Araştırma Makalesi
BibTex RIS Kaynak Göster

Geopolimerin mineral bileşen odaklı dayanım analizi için pearson ve spearman algoritmaları kullanılarak yapılan bir korelasyon çalışması

Yıl 2025, Cilt: 31 Sayı: 3, 409 - 416, 30.06.2025

Öz

Bu çalışma, farklı bileşenler arasındaki mineralojik özellikler ve mekanik dayanım parametreleri arasındaki ilişkinin istatistiksel bir analizini sunmaktadır. Basınç dayanımı ve eğilme dayanımı gibi önemli dayanım özellikleri örnek malzemeler üzerinde analiz edilmiştir. Mineralojik bileşenler ve mukavemet parametreleri arasındaki ilişkiyi değerlendirmek için Pearson Korelasyon Katsayısı ve Spearman Korelasyon Katsayısı olmak üzere iki farklı korelasyon yöntemi kullanılmıştır. Elde edilen sonuçlar, bazı mineral bileşenlerin mekanik dayanım özellikleri ile anlamlı pozitif veya negatif korelasyon gösterdiğini ortaya koymuştur. Özellikle, kireç (CaO) basınç dayanımı ile mükemmel bir pozitif doğrusal ilişki sergilemiştir. Benzer şekilde, silika (SiO2) içeriği ile eğilme dayanımı arasında güçlü bir pozitif monotonik ilişki bulunmuştur. İstatistiksel analizler, mineral bileşenlerin mekanik mukavemet özellikleri üzerindeki etkisinin anlaşılmasında önemli bir araç sağlamaktadır. Bu çalışmanın sonuçları, mineralojik bileşenlerin yapı malzemesi seçimi ve yapısal tasarımdaki rolünü anlamak için değerli bir rehber sağlamaktadır.

