Araştırma Makalesi
BibTex RIS Kaynak Göster

Dynamic Analysis of a Recessed Reinforced Concrete Rectangular Water Tank under Blast-Induced Ground Motion Effect

Yıl 2025, Cilt: 15 Sayı: 1, 101 - 114, 30.06.2025
https://doi.org/10.54370/ordubtd.1653609

Öz

Construction, mining, oil, forestry, and agriculture all use blasting processes both in our country and in the world. A wide range of civil engineering projects, including homes, roads, railroads, dams, and airports, use blasting technology. The blasting process provides some advantages, but it also has drawbacks. Blasting has negative impacts, such as air shock and ground motion. This investigation concentrated solely on ground motion induced by an explosion. Utilizing the well-known MATLAB programming language, BlastGM software was implemented to obtain ground motion acceleration-time information. This software uses the maximum acceleration value and the ground motion acceleration time envelope curve to determine the acceleration-time changes of blasting-induced ground motions. Furthermore, this software uses the ground motion acceleration-time values to determine the shock's reaction spectrum. This study looked at how a recessed reinforced concrete (RC) rectangular water tank was affected by ground motion based on blasting. In Turkey, these tanks are built very frequently. For these tanks, the impact of ground motion brought on by blasting is crucial. ANSYS software produced the recessed RC rectangular water tank's three dimensional (3D) finite element model (FEM). Furthermore, the recessed RC rectangular water tank's maximum stresses and displacements were examined. The study's findings demonstrate that the recessed RC rectangular water tank is greatly impacted by blast-induced ground motion.

Etik Beyan

There is no ethical issue in publishing this article.

Proje Numarası

-

Teşekkür

-

Kaynakça

  • Alipour, M., Hosseini, M., Babaali, H., Raftari, M., & Mahjoub, R (2025). Evaluation of the behavior of reinforced concrete above-ground tanks subjected to blast loading. Advances in Science and Technology Research Journal, 19(7), 1-24. https://doi.org/10.12913/22998624/202413
  • Amin, M., & Ang, A. H. S. (1968). Nonstationary stochastic models of earthquake motions. Journal of the Engineering Mechanics Division, 94(2), 559-584. https://doi.org/10.1061/JMCEA3.0000969
  • ANSYS (2024). Workbench 2024. User’s manual. Ansys Incorporation.
  • Hao, H., & Zhou, Y. (2011). Rigid structure response analysis to seismic and blast induced ground motions. Procedia Engineering, 14, 946-955. https://doi.org/10.1016/j.proeng.2011.07.119
  • Irvine, T. (2013). Vibrationdata Shock & Vibration Software & Tutorials. http://www.vibrationdata.wordpress.com/2012/02/11/shock-respponse-spectrum
  • Kanasewich, E. R. (1981). Time sequence analysis in geophysics. The University of Alberta Press, Edmonton.
  • Kelly, R. D., & Richman, G. (1971). Principles and techniques of shock data analysis (Vol. 5). Shock and Vibration Information Center, US Department of Defense.
  • Köksal, O., & Karaca, Z. (2020). Influence of blast-induced ground motion on dynamic response of reinforcement retaining walls. Journal of Structural Engineering and Applied Mechanics, 3, 85-92. https://doi.org/10.31462/jseam.2020.02085092
  • Köksal, O. (2013). Dynamic analysis of elevated steel water tanks in the influence of blast induced ground motion [Master of Science Thesis]. Ondokuz Mayıs University.
  • Köksal, O., & Karaca, Z., (2018, June, 27-29). Influence of Blast-induced Ground Motion on Dynamic Response of Rectangular Concrete Water Tank [Oral presentation]. International Technological Sciences and Design Symposium, Giresun, Turkey.
  • Köksal, O, Karaca, Z., & Türkeli, E., (2023, November, 23-25). Modal analysis of recessed reinforced concrete rectangular water tank using matlab partial differential equation toolbox [Oral presentation]. International Conference on Engineering Technologies (ICENTE2023), Konya, Turkey.
  • MathWorks Inc. (2012). MATLAB version: 8.0 (R2012b), Natick, Massachusetts. The MathWorks Inc. https://www.mathworks.com
  • Moghadam, M., Razavitosee, S. V., & Sharbanozadeh, M. (2022). Dynamic analysis of reinforced concrete water tanks under blast considering fluid-structure interaction. Scientia Iranica, 29(6), 2902-2918.https://doi.org/10.24200/sci.2022.57932.5478
  • Lu, Y., & Wang, Z. (2006). Characterization of structural effects from above-ground explosion using coupled numerical simulation. Computers & Structures, 84(28), 1729-1742. https://doi.org/10.1016/j.compstruc.2006.05.002
  • Özmen, H. (2006). Modeling of blast-induced ground motion and their effect on above-ground structures [Master of Science Thesis]. Karadeniz Technical University.
  • Raikar, R. G., & Kangda, M. Z. (2024). Blast mitigation of elevated water tanks equipped with resilient fluid viscous dampers. Innovative Infrastructure Solutions, 9(7), 238. https://doi.org/10.1007/s41062-024-01536-z
  • Ruiz, P., & Penzien, J. (1969). PSEQN: Artificial generation of earthquake accelerograms. Earthquake Engineering Research Center, Report No EERC, 69-3, University of California, Berkeley, USA.
  • Singh, P. K., & Roy, M. P. (2010). Damage to surface structures due to blast vibration. International Journal of Rock Mechanics and Mining Sciences, 47(6), 949-961. https://doi.org/10.1016/j.ijrmms.2010.06.010
  • Tuma, J., Babiuch, M., & Koci, P. (2011). Calculation of a shock response spectra. Acta Montanistica Slovaca, 16(1), 66-73. https://doi.org/10.1109/CarpathianCC.2011.5945889
  • Wu, C., & Hao, H. (2005). Modeling of simultaneous ground shock and airblast pressure on nearby structures from surface explosions. International Journal of Impact Engineering, 31(6), 699-717. https://doi.org/10.1016/j.ijimpeng.2004.03.002
  • Wu, C., Hao, H., & Lu, Y. (2005). Dynamic response and damage analysis of masonry structures and masonry infilled RC frames to blast ground motion. Engineering Structures, 27(3), 323-333. https://doi.org/10.1016/j.engstruct.2004.10.004

