. We also would like to thank Karabük University Iron and Steel Institute for using its hardware infrastructure during the experimental studies.
Kaynakça
- [1] Khudhur J, Akroot A, Al-Samari A. Experimental Investigation of Direct Solar Photovoltaics that Drives Absorption Refrigeration System. J Adv Res Fluid Mech Therm Sci 2023;106:116–35. https://doi.org/10.37934/arfmts.106.1.116135.
- [2] Atkin P, Farid MM. Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins. Sol Energy 2015;114:217–28. https://doi.org/10.1016/J.SOLENER.2015.01.037.
- [3] Bergman, Lavine, Incropera D. Fundamentals of Heat and Mass Transfer 7th Edition. 2003. https://doi.org/10.16309/j.cnki.issn.1007-1776.2003.03.004.
- [4] Akyavuz UD, Kayabasi E, Ozcan H. The effect of solar thermal energy storage on natural gas heating systems: An experimental and techno-economic investigation. Case Stud Therm Eng 2024;63:105287. https://doi.org/10.1016/J.CSITE.2024.105287.
- [5] Dawood TA, Barwari RRI, Akroot A. Solar Energy and Factors Affecting the Efficiency and Performance of Panels in Erbil/Kurdistan. Int J Heat Technol 2023;41:304–12. https://doi.org/10.18280/ijht.410203.
- [6] Beaucarne G. Silicon thin-film solar cells. Adv Optoelectron 2007;2007. https://doi.org/10.1155/2007/36970.
- [7] Yilmaz M, Kayabasi E, Akbaba M. Determination of the effects of operating conditions on the output power of the inverter and the power quality using an artificial neural network. Eng Sci Technol an Int J 2019. https://doi.org/10.1016/j.jestch.2019.02.006.
- [8] Eldin AH. A Review on Photovoltaic Solar Energy Technology and its Efficiency 2007.
- [9] Idoko L, Anaya-Lara O, McDonald A. Enhancing PV modules efficiency and power output using multi-concept cooling technique. Energy Reports 2018;4:357–69. https://doi.org/10.1016/j.egyr.2018.05.004.
- [10] Alami AH. Microstructural, optical and thermal characterization of synthetic clay as a passive cooling medium. Energy Convers Manag 2014;88:442–6. https://doi.org/10.1016/j.enconman.2014.08.053.
- [11] Özkul FB, Kayabasi E, Çelik E, Kurt H, Arcaklioǧlu E. Investigating the Effects of Cooling Options on Photovoltaic Panel Efficiency : State of the Art and Future Plan. 2018 Int. Conf. Photovolt. Sci. Technol., IEEE Explore Digital Library; 2018, p. 1–6.
- [12] Sheikh Y, Jasim M, Qasim M, Qaisieh A, Hamdan MO, Abed F. Enhancing PV solar panel efficiency through integration with a passive Multi-layered PCMs cooling system: A numerical study. Int J Thermofluids 2024;23:100748. https://doi.org/10.1016/J.IJFT.2024.100748.
- [13] Hamed MH, Hassan H, Ookawara S, Nada SA. Performance comparative study on passively cooled concentrated photovoltaic (PV) using adsorption/desorption and heat sink cooling methods: Experimental investigations. Energy 2024;307:132700. https://doi.org/10.1016/J.ENERGY.2024.132700.
- [14] Rahimi M, Asadi M, Karami N, Karimi E. A comparative study on using single and multi header microchannels in a hybrid PV cell cooling. Energy Convers Manag 2015;101:1–8. https://doi.org/10.1016/j.enconman.2015.05.034.
- [15] Ebrahimi M, Rahimi M, Rahimi A. An experimental study on using natural vaporization for cooling of a photovoltaic solar cell. Int Commun Heat Mass Transf 2015;65:22–30. https://doi.org/10.1016/j.icheatmasstransfer.2015.04.002.
- [16] Al-Waeli AHA, Sopian K, Chaichan MT, Kazem HA, Hasan HA, Al-Shamani AN. An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system. Energy Convers Manag 2017;142:547–58. https://doi.org/10.1016/j.enconman.2017.03.076.
- [17] Global Solar Atlas n.d. https://globalsolaratlas.info/map.
- [18] Dubey S, Sarvaiya JN, Seshadri B. Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world - A review. Energy Procedia 2013;33:311–21. https://doi.org/10.1016/j.egypro.2013.05.072.
- [19] Bayrak F, Oztop HF, Selimefendigil F. Experimental study for the application of different cooling techniques in photovoltaic (PV) panels. Energy Convers Manag 2020;212:112789. https://doi.org/10.1016/j.enconman.2020.112789.