Kaynakça

  • [1] Tripathy A, Acharya PK. “Characterization of bagasse ash and its sustainable use in concrete as a supplementary binder-a review”. Construction and Building Materials, 322, 126391, 2022.
  • [2] Yang H, Zhang S, Lei W, Chen P, Shao D, Tang, S. “High ferrite Portland cement with slag: Hydration, microstructure, and resistance to sulfate attack at elevated temperature”. Cement and Concrete Composites, 130, 104560, 2022.
  • [3] Golewski GL. “Green concrete composite incorporating fly ash with high strength and fracture toughness”. Journal of Cleaner Production, 172, 218-226, 2018.
  • [4] Chen W, Hong J, Xu C. “Pollutants generated by cement production in China, their impacts, and the potential for environmental improvement”. Journal of Cleaner Production, 103, 61-69, 2015.
  • [5] Gunasekara C, Law DW, Setunge S, Sanjayan JG. “Zeta potential, gel formation and compressive strength of low calcium fly ash geopolymers”. Construction and Building Materials, 95, 592–599, 2015.
  • [6] Lee NK, Jang, JG, Lee HK. “Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages”. Cement and Concrete Composites, 53, 239–248, 2014.
  • [7] Luo Z, Zhi T, Liu L, Mi J, Zhang M, Tian C, Si Z, Liu X, Mu Y. “Solidification/stabilization of chromium slag in red mudbased geopolymer”. Construction and Building Materials, 316, 125813, 2022.
  • [8] Meesala CR, Verma NK, Kumar S. “Critical review on flyash based geopolymer concrete”. Structural Concrete, 21(3), 1013–1028, 2020.
  • [9] Guo X, Xiong G. “Resistance of fiber-reinforced fly ash-steel slag based geopolymer mortar to sulfate attack and drying-wetting cycles”. Construction and Building Materials, 269, 121326, 2021.
  • [10] Guades, EJ. “Effect of coarse aggregate size on the compressive behaviour of geopolymer concrete”. European Journal of Environmental and Civil Engineering, 23(6), 693-709, 2019.
  • [11] Han Q, Zhang P, Wu J, Jing Y, Zhang D, Zhang, T. “Comprehensive review of the properties of fly ash-based geopolymer with additive of nano-SiO2”. In Nanotechnology Reviews De Gruyter Open Ltd., 11(1), 1478–1498, 2022.
  • [12] Han Y, Cui X, Lv X, Wang K. “Preparation and characterization of geopolymers based on a phosphoricacid-activated electrolytic manganese dioxide residue”. Journal of Cleaner Production, 205, 488–498, 2018.
  • [13] Rehman SK, Imtiaz L, Aslam F, Khan MK, Haseeb M, Javed FM, Alyousef R, Alabduljabbar H. “Experimental investigation of NaOH and KOH mixture in SCBA-Based geopolymer cement composite”. Experimental Investigation of NaOH and KOH Mixture in SCBA-Based”. Geopolymer Cement Composite, 13(15), 3437, 2020.
  • [14] Chithambaram SJ, Kumar S, Prasad MM. “Thermomechanical characteristics of geopolymer mortar“. Construction and Building Materials, 213, 100–108, 2019.
  • [15] Aprianti E, Shafigh P, Bahri S, Farahani JN. “Supplementary cementitious materials origin from agricultural wastes - A review”. Construction 74, 176-187, 2015. and Building Materials,
  • [16] Shahmansouri AA, Akbarzadeh Bengar H, Ghanbari S. “Compressive strength prediction of eco-efficient GGBSbased geopolymer concrete using GEP method”. Journal of Building Engineering, 31, 101326, 2020.
  • [17] Siad H, Lachemi M, Sahmaran M, Hossain KA. “Mechanical, physical, and self-healing behaviors of engineered cementitious composites with glass powder”. Journal of Materials in Civil Engineering, 29(6), 04017016, 2017.
  • [18] Das SK, Shrivastava S. “Siliceous fly ash and blast furnace slag based geopolymer concrete under ambient temperature curing condition”. Structural Concrete, 22(S1), 341–351, 2021.
  • [19] El-Naggar, MR, El-Dessouky MI. “Re-use of waste glass in improving properties of metakaolin-based geopolymers: Mechanical and microstructure examinations”. Construction and Building Materials, 132, 543–555, 2017.
  • [20] Wang J, Xie J, Wang C, Zhao J, Liu F, Fang C. “Study on the optimum initial curing condition for fly ash and GGBS based geopolymer recycled aggregate concrete”. Construction and Building Materials, 247, 118540, 2020.
  • [21] Xiao R, Zhang Y, Jiang X, Polaczyk P, Ma Y, Huang B. “Alkaliactivated slag supplemented with waste glass powder: Laboratory characterization, thermodynamic modelling and sustainability analysis”. Journal of Cleaner Production, 286, 125554, 2021.
