Araştırma Makalesi
BibTex RIS Kaynak Göster

Digital Educational Tools for Student-Centered Physics Instruction: Applications of the Türkiye Century Education Model

Yıl 2025, Cilt: 10 Sayı: 1, 33 - 52, 30.06.2025

Öz

This study examined the effectiveness of using digital educational tools in student-centered physics instruction within the scope of the Türkiye Yüzyılı Maarif Modeli (Türkiye Century Education Model, TCEM). The research was conducted with 61 ninth-grade students from two classrooms at Trabzon Araklı Mehmet Akif Ersoy Anatolian High School. Based on an action research design, qualitative data were collected through observations and focus group interviews, while quantitative data were obtained using a performance-based rubric. Students carried out digitally supported activities in groups of four. Augmented reality applications, simulations, and interactive digital platforms were utilized during the research process. The findings indicate that these tools enhanced student engagement, improved conceptual understanding, and supported collaborative learning. However, a lack of prior experience with digital technologies among some students posed challenges during the learning process, and technical infrastructure and internet connectivity issues limited the efficiency of implementation. Additionally, behavioral tendencies toward digital addiction is observed in some students following the intensive use of digital tools, raising concerns about potential future dependency. These findings highlight the need for mindful and balanced use of digital tools, alongside their pedagogical benefits.

Teşekkür

Süreçte emeği olan sevgili öğrencilerime, fizik öğretmeni meslektaşlarıma ve özveri ile uğraşan dergi ekibine yürekten teşekkürlerimi sunarım.