Fotovoltaik Güneş Panelleri için Pasif Soğutmalı Isı Kuyusunun Tasarımı, Simülasyonu ve Deneysel Analizi
Yıl 2024,
Cilt: 5 Sayı: 2, 98 - 112, 30.03.2025
Feyzullah Behlül Özkul
,
Fatih Mehmet Ulu
,
Erhan Kayabaşı
Öz
Bu araştırmada, fotovoltaik (PV) panellerin soğutma verimliliğini artırma amacıyla yeni bir termal yönetim çözümü tasarlandı. İlk olarak, kanatçık yapılandırmalarını değerlendirmek için ANSYS yazılımı kullanılarak bir simülasyon çalışması yürütüldü. Simüle edilen veriler üzerine inşa edilerek, daha az sıcaklık değeri sağlayan en avantajlı tasarımı yansıtan bir prototip seçildi ve doğrulama aşaması deneylerle gerçekleştirildi. Bu aşamada iki ayrı PV paneli kullanıldı: biri üretilen ısı emici (HS) ile arayüzlendi ve diğeri herhangi bir termal yönetim sisteminden yoksundu. Termal gradyanlar, elektrik çıkışı ve operasyonel verimlilik gibi temel performans ölçütleri titizlikle kaydedildi. PV panellerinin sıcaklık, voltaj ve akım değerleri 10:00 ile 16:00 arasında 20 dakikalık aralıklarla ölçüldü ve kaydedildi. PV panellerinin sıcaklık, voltaj ve akım değerleri 10:00 ile 16:00 arasında 20 dakikalık aralıklarla ölçüldü ve kaydedildi. Sonuç olarak, HS ile donatılmış güneş panelinin, HS'siz PV paneline göre gün boyunca %15-21,5 oranında daha verimli çalıştığı gözlemlenmiştir.
Proje Numarası
FYL-2019-2079
Kaynakça
- [1] Khudhur J, Akroot A, Al-Samari A. Experimental Investigation of Direct Solar Photovoltaics that Drives Absorption Refrigeration System. J Adv Res Fluid Mech Therm Sci 2023;106:116–35. https://doi.org/10.37934/arfmts.106.1.116135.
- [2] Atkin P, Farid MM. Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins. Sol Energy 2015;114:217–28. https://doi.org/10.1016/J.SOLENER.2015.01.037.
- [3] Bergman, Lavine, Incropera D. Fundamentals of Heat and Mass Transfer 7th Edition. 2003. https://doi.org/10.16309/j.cnki.issn.1007-1776.2003.03.004.
- [4] Akyavuz UD, Kayabasi E, Ozcan H. The effect of solar thermal energy storage on natural gas heating systems: An experimental and techno-economic investigation. Case Stud Therm Eng 2024;63:105287. https://doi.org/10.1016/J.CSITE.2024.105287.
- [5] Dawood TA, Barwari RRI, Akroot A. Solar Energy and Factors Affecting the Efficiency and Performance of Panels in Erbil/Kurdistan. Int J Heat Technol 2023;41:304–12. https://doi.org/10.18280/ijht.410203.
- [6] Beaucarne G. Silicon thin-film solar cells. Adv Optoelectron 2007;2007. https://doi.org/10.1155/2007/36970.
- [7] Yilmaz M, Kayabasi E, Akbaba M. Determination of the effects of operating conditions on the output power of the inverter and the power quality using an artificial neural network. Eng Sci Technol an Int J 2019. https://doi.org/10.1016/j.jestch.2019.02.006.
- [8] Eldin AH. A Review on Photovoltaic Solar Energy Technology and its Efficiency 2007.
- [9] Idoko L, Anaya-Lara O, McDonald A. Enhancing PV modules efficiency and power output using multi-concept cooling technique. Energy Reports 2018;4:357–69. https://doi.org/10.1016/j.egyr.2018.05.004.
- [10] Alami AH. Microstructural, optical and thermal characterization of synthetic clay as a passive cooling medium. Energy Convers Manag 2014;88:442–6. https://doi.org/10.1016/j.enconman.2014.08.053.
- [11] Özkul FB, Kayabasi E, Çelik E, Kurt H, Arcaklioǧlu E. Investigating the Effects of Cooling Options on Photovoltaic Panel Efficiency : State of the Art and Future Plan. 2018 Int. Conf. Photovolt. Sci. Technol., IEEE Explore Digital Library; 2018, p. 1–6.
- [12] Sheikh Y, Jasim M, Qasim M, Qaisieh A, Hamdan MO, Abed F. Enhancing PV solar panel efficiency through integration with a passive Multi-layered PCMs cooling system: A numerical study. Int J Thermofluids 2024;23:100748. https://doi.org/10.1016/J.IJFT.2024.100748.
- [13] Hamed MH, Hassan H, Ookawara S, Nada SA. Performance comparative study on passively cooled concentrated photovoltaic (PV) using adsorption/desorption and heat sink cooling methods: Experimental investigations. Energy 2024;307:132700. https://doi.org/10.1016/J.ENERGY.2024.132700.
- [14] Rahimi M, Asadi M, Karami N, Karimi E. A comparative study on using single and multi header microchannels in a hybrid PV cell cooling. Energy Convers Manag 2015;101:1–8. https://doi.org/10.1016/j.enconman.2015.05.034.
- [15] Ebrahimi M, Rahimi M, Rahimi A. An experimental study on using natural vaporization for cooling of a photovoltaic solar cell. Int Commun Heat Mass Transf 2015;65:22–30. https://doi.org/10.1016/j.icheatmasstransfer.2015.04.002.
- [16] Al-Waeli AHA, Sopian K, Chaichan MT, Kazem HA, Hasan HA, Al-Shamani AN. An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system. Energy Convers Manag 2017;142:547–58. https://doi.org/10.1016/j.enconman.2017.03.076.
- [17] Global Solar Atlas n.d. https://globalsolaratlas.info/map.
- [18] Dubey S, Sarvaiya JN, Seshadri B. Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world - A review. Energy Procedia 2013;33:311–21. https://doi.org/10.1016/j.egypro.2013.05.072.
- [19] Bayrak F, Oztop HF, Selimefendigil F. Experimental study for the application of different cooling techniques in photovoltaic (PV) panels. Energy Convers Manag 2020;212:112789. https://doi.org/10.1016/j.enconman.2020.112789.