Araştırma Makalesi
BibTex RIS Kaynak Göster

Şeftali posası atıklarının asit destekli mikrodalga prosesi ile hidroliz şartlarının optimizasyonu

Yıl 2025, Cilt: 31 Sayı: 3, 428 - 434, 30.06.2025

Öz

Çalışmanın amacı, fermentasyon yoluyla biyohidrojen, aseton, etanol, butanol ve organik asitler gibi değerli ürünlerin eldesinde substrat olarak kullanılmak üzere şeftali posası atıklarından toplam şeker elde etmek için mikrodalga (MW) hidroliz şartlarının optimizasyonunudur. MW hidroliz proses parametrelerinin optimizasyonu için Box-Behnken yanıt yüzeyi istatistiksel deneysel tasarım yöntemi kullanılmıştır. Toplam şeker derişimi (TŞD) bağımlı değişkeni için pH (2.0-5.5), partikül çapı (180-250 µm) ve şeftali posası derişimi (20-40 g/L) bağımsız değişkenlerdir. ANOVA istatistiksel analizine göre partikül çapı ve şeftali posası derişimi, TŞD oluşumunu etkileyen anlamlı değişkenlerdir. Optimizasyon sonucunda %61 (w/w) hidroliz verimiyle maksimum toplam şeker derişiminin TŞD= 24.3 g/L elde edildiği şartlar pH= 5.50, partikül derişimi=39.5 g/L'dır.

Kaynakça

  • [1] Gottumukkala LD, Haigh K, Görgens J. “Trends and advances in conversion of lignocellulosic biomass to biobutanol: Microbes, bioprocesses and industrial viability”. Renewable and Sustainable Energy Reviews, 76, 963-973, 2017.
  • [2] Vivek N, Nair LM, Mohan B, Nair SC, Sindhu R, Pandey A, Shurpali N, Binod, P. “Bio-butanol production from rice straw – Recent trends, possibilities, and challenges”. Bioresource Technology Reports, 7, 1-14, 2019.
  • [3] Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY. “Coordinated development of leading biomass pretreatment technologies”. Bioresource Technology, 96(18), 1959-66, 2005.
  • [4] Colak N. “Valorization of peach and nectarine process wastes an assessment with sustainable production perspective”. 9th International Conference on Sustainable Energy and Enironmental Protection, Kayseri, Türkiye, 22-25 September 2016.
  • [5] López-Linares JC, García-Cubero. MT, Coca M, Lucas S. “Efficient biobutanol production by acetone-butanolethanol fermentation from spent coffee grounds with microwave-assisted dilute sulfuric acid pretreatment". Bioresource Technology, 320,124348, 2021.
  • [6] Kumari D, Jain Y, Singh R. “A study on green pretreatment of rice straw using Petha wastewater and Mausami waste assisted with microwave for production of ethanol and methane”. Energy Conversion Managment, 10, 100067, 2021.
  • [7] Xu J, Chen H, Kádár Z, Bjerre A, Schmidt J, Peng H. “Optimization of microwave pretreatment on wheat straw for ethanol production”. Biomass and Bioenergy, 35, 3859-3864, 2011.
  • [8] Kumar B, Bhardwaj N, Verma P. "Pretreatment of rice straw using microwave-assisted FeCl3-H3PO4 system for ethanol and oligosaccharides generation". Bioresource Technology Reports, 7, 100295, 2019.
  • [9] Mikulski D, Kłosowski G. “Cellulose hydrolysis and bioethanol production from various types of lignocellulosic biomass after microwave-assisted hydrotropic pretreatment”. Renewable Energy, 206, 168-179. 2023.
  • [10] Pugazhendi, A, Jamal, MT, Jeyakumar, RB. “Biohydrogen production through energy efficient surfactant induced microwave pretreatment of macroalgae Ulva reticulate”. Environmental Research, 236(1), 116709, 2023.
  • [11] Hermiati E, Pramasari DA, Ermawar RA. “Microwave Pretreatment of Sugarcane Trash and Oil Palm Empty Fruit Bunch with an Aluminum Sulfate Catalyst for Improvement of Sugar Recovery”. Waste and Biomass Valorization, 15, 437–453, 2023.