Kaynakça

  • Ateş, H., & Polat, M. (2025). Leveraging augmented reality and gamification for enhanced self-regulation in science education. Education and Information Technologies, 1-32.
  • Banaz, E. (2024). 2024 Türkiye Yüzyılı Maarif Modeli Ortaokul Türkçe Dersi Öğretim Programı'nın Dijital Okuryazarlık Açısından İncelenmesi. Kuram ve Uygulamada Sosyal Bilimler Dergisi, 8(1), 279-290.
  • Bao, L., & Koenig, K. (2019). Physics education research for 21st century learning. Disciplinary and Interdisciplinary Science Education Research, 1(1), 2.
  • Bozdemir Yuzbasioglu, H., Candan Helvaci, S., Ezberci Cevik, E., & Kurnaz, M. A. (2020). Examination of the Conversations in a WhatsApp Group Created for Communication in a Bachelor's Level Astronomy Course.
  • International Journal of Education in Mathematics, Science and Technology, 8(2), 168-176.
  • Brookhart, S. M. (2013). How to create and use rubrics for formative assessment and grading. Ascd.
  • Brown, P. L., & Friedrichsen, P. M. (2011). Teaching Bernoulli's principle through demonstrations. Science Activities, 48(2), 65-70.
  • Buesing, M., & Cook, M. (2013). Augmented reality comes to physics. The Physics Teacher, 51(4), 226-228.
  • Darmaji, D., Kurniawan, D. A., & Irdianti, I. (2019). Physics Education Students' Science Process Skills. International Journal of Evaluation and Research in Education, 8(2), 293-298.
  • De Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340(6130), 305-308.
  • Doğru, S. (2023). ChatGPT - Science Education and Instruction Reshapes Management. Online Science Education Journal, 8(1), 12-21.
  • Gürsoy, G. (2021). Digital Storytelling: Developing 21st Century Skills in Science Education. European Journal of Educational Research, 10(1), 97-113.
  • Haleem, A., Javaid, M., Qadri, M. A., & Suman, R. (2022). Understanding the role of digital technologies in education: A review. Sustainable operations and computers, 3, 275-285.
  • Hung, W., & Jonassen, D. H. (2006). Conceptual understanding of causal reasoning in physics. International Journal of Science Education, 28(13), 1601-1621.
  • Ivanov, D., Nikolov, S., & Petrova, H. (2014). Testing Bernoulli’s law. Physics Education, 49(4), 436.
  • Jiao, S., Zhang, G., Cheng, P., & Xu, X. (2010). Bernoulli compressed sensing and its application to video-based augmented reality. Journal of Computational Information Systems, 6(14), 4819-4826.
  • Kalogiannakis, M., Papadakis, S., & Zourmpakis, A. I. (2021). Gamification in science education. A systematic review of the literature. Education sciences, 11(1), 22.
  • Kan, S., & Kumaş, A. (2024). Metaverse Destekli Fen Eğitimi. Milli Eğitim Dergisi, 53(242), 659-694.
  • Kumaş, A. (2022). Measurement-evaluation applications of context-based activities in hybrid learning environments. International Journal of Assessment Tools in Education, 9(Special Issue), 197-217.
  • Kumas, A., & Kan, S. (2021). Assessment and Evaluation Applications and Practices of Science and Physics Teachers in Online Education during COVID-19. International Journal of Education and Literacy Studies, 9(4), 163-173.
  • Kurnaz, M. A., & Eksi, C. (2015). An Analysis of High School Students' Mental Models of Solid Friction in Physics. Educational Sciences: Theory and Practice, 15(3), 787-795.
  • Laine, T. H., Nygren, E., Dirin, A., & Suk, H. J. (2016). Science Spots AR: a platform for science learning games with augmented reality. Educational Technology Research and Development, 64, 507-531.
  • Lampropoulos, G., & Kinshuk. (2024). Virtual reality and gamification in education: a systematic review. Educational technology research and development, 72(3), 1691-1785.
  • Lee, J. J., & Hammer, J. (2011). Gamification in education: What, how, why bother?. Academic exchange quarterly, 15(2), 146.
  • Lewin, C., Cranmer, S., & McNicol, S. (2018). Developing digital pedagogy through learning design: An activity theory perspective. British Journal of Educational Technology, 49(6), 1131-1144.
  • Li, J., Suzuki, R., & Nakagaki, K. (2023). Physica: Interactive Tangible Physics Simulation based on Tabletop Mobile Robots Towards Explorable Physics Education. In Proceedings of the 2023 ACM Designing Interactive Systems Conference (pp. 1485-1499).
  • McNiff, J., Lomax, P. & Whitehead, J. (2004). You and your action research project. (2nd ed.). London & New York: RoutledgeFalmer.
  • Miles, M. B. & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. sage. Ministry of National Education [MoNE], (2024). Türkiye Yüzyılı Maarif Modeli Fizik Öğretim Programı. https://tymm.meb.gov.tr/fizik-dersi/unite/65 adresinden 3 Mayıs 2025 tarihinde indirilmiştir.
  • Öksüz, T., & Taşçi, G. (2023). Examining A Long-Term Activity Process For The Field Of Engineering Design Skills. Online Science Education Journal, 8(2), 61-76.
  • Ormancı, Ü. (2019). The level of pre-service teachers related to information and communication technologies skills. Online Science Education Journal, 4(2), 104-116.
  • Pokhrel, S. (2024). Digital Technologies in Physics Education: Exploring Practices and Challenges. Teacher Education Advancement Network Journal, 15(1), 37-48.
  • Richter, K., & Kickmeier-Rust, M. (2025). Gamification in physics education: play your way to better learning. International Journal of Serious Games, 12(1), 59-81.
  • Singh, M. N. (2021). Inroad of digital technology in education: Age of digital classroom. Higher Education for the Future, 8(1), 20-30.
  • Verawati, N. N. S. P., & Purwoko, A. A. (2024). Literature Review on the Use of Interactive Labs Technology in The Context of Science Education. International Journal of Ethnoscience and Technology in Education, 1(1), 76-96.
  • Vidak, A., Šapić, I. M., Mešić, V., & Gomzi, V. (2024). Augmented reality technology in teaching about physics: a systematic review of opportunities and challenges. European journal of physics, 45(2), 023002.
  • Wood, M. A. (2021). Rethinking how technologies harm. The British Journal of Criminology, 61(3), 627-647.
  • Yıldırım, A., & Şimşek, H. (2018). Sosyal bilimlerde nitel araştırma yöntemleri (11. Baskı). Ankara: Seçkin Yayıncılık.
  • Zourmpakis, A. I., Papadakis, S., & Kalogiannakis, M. (2022). Education of preschool and elementary teachers on the use of adaptive gamification in science education. International Journal of Technology Enhanced Learning, 14(1), 1-16.

Öğrenci Merkezli Fizik Öğretimi için Dijital Eğitim Araçları: Türkiye Yüzyılı Maarif Modeli Uygulamaları