Patlatma Kaynaklı Yer Hareketi Etkisindeki Gömme Bir Betonarme Dikdörtgen Su Deposunun Dinamik Analizi

Yıl 2025, Cilt: 15 Sayı: 1, 101 - 114, 30.06.2025
https://doi.org/10.54370/ordubtd.1653609

Öz

Patlatma işlemi, ülkemizde ve dünyada yapı, maden, petrol, tarım ve orman alanlarında kullanılmaktadır. Patlatma teknolojisi konut, karayolları, demiryolları, barajlar, havalimanları gibi çoğu inşaat mühendisliği uygulamalarında yaygın olarak uygulanmaktadır. Ancak, patlatma işleminin olumlu tarafları olmasına rağmen, olumsuz tarafları da bulunmaktadır. Patlatma, yer hareketi ve hava şoku gibi olumsuz etkiler meydana getirmektedir. Bu çalışmada, sadece patlatma kaynaklı yer hareketi incelenmiştir. Yaygın olarak kullanılan MATLAB programlama dili ile yer hareketi ivme-zaman bilgisinin elde edilmesi için, BlastGM yazılımı uygulanmıştır. Bu yazılım, yer hareketi ivmesinin zaman zarf eğrisini ve en büyük ivme değerini kullanarak patlatma kaynaklı yer hareketlerinin ivme-zaman değişimlerini elde etmektedir. Ayrıca, bu yazılım, yer hareketi ivme-zaman değerlerinden patlama şokunun tepki spektrumunu da elde etmektedir. Bu çalışmada, patlatma kaynaklı yer hareketinin gömme betonarme dikdörtgen su deposuna etkisi incelenmiştir. Bu depolar, Türkiye’de çok sık inşa edilmektedir. Bu nedenle, patlatma kaynaklı yer hareketinin etkisi bu depolar için önemlidir. Gömme betonarme dikdörtgen su deposunun üç boyutlu sonlu eleman modeli, ANSYS yazılımı ile elde edilmiştir. Bununla birlikte, gömme betonarme dikdörtgen su deposunun en büyük gerilmeleri ve yerdeğiştirmeleri incelenmiştir. Bu çalışmanın sonuçları, patlatma kaynaklı yer hareketinin, gömme betonarme dikdörtgen su deposunu önemli derecede etkilediğini göstermektedir.