  • [22] Zhang S, Keulen A, Arbi K, Ye G. “Waste glass as partial mineral precursor in alkali-activated slag/fly ash system”. Cement and Concrete Research, 102, 29–40, 2017.
  • [23] Pascual AB, Tognonvi TM, Tagnit-Hamou A. “Optimization study of waste glass powder-based alkali activated materials incorporating metakaolin: Activation and curing conditions”. Journal of Cleaner Production, 308, 127435, 2021.
  • [24] Awalludin MF, Sulaiman O, Hashim R, Nadhari, WNAW. “An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction”. Renewable and Sustainable Energy Reviews, 50, 1469–1484, 2015.
  • [25] Dindi A, Quang DV, Vega LF, Nashef, E, Abu-Zahra MRM. “Applications of fly ash for CO2 capture, utilization, and storage”. Journal of CO2 Utilization, 29, 82–102, 2019.
  • [26] Assi, LN, Eddie Deaver E, Ziehl P. “Effect of source and particle size distribution on the mechanical and microstructural properties of fly Ash-Based geopolymer concrete”. Construction and Building Materials, 167, 372–380, 2018.
  • [27] Hadi MNS, Al-Azzawi M, Yu T. “Effects of fly ash characteristics and alkaline activator components on compressive strength of fly ash-based geopolymer mortar”. Construction and Building Materials, 175, 41–54, 2018.
  • [28] Scrivener KL, John VM, Gartner EM. “Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry”. Cement and Concrete Research, 114, 2–26, 2018.
  • [29] Ercan T, Yegingil, Z, Bigazzi G. “Obsidian definition and characteristics, distribution and geochemical characteristics of those of the central Anatolian obsidian in Anatolia”. Journal Geomorphol, 17, 71-83, 1989.
  • [30] Kurt Z, Ustabaş İ, Cakmak T. “Novel binder material in geopolymer mortar production: Obsidian stone powder”. Structural Concrete, 24(4), 5600-5613, 2023.
  • [31] Ustabaş İ, Kaya A. “Comparing the pozzolanic activity properties of obsidian to those of fly ash and blast furnace slag”. Construction and Building Materials, 164, 297–307, 2018.
  • [32] Türk K, Karataş M, Turgut, P, Benli A. “Relationship between strength and elasticity modulus of selfconsolidating concrete containing different types and dosages of pozzuolana”. Pamukkale University Journal of Engineering Sciences, 16(3), 247-253, 2010.
  • [33] Birinci H, Kaplan H, Temiz H, Görür EB. “Some durability properties of ground blast furnace slag and ground basaltic pumice concretes”. Pamukkale University Journal of Engineering Sciences, 14(3), 309-317, 2008. 415 Pamukkale Univ Muh Bilim Derg, 31(3), 409-416, 2025 Y. Yılmaz, T. Çakmak, Z. Kurt, İ. Ustabaş
  • [34] Çakır Ö, Dilbas. “A comparative analysis of elasticity modulus of recycled aggregate concrete with silica fume”. Pamukkale University Journal of Engineering Sciences, 24(6), 1069–1078, 2018.
  • [35] American Society for Testing and Materials. “Standard Specification for Fly Ash and Raw Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete”. USA, ASTM C618, 1991.
  • [36] British Standart Institution. “Fly Ash for ConcreteDefinition, Specifications and Conformity Criteria”. UK, BS-EN 1-450, 2012.
  • [37] Zhou H, Deng Z, Xia Y, Fu M. “A new sampling method in particle filter based on Pearson correlation coefficient”. Neurocomputing, 216, 208-215, 2016.
  • [38] Hauke J, Tomasz, K. "Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data". Quaestiones geographicae, 30(2), 87-93, 2011.
  • [39] Sorić B. “Statistical “discoveries” and effect-size estimation”. Journal of the American Statistical Association, 84(406), 608-610, 1989.
  • [40] Benjamini Y, Hochberg Y. “Controlling the false discovery rate: a practical and powerful approach to multiple testing”. Journal of Royal Statistical Society B Series, 57(1), 289-300, 1995.
  • [41] Awoyera PO, Kirgiz MS, Viloria, A, Ovallos-Gazabon D. “Estimating strength properties of geopolymer selfcompacting concrete using machine learning techniques”. Journal of Materials Research and Technology, 9(4), 9016-9028, 2020.
  • [42] Zhiping L, Xiaojian G, Dagang L. “Correlation analysis and statistical assessment of early hydration characteristics and compressive strength for multi-composite cement paste”. Construction and Building Materials, 310, 125260, 2021.