Yıl 2025, Cilt: 10 Sayı: 1, 33 - 52, 30.06.2025

Öz

Bu araştırmada, Türkiye Yüzyılı Maarif Modeli (TYMM) kapsamında öğrenci merkezli fizik öğretiminde dijital eğitim araçlarının kullanımının etkililiği incelenmiştir. Çalışma, Trabzon Araklı Mehmet Akif Ersoy Anadolu Lisesinde, iki 9. sınıf şubesinde toplam 61 öğrenciyle yürütülmüştür. Eylem araştırmasına dayalı olarak yürütülen araştırmada; nitel veriler gözlem ve odak grup görüşmeleriyle, nicel veriler ise dereceli puanlama anahtarı yardımı ile elde edilmiştir. Öğrenciler, dört kişilik gruplar hâlinde dijital içerik destekli etkinlikler gerçekleştirmiştir. Araştırma sürecinde artırılmış gerçeklik uygulamaları, simülasyonlar ve etkileşimli dijital platformlar kullanılmıştır. Bulgular, bu araçların öğrencilerin derse katılımını artırdığını, kavramsal anlamayı geliştirdiğini ve iş birliğine dayalı öğrenmeyi desteklediğini göstermektedir. Bununla birlikte, bazı öğrencilerin dijital teknolojilere yönelik deneyim eksiklikleri öğrenme sürecinde zorluklar oluşturmuş; teknik altyapı ve internet bağlantısı sorunları uygulamanın verimliliğini sınırlamıştır. Ayrıca, dijital araçların yoğun kullanımı sonrasında bazı öğrencilerde dijital bağımlılığa yönelik davranış eğilimleri gözlemlenmiş ve bu durum öğrencilerin gelecekte teknoloji bağımlılığına sebep olacağına yönelik kaygı oluşturmuştur. Bu durum, dijital araçların pedagojik faydalarının yanında dikkatli ve dengeli kullanım gerekliliğini ortaya koymaktadır.