Proje Numarası

-

Teşekkür

-

Kaynakça

  • Alipour, M., Hosseini, M., Babaali, H., Raftari, M., & Mahjoub, R (2025). Evaluation of the behavior of reinforced concrete above-ground tanks subjected to blast loading. Advances in Science and Technology Research Journal, 19(7), 1-24. https://doi.org/10.12913/22998624/202413
  • Amin, M., & Ang, A. H. S. (1968). Nonstationary stochastic models of earthquake motions. Journal of the Engineering Mechanics Division, 94(2), 559-584. https://doi.org/10.1061/JMCEA3.0000969
  • ANSYS (2024). Workbench 2024. User’s manual. Ansys Incorporation.
  • Hao, H., & Zhou, Y. (2011). Rigid structure response analysis to seismic and blast induced ground motions. Procedia Engineering, 14, 946-955. https://doi.org/10.1016/j.proeng.2011.07.119
  • Irvine, T. (2013). Vibrationdata Shock & Vibration Software & Tutorials. http://www.vibrationdata.wordpress.com/2012/02/11/shock-respponse-spectrum
  • Kanasewich, E. R. (1981). Time sequence analysis in geophysics. The University of Alberta Press, Edmonton.
  • Kelly, R. D., & Richman, G. (1971). Principles and techniques of shock data analysis (Vol. 5). Shock and Vibration Information Center, US Department of Defense.
  • Köksal, O., & Karaca, Z. (2020). Influence of blast-induced ground motion on dynamic response of reinforcement retaining walls. Journal of Structural Engineering and Applied Mechanics, 3, 85-92. https://doi.org/10.31462/jseam.2020.02085092
  • Köksal, O. (2013). Dynamic analysis of elevated steel water tanks in the influence of blast induced ground motion [Master of Science Thesis]. Ondokuz Mayıs University.
  • Köksal, O., & Karaca, Z., (2018, June, 27-29). Influence of Blast-induced Ground Motion on Dynamic Response of Rectangular Concrete Water Tank [Oral presentation]. International Technological Sciences and Design Symposium, Giresun, Turkey.
  • Köksal, O, Karaca, Z., & Türkeli, E., (2023, November, 23-25). Modal analysis of recessed reinforced concrete rectangular water tank using matlab partial differential equation toolbox [Oral presentation]. International Conference on Engineering Technologies (ICENTE2023), Konya, Turkey.
  • MathWorks Inc. (2012). MATLAB version: 8.0 (R2012b), Natick, Massachusetts. The MathWorks Inc. https://www.mathworks.com
  • Moghadam, M., Razavitosee, S. V., & Sharbanozadeh, M. (2022). Dynamic analysis of reinforced concrete water tanks under blast considering fluid-structure interaction. Scientia Iranica, 29(6), 2902-2918.https://doi.org/10.24200/sci.2022.57932.5478
  • Lu, Y., & Wang, Z. (2006). Characterization of structural effects from above-ground explosion using coupled numerical simulation. Computers & Structures, 84(28), 1729-1742. https://doi.org/10.1016/j.compstruc.2006.05.002
  • Özmen, H. (2006). Modeling of blast-induced ground motion and their effect on above-ground structures [Master of Science Thesis]. Karadeniz Technical University.
  • Raikar, R. G., & Kangda, M. Z. (2024). Blast mitigation of elevated water tanks equipped with resilient fluid viscous dampers. Innovative Infrastructure Solutions, 9(7), 238. https://doi.org/10.1007/s41062-024-01536-z
  • Ruiz, P., & Penzien, J. (1969). PSEQN: Artificial generation of earthquake accelerograms. Earthquake Engineering Research Center, Report No EERC, 69-3, University of California, Berkeley, USA.
  • Singh, P. K., & Roy, M. P. (2010). Damage to surface structures due to blast vibration. International Journal of Rock Mechanics and Mining Sciences, 47(6), 949-961. https://doi.org/10.1016/j.ijrmms.2010.06.010
  • Tuma, J., Babiuch, M., & Koci, P. (2011). Calculation of a shock response spectra. Acta Montanistica Slovaca, 16(1), 66-73. https://doi.org/10.1109/CarpathianCC.2011.5945889
  • Wu, C., & Hao, H. (2005). Modeling of simultaneous ground shock and airblast pressure on nearby structures from surface explosions. International Journal of Impact Engineering, 31(6), 699-717. https://doi.org/10.1016/j.ijimpeng.2004.03.002
  • Wu, C., Hao, H., & Lu, Y. (2005). Dynamic response and damage analysis of masonry structures and masonry infilled RC frames to blast ground motion. Engineering Structures, 27(3), 323-333. https://doi.org/10.1016/j.engstruct.2004.10.004
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Betonarme Yapılar, İnşaat Mühendisliğinde Sayısal Modelleme, Su Kaynakları ve Su Yapıları, Yapı Dinamiği, Yapı Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Olgun Köksal 0000-0001-8448-6404

Zeki Karaca 0000-0003-1130-5259

Erdem Türkeli 0000-0002-4293-4712

Proje Numarası -
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 7 Mart 2025
Kabul Tarihi 8 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

APA Köksal, O., Karaca, Z., & Türkeli, E. (2025). Dynamic Analysis of a Recessed Reinforced Concrete Rectangular Water Tank under Blast-Induced Ground Motion Effect. Ordu Üniversitesi Bilim Ve Teknoloji Dergisi, 15(1), 101-114. https://doi.org/10.54370/ordubtd.1653609