A novel correlation study using pearson and spearman algorithms for mineral component-driven strength analysis of geopolymer

Yıl 2025, Cilt: 31 Sayı: 3, 409 - 416, 30.06.2025

Öz

This study presents a statistical analysis of the relationship between mineralogical properties and mechanical strength parameters between different constituents. Important properties such as compressive and flexural strength are analyzed on sample materials. Two different correlation methods, namely Pearson Correlation Coefficient and Spearman Correlation Coefficient, were used to evaluate the relationship between mineralogical constituents and strength parameters. The results obtained revealed that some mineral constituents showed a significant positive or negative correlation with mechanical strength properties. In particular, lime (CaO) exhibited an excellent positive linear relationship with compressive strength. Similarly, a strong positive monotonic relationship was found between silica (SiO2) content and flexural strength. The statistical analyses provide an important tool in understanding the influence of mineral constituents on mechanical strength properties. The results of this study provide a valuable guide to understand the role of mineralogical constituents in construction material selection and structural design.

Kaynakça

  • [1] Tripathy A, Acharya PK. “Characterization of bagasse ash and its sustainable use in concrete as a supplementary binder-a review”. Construction and Building Materials, 322, 126391, 2022.
  • [2] Yang H, Zhang S, Lei W, Chen P, Shao D, Tang, S. “High ferrite Portland cement with slag: Hydration, microstructure, and resistance to sulfate attack at elevated temperature”. Cement and Concrete Composites, 130, 104560, 2022.
  • [3] Golewski GL. “Green concrete composite incorporating fly ash with high strength and fracture toughness”. Journal of Cleaner Production, 172, 218-226, 2018.
  • [4] Chen W, Hong J, Xu C. “Pollutants generated by cement production in China, their impacts, and the potential for environmental improvement”. Journal of Cleaner Production, 103, 61-69, 2015.
  • [5] Gunasekara C, Law DW, Setunge S, Sanjayan JG. “Zeta potential, gel formation and compressive strength of low calcium fly ash geopolymers”. Construction and Building Materials, 95, 592–599, 2015.
  • [6] Lee NK, Jang, JG, Lee HK. “Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages”. Cement and Concrete Composites, 53, 239–248, 2014.
  • [7] Luo Z, Zhi T, Liu L, Mi J, Zhang M, Tian C, Si Z, Liu X, Mu Y. “Solidification/stabilization of chromium slag in red mudbased geopolymer”. Construction and Building Materials, 316, 125813, 2022.
  • [8] Meesala CR, Verma NK, Kumar S. “Critical review on flyash based geopolymer concrete”. Structural Concrete, 21(3), 1013–1028, 2020.
  • [9] Guo X, Xiong G. “Resistance of fiber-reinforced fly ash-steel slag based geopolymer mortar to sulfate attack and drying-wetting cycles”. Construction and Building Materials, 269, 121326, 2021.
  • [10] Guades, EJ. “Effect of coarse aggregate size on the compressive behaviour of geopolymer concrete”. European Journal of Environmental and Civil Engineering, 23(6), 693-709, 2019.
  • [11] Han Q, Zhang P, Wu J, Jing Y, Zhang D, Zhang, T. “Comprehensive review of the properties of fly ash-based geopolymer with additive of nano-SiO2”. In Nanotechnology Reviews De Gruyter Open Ltd., 11(1), 1478–1498, 2022.
  • [12] Han Y, Cui X, Lv X, Wang K. “Preparation and characterization of geopolymers based on a phosphoricacid-activated electrolytic manganese dioxide residue”. Journal of Cleaner Production, 205, 488–498, 2018.
  • [13] Rehman SK, Imtiaz L, Aslam F, Khan MK, Haseeb M, Javed FM, Alyousef R, Alabduljabbar H. “Experimental investigation of NaOH and KOH mixture in SCBA-Based geopolymer cement composite”. Experimental Investigation of NaOH and KOH Mixture in SCBA-Based”. Geopolymer Cement Composite, 13(15), 3437, 2020.
  • [14] Chithambaram SJ, Kumar S, Prasad MM. “Thermomechanical characteristics of geopolymer mortar“. Construction and Building Materials, 213, 100–108, 2019.
  • [15] Aprianti E, Shafigh P, Bahri S, Farahani JN. “Supplementary cementitious materials origin from agricultural wastes - A review”. Construction 74, 176-187, 2015. and Building Materials,
  • [16] Shahmansouri AA, Akbarzadeh Bengar H, Ghanbari S. “Compressive strength prediction of eco-efficient GGBSbased geopolymer concrete using GEP method”. Journal of Building Engineering, 31, 101326, 2020.
  • [17] Siad H, Lachemi M, Sahmaran M, Hossain KA. “Mechanical, physical, and self-healing behaviors of engineered cementitious composites with glass powder”. Journal of Materials in Civil Engineering, 29(6), 04017016, 2017.
  • [18] Das SK, Shrivastava S. “Siliceous fly ash and blast furnace slag based geopolymer concrete under ambient temperature curing condition”. Structural Concrete, 22(S1), 341–351, 2021.