Kaynakça

  • Ateş, H., & Polat, M. (2025). Leveraging augmented reality and gamification for enhanced self-regulation in science education. Education and Information Technologies, 1-32.
  • Banaz, E. (2024). 2024 Türkiye Yüzyılı Maarif Modeli Ortaokul Türkçe Dersi Öğretim Programı'nın Dijital Okuryazarlık Açısından İncelenmesi. Kuram ve Uygulamada Sosyal Bilimler Dergisi, 8(1), 279-290.
  • Bao, L., & Koenig, K. (2019). Physics education research for 21st century learning. Disciplinary and Interdisciplinary Science Education Research, 1(1), 2.
  • Bozdemir Yuzbasioglu, H., Candan Helvaci, S., Ezberci Cevik, E., & Kurnaz, M. A. (2020). Examination of the Conversations in a WhatsApp Group Created for Communication in a Bachelor's Level Astronomy Course.
  • International Journal of Education in Mathematics, Science and Technology, 8(2), 168-176.
  • Brookhart, S. M. (2013). How to create and use rubrics for formative assessment and grading. Ascd.
  • Brown, P. L., & Friedrichsen, P. M. (2011). Teaching Bernoulli's principle through demonstrations. Science Activities, 48(2), 65-70.
  • Buesing, M., & Cook, M. (2013). Augmented reality comes to physics. The Physics Teacher, 51(4), 226-228.
  • Darmaji, D., Kurniawan, D. A., & Irdianti, I. (2019). Physics Education Students' Science Process Skills. International Journal of Evaluation and Research in Education, 8(2), 293-298.
  • De Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340(6130), 305-308.
  • Doğru, S. (2023). ChatGPT - Science Education and Instruction Reshapes Management. Online Science Education Journal, 8(1), 12-21.
  • Gürsoy, G. (2021). Digital Storytelling: Developing 21st Century Skills in Science Education. European Journal of Educational Research, 10(1), 97-113.
  • Haleem, A., Javaid, M., Qadri, M. A., & Suman, R. (2022). Understanding the role of digital technologies in education: A review. Sustainable operations and computers, 3, 275-285.
  • Hung, W., & Jonassen, D. H. (2006). Conceptual understanding of causal reasoning in physics. International Journal of Science Education, 28(13), 1601-1621.
  • Ivanov, D., Nikolov, S., & Petrova, H. (2014). Testing Bernoulli’s law. Physics Education, 49(4), 436.
  • Jiao, S., Zhang, G., Cheng, P., & Xu, X. (2010). Bernoulli compressed sensing and its application to video-based augmented reality. Journal of Computational Information Systems, 6(14), 4819-4826.
  • Kalogiannakis, M., Papadakis, S., & Zourmpakis, A. I. (2021). Gamification in science education. A systematic review of the literature. Education sciences, 11(1), 22.
  • Kan, S., & Kumaş, A. (2024). Metaverse Destekli Fen Eğitimi. Milli Eğitim Dergisi, 53(242), 659-694.
  • Kumaş, A. (2022). Measurement-evaluation applications of context-based activities in hybrid learning environments. International Journal of Assessment Tools in Education, 9(Special Issue), 197-217.
  • Kumas, A., & Kan, S. (2021). Assessment and Evaluation Applications and Practices of Science and Physics Teachers in Online Education during COVID-19. International Journal of Education and Literacy Studies, 9(4), 163-173.
  • Kurnaz, M. A., & Eksi, C. (2015). An Analysis of High School Students' Mental Models of Solid Friction in Physics. Educational Sciences: Theory and Practice, 15(3), 787-795.
  • Laine, T. H., Nygren, E., Dirin, A., & Suk, H. J. (2016). Science Spots AR: a platform for science learning games with augmented reality. Educational Technology Research and Development, 64, 507-531.
  • Lampropoulos, G., & Kinshuk. (2024). Virtual reality and gamification in education: a systematic review. Educational technology research and development, 72(3), 1691-1785.
  • Lee, J. J., & Hammer, J. (2011). Gamification in education: What, how, why bother?. Academic exchange quarterly, 15(2), 146.
  • Lewin, C., Cranmer, S., & McNicol, S. (2018). Developing digital pedagogy through learning design: An activity theory perspective. British Journal of Educational Technology, 49(6), 1131-1144.
  • Li, J., Suzuki, R., & Nakagaki, K. (2023). Physica: Interactive Tangible Physics Simulation based on Tabletop Mobile Robots Towards Explorable Physics Education. In Proceedings of the 2023 ACM Designing Interactive Systems Conference (pp. 1485-1499).
  • McNiff, J., Lomax, P. & Whitehead, J. (2004). You and your action research project. (2nd ed.). London & New York: RoutledgeFalmer.
  • Miles, M. B. & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. sage. Ministry of National Education [MoNE], (2024). Türkiye Yüzyılı Maarif Modeli Fizik Öğretim Programı. https://tymm.meb.gov.tr/fizik-dersi/unite/65 adresinden 3 Mayıs 2025 tarihinde indirilmiştir.
  • Öksüz, T., & Taşçi, G. (2023). Examining A Long-Term Activity Process For The Field Of Engineering Design Skills. Online Science Education Journal, 8(2), 61-76.
  • Ormancı, Ü. (2019). The level of pre-service teachers related to information and communication technologies skills. Online Science Education Journal, 4(2), 104-116.
  • Pokhrel, S. (2024). Digital Technologies in Physics Education: Exploring Practices and Challenges. Teacher Education Advancement Network Journal, 15(1), 37-48.
  • Richter, K., & Kickmeier-Rust, M. (2025). Gamification in physics education: play your way to better learning. International Journal of Serious Games, 12(1), 59-81.
  • Singh, M. N. (2021). Inroad of digital technology in education: Age of digital classroom. Higher Education for the Future, 8(1), 20-30.
  • Verawati, N. N. S. P., & Purwoko, A. A. (2024). Literature Review on the Use of Interactive Labs Technology in The Context of Science Education. International Journal of Ethnoscience and Technology in Education, 1(1), 76-96.
  • Vidak, A., Šapić, I. M., Mešić, V., & Gomzi, V. (2024). Augmented reality technology in teaching about physics: a systematic review of opportunities and challenges. European journal of physics, 45(2), 023002.
  • Wood, M. A. (2021). Rethinking how technologies harm. The British Journal of Criminology, 61(3), 627-647.
  • Yıldırım, A., & Şimşek, H. (2018). Sosyal bilimlerde nitel araştırma yöntemleri (11. Baskı). Ankara: Seçkin Yayıncılık.
  • Zourmpakis, A. I., Papadakis, S., & Kalogiannakis, M. (2022). Education of preschool and elementary teachers on the use of adaptive gamification in science education. International Journal of Technology Enhanced Learning, 14(1), 1-16.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fizik Eğitimi, Fen ve Matematik Alanları Eğitimi (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Ahmet Kumaş 0000-0002-2898-9477

Erken Görünüm Tarihi 25 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 5 Haziran 2025
Kabul Tarihi 23 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 1

Kaynak Göster

APA Kumaş, A. (2025). Digital Educational Tools for Student-Centered Physics Instruction: Applications of the Türkiye Century Education Model. Online Science Education Journal, 10(1), 33-52.
13554    13679    13680    13681    13682    13684

ERIH PLUS            Index Copernicus            SOBIAD            ROAD            DRJI            ASOS Index            Scientific Indexing Services            

Eurasian Scientific Journal Index                Google Scholar                Türk Eğitim İndeksi                i2or

12285Online Science Education Journal is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

Copyright © 2016 Online Fen Eğitimi Dergisi Tüm Hakları Saklıdır.