  • [12] Shangdiar S, Cheng PC, Chen SC, Amesho KTT, Ponnusamy VK, Lin YC. “Enhancing sugar yield for bioconversion of rice straw: Optimization of Microwave-assisted pretreatment using dilute acid hydrolysis”. Environmental Technology and Innovations, 32, 103313, 2023 .
  • [13] Fia AZ, Amorim J. “Microwave pretreatment of biomass for conversion of lignocellulosic materials into renewable biofuels”. Journal of the Energy Institute, 106, 101146, 2023.
  • [14] Brasoveanu M, Nemtanu MR. “The behaviour of starch exposed to microwave radiation treatment”. Starch Staerke, 66, 3-14, 2014.
  • [15] U.S. Department of Agriculture, Foreign Agricultural Service. “Turkey: Stone Fruit Annual”. Agust. https://apps.fas.usda.gov (09.08.2022).
  • [16] Nawirska, A, Kwaśniewska, M. “Dietary fibre fractions from fruit and vegetable processing waste”. Food Chemistry, 91, 221–225, 2005.
  • [17] Yurdugul, S, Najmalddin HO. “Vegetable and fruit waste production related to consumption in turkey and certain middle east countries”. International Journal of Innovative Approaches in Science Research, 5(1), 14-28, 2021.
  • [18] Solomakou, N, Aikaterini, M D, Kaderides, K, Mourtzinos, I, Goula, AM. "Valorization of peach by-products: utilizing them as valuable resources in a circular economy model". Sustainability, 16, 2892024, 2024.
  • [19] Santos AS, Farina MZ, Pezzin PT, Silva DAK. The application of peach palm fibres as an alternative to fibrereinforced polyester composites. Journal of Reinforced Plastics and Composites, 27(16-17), 1805-1816, 2008.
  • [20] Argun, H, Dao, S. “Bio-hydrogen production from waste peach pulp by dark fermentation: Effect of inoculum addition”. International Journal of Hydrogen Energy, 42, 2569-2574, 2017.
  • [21] Abibu WA, Karapinar I. “Optimization of pretreatment conditions of fig (Ficus carica) using autoclave and microwave treatments”. Biomass Conversion and Biorefinary, 13, 11229-11243, 2023.
  • [22] Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F. “Colorimetric method for determination of sugars and related substances colorimetric method determination of sugars and substances”. Analytical Chemistry, 23, 350–356, 1956.
  • [23] Lipps WC, Braun-Howland EB, Baxter TE. “Standard Methods for the Examination of Water and Wastewater”. American Public Health Association, American Water Works Association, Water Environment Federation, Denver, USA, 2022.
  • [24] Heberger K, Kollar-Hunek K. “Sum of ranking differences for method discrimination and its validation: comparison of ranks with random numbers”. Journal of Chemometrics, 25,151–158, 2011.
  • [25] Xu J. Microwave Pretreatment. Editors: Pandey A, Negi S, Binod P, Larroche C. Pretreatment of Biomass: Processes and Technologies, 157-172, Elsevier, 2015.
  • [26] Conesa C, Seguí L, Laguarda-Miró N, Fito P. “Microwaveassisted alkali pretreatment for enhancing pineapple waste saccharification”. BioResources, 11(3), 6518-6531, 2016,
  • [27] Tiwari G, Sharma A, Dalela M, Gupta R, Sharma S, Kuhad RC. “Microwave-assisted alkali pretreatment of fruit peel wastes for enzymatic hydrolysis”. Indian Journal of Agricultural Sciences, 87(4), 77-80, 2017.
  • [28] Hermiati E, Tsubaki S, Azuma JI. “Cassava pulp hydrolysis under microwave irradiation with oxalic acid catalyst for ethanol production”. Journal of Mathematical and Fundamental Sciences, 46(2), 125-139, 2014.