  • [19] El-Naggar, MR, El-Dessouky MI. “Re-use of waste glass in improving properties of metakaolin-based geopolymers: Mechanical and microstructure examinations”. Construction and Building Materials, 132, 543–555, 2017.
  • [20] Wang J, Xie J, Wang C, Zhao J, Liu F, Fang C. “Study on the optimum initial curing condition for fly ash and GGBS based geopolymer recycled aggregate concrete”. Construction and Building Materials, 247, 118540, 2020.
  • [21] Xiao R, Zhang Y, Jiang X, Polaczyk P, Ma Y, Huang B. “Alkaliactivated slag supplemented with waste glass powder: Laboratory characterization, thermodynamic modelling and sustainability analysis”. Journal of Cleaner Production, 286, 125554, 2021.
  • [22] Zhang S, Keulen A, Arbi K, Ye G. “Waste glass as partial mineral precursor in alkali-activated slag/fly ash system”. Cement and Concrete Research, 102, 29–40, 2017.
  • [23] Pascual AB, Tognonvi TM, Tagnit-Hamou A. “Optimization study of waste glass powder-based alkali activated materials incorporating metakaolin: Activation and curing conditions”. Journal of Cleaner Production, 308, 127435, 2021.
  • [24] Awalludin MF, Sulaiman O, Hashim R, Nadhari, WNAW. “An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction”. Renewable and Sustainable Energy Reviews, 50, 1469–1484, 2015.
  • [25] Dindi A, Quang DV, Vega LF, Nashef, E, Abu-Zahra MRM. “Applications of fly ash for CO2 capture, utilization, and storage”. Journal of CO2 Utilization, 29, 82–102, 2019.
  • [26] Assi, LN, Eddie Deaver E, Ziehl P. “Effect of source and particle size distribution on the mechanical and microstructural properties of fly Ash-Based geopolymer concrete”. Construction and Building Materials, 167, 372–380, 2018.
  • [27] Hadi MNS, Al-Azzawi M, Yu T. “Effects of fly ash characteristics and alkaline activator components on compressive strength of fly ash-based geopolymer mortar”. Construction and Building Materials, 175, 41–54, 2018.
  • [28] Scrivener KL, John VM, Gartner EM. “Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry”. Cement and Concrete Research, 114, 2–26, 2018.
  • [29] Ercan T, Yegingil, Z, Bigazzi G. “Obsidian definition and characteristics, distribution and geochemical characteristics of those of the central Anatolian obsidian in Anatolia”. Journal Geomorphol, 17, 71-83, 1989.
  • [30] Kurt Z, Ustabaş İ, Cakmak T. “Novel binder material in geopolymer mortar production: Obsidian stone powder”. Structural Concrete, 24(4), 5600-5613, 2023.
  • [31] Ustabaş İ, Kaya A. “Comparing the pozzolanic activity properties of obsidian to those of fly ash and blast furnace slag”. Construction and Building Materials, 164, 297–307, 2018.
  • [32] Türk K, Karataş M, Turgut, P, Benli A. “Relationship between strength and elasticity modulus of selfconsolidating concrete containing different types and dosages of pozzuolana”. Pamukkale University Journal of Engineering Sciences, 16(3), 247-253, 2010.
  • [33] Birinci H, Kaplan H, Temiz H, Görür EB. “Some durability properties of ground blast furnace slag and ground basaltic pumice concretes”. Pamukkale University Journal of Engineering Sciences, 14(3), 309-317, 2008. 415 Pamukkale Univ Muh Bilim Derg, 31(3), 409-416, 2025 Y. Yılmaz, T. Çakmak, Z. Kurt, İ. Ustabaş
  • [34] Çakır Ö, Dilbas. “A comparative analysis of elasticity modulus of recycled aggregate concrete with silica fume”. Pamukkale University Journal of Engineering Sciences, 24(6), 1069–1078, 2018.
  • [35] American Society for Testing and Materials. “Standard Specification for Fly Ash and Raw Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete”. USA, ASTM C618, 1991.
  • [36] British Standart Institution. “Fly Ash for ConcreteDefinition, Specifications and Conformity Criteria”. UK, BS-EN 1-450, 2012.
  • [37] Zhou H, Deng Z, Xia Y, Fu M. “A new sampling method in particle filter based on Pearson correlation coefficient”. Neurocomputing, 216, 208-215, 2016.
  • [38] Hauke J, Tomasz, K. "Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data". Quaestiones geographicae, 30(2), 87-93, 2011.
  • [39] Sorić B. “Statistical “discoveries” and effect-size estimation”. Journal of the American Statistical Association, 84(406), 608-610, 1989.
  • [40] Benjamini Y, Hochberg Y. “Controlling the false discovery rate: a practical and powerful approach to multiple testing”. Journal of Royal Statistical Society B Series, 57(1), 289-300, 1995.
  • [41] Awoyera PO, Kirgiz MS, Viloria, A, Ovallos-Gazabon D. “Estimating strength properties of geopolymer selfcompacting concrete using machine learning techniques”. Journal of Materials Research and Technology, 9(4), 9016-9028, 2020.
  • [42] Zhiping L, Xiaojian G, Dagang L. “Correlation analysis and statistical assessment of early hydration characteristics and compressive strength for multi-composite cement paste”. Construction and Building Materials, 310, 125260, 2021.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Yıldıran Yılmaz

Talip Çakmak

Zafer Kurt

İlker Ustabaş

Yayımlanma Tarihi 30 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 3

Kaynak Göster

APA Yılmaz, Y., Çakmak, T., Kurt, Z., Ustabaş, İ. (2025). A novel correlation study using pearson and spearman algorithms for mineral component-driven strength analysis of geopolymer. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(3), 409-416.
AMA Yılmaz Y, Çakmak T, Kurt Z, Ustabaş İ. A novel correlation study using pearson and spearman algorithms for mineral component-driven strength analysis of geopolymer. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Haziran 2025;31(3):409-416.
Chicago Yılmaz, Yıldıran, Talip Çakmak, Zafer Kurt, ve İlker Ustabaş. “A Novel Correlation Study Using Pearson and Spearman Algorithms for Mineral Component-Driven Strength Analysis of Geopolymer”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 3 (Haziran 2025): 409-16.
EndNote Yılmaz Y, Çakmak T, Kurt Z, Ustabaş İ (01 Haziran 2025) A novel correlation study using pearson and spearman algorithms for mineral component-driven strength analysis of geopolymer. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 3 409–416.
IEEE Y. Yılmaz, T. Çakmak, Z. Kurt, ve İ. Ustabaş, “A novel correlation study using pearson and spearman algorithms for mineral component-driven strength analysis of geopolymer”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 3, ss. 409–416, 2025.
ISNAD Yılmaz, Yıldıran vd. “A Novel Correlation Study Using Pearson and Spearman Algorithms for Mineral Component-Driven Strength Analysis of Geopolymer”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/3 (Haziran 2025), 409-416.
JAMA Yılmaz Y, Çakmak T, Kurt Z, Ustabaş İ. A novel correlation study using pearson and spearman algorithms for mineral component-driven strength analysis of geopolymer. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:409–416.
MLA Yılmaz, Yıldıran vd. “A Novel Correlation Study Using Pearson and Spearman Algorithms for Mineral Component-Driven Strength Analysis of Geopolymer”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 3, 2025, ss. 409-16.
Vancouver Yılmaz Y, Çakmak T, Kurt Z, Ustabaş İ. A novel correlation study using pearson and spearman algorithms for mineral component-driven strength analysis of geopolymer. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(3):409-16.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.