Optimization of peach pulp residue hydrolysis by acid-assisted microwave

Yıl 2025, Cilt: 31 Sayı: 3, 428 - 434, 30.06.2025

Öz

The study aims to optimise microwave (MW) pretreatment of peach pulp wastes to obtain fermentable sugar for producing valuable products like acetone, ethanol and organic acids by fermentation. The Box-Behnken response surface experimental design method was employed for the optimization of MW hydrolysis process parameters. pH (2.0-5.5), particle diameter (180-250 µm) and peach pulp concentration (20-40 g/L) were the independent variables for total sugar concentration (TSC) considered in the study. Statistical analysis of variance (ANOVA) resulted in particle diameter and peach pulp concentration as the only significant variable among the studied independent variables. Product maximization (TSC) was achieved at pH= 5.50, particle diameter= 246.9 µm and peach pulp concentration= 39.5 g/L resulting in TS= 24.3 g/L with a hydrolysis yield of 61% (w/w).

Kaynakça

  • [1] Gottumukkala LD, Haigh K, Görgens J. “Trends and advances in conversion of lignocellulosic biomass to biobutanol: Microbes, bioprocesses and industrial viability”. Renewable and Sustainable Energy Reviews, 76, 963-973, 2017.
  • [2] Vivek N, Nair LM, Mohan B, Nair SC, Sindhu R, Pandey A, Shurpali N, Binod, P. “Bio-butanol production from rice straw – Recent trends, possibilities, and challenges”. Bioresource Technology Reports, 7, 1-14, 2019.
  • [3] Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY. “Coordinated development of leading biomass pretreatment technologies”. Bioresource Technology, 96(18), 1959-66, 2005.
  • [4] Colak N. “Valorization of peach and nectarine process wastes an assessment with sustainable production perspective”. 9th International Conference on Sustainable Energy and Enironmental Protection, Kayseri, Türkiye, 22-25 September 2016.
  • [5] López-Linares JC, García-Cubero. MT, Coca M, Lucas S. “Efficient biobutanol production by acetone-butanolethanol fermentation from spent coffee grounds with microwave-assisted dilute sulfuric acid pretreatment". Bioresource Technology, 320,124348, 2021.
  • [6] Kumari D, Jain Y, Singh R. “A study on green pretreatment of rice straw using Petha wastewater and Mausami waste assisted with microwave for production of ethanol and methane”. Energy Conversion Managment, 10, 100067, 2021.
  • [7] Xu J, Chen H, Kádár Z, Bjerre A, Schmidt J, Peng H. “Optimization of microwave pretreatment on wheat straw for ethanol production”. Biomass and Bioenergy, 35, 3859-3864, 2011.
  • [8] Kumar B, Bhardwaj N, Verma P. "Pretreatment of rice straw using microwave-assisted FeCl3-H3PO4 system for ethanol and oligosaccharides generation". Bioresource Technology Reports, 7, 100295, 2019.
  • [9] Mikulski D, Kłosowski G. “Cellulose hydrolysis and bioethanol production from various types of lignocellulosic biomass after microwave-assisted hydrotropic pretreatment”. Renewable Energy, 206, 168-179. 2023.
  • [10] Pugazhendi, A, Jamal, MT, Jeyakumar, RB. “Biohydrogen production through energy efficient surfactant induced microwave pretreatment of macroalgae Ulva reticulate”. Environmental Research, 236(1), 116709, 2023.
  • [11] Hermiati E, Pramasari DA, Ermawar RA. “Microwave Pretreatment of Sugarcane Trash and Oil Palm Empty Fruit Bunch with an Aluminum Sulfate Catalyst for Improvement of Sugar Recovery”. Waste and Biomass Valorization, 15, 437–453, 2023.
  • [12] Shangdiar S, Cheng PC, Chen SC, Amesho KTT, Ponnusamy VK, Lin YC. “Enhancing sugar yield for bioconversion of rice straw: Optimization of Microwave-assisted pretreatment using dilute acid hydrolysis”. Environmental Technology and Innovations, 32, 103313, 2023 .
  • [13] Fia AZ, Amorim J. “Microwave pretreatment of biomass for conversion of lignocellulosic materials into renewable biofuels”. Journal of the Energy Institute, 106, 101146, 2023.
  • [14] Brasoveanu M, Nemtanu MR. “The behaviour of starch exposed to microwave radiation treatment”. Starch Staerke, 66, 3-14, 2014.
  • [15] U.S. Department of Agriculture, Foreign Agricultural Service. “Turkey: Stone Fruit Annual”. Agust. https://apps.fas.usda.gov (09.08.2022).
  • [16] Nawirska, A, Kwaśniewska, M. “Dietary fibre fractions from fruit and vegetable processing waste”. Food Chemistry, 91, 221–225, 2005.
  • [17] Yurdugul, S, Najmalddin HO. “Vegetable and fruit waste production related to consumption in turkey and certain middle east countries”. International Journal of Innovative Approaches in Science Research, 5(1), 14-28, 2021.
  • [18] Solomakou, N, Aikaterini, M D, Kaderides, K, Mourtzinos, I, Goula, AM. "Valorization of peach by-products: utilizing them as valuable resources in a circular economy model". Sustainability, 16, 2892024, 2024.
  • [19] Santos AS, Farina MZ, Pezzin PT, Silva DAK. The application of peach palm fibres as an alternative to fibrereinforced polyester composites. Journal of Reinforced Plastics and Composites, 27(16-17), 1805-1816, 2008.
  • [20] Argun, H, Dao, S. “Bio-hydrogen production from waste peach pulp by dark fermentation: Effect of inoculum addition”. International Journal of Hydrogen Energy, 42, 2569-2574, 2017.
  • [21] Abibu WA, Karapinar I. “Optimization of pretreatment conditions of fig (Ficus carica) using autoclave and microwave treatments”. Biomass Conversion and Biorefinary, 13, 11229-11243, 2023.
  • [22] Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F. “Colorimetric method for determination of sugars and related substances colorimetric method determination of sugars and substances”. Analytical Chemistry, 23, 350–356, 1956.
  • [23] Lipps WC, Braun-Howland EB, Baxter TE. “Standard Methods for the Examination of Water and Wastewater”. American Public Health Association, American Water Works Association, Water Environment Federation, Denver, USA, 2022.
  • [24] Heberger K, Kollar-Hunek K. “Sum of ranking differences for method discrimination and its validation: comparison of ranks with random numbers”. Journal of Chemometrics, 25,151–158, 2011.
  • [25] Xu J. Microwave Pretreatment. Editors: Pandey A, Negi S, Binod P, Larroche C. Pretreatment of Biomass: Processes and Technologies, 157-172, Elsevier, 2015.
  • [26] Conesa C, Seguí L, Laguarda-Miró N, Fito P. “Microwaveassisted alkali pretreatment for enhancing pineapple waste saccharification”. BioResources, 11(3), 6518-6531, 2016,
  • [27] Tiwari G, Sharma A, Dalela M, Gupta R, Sharma S, Kuhad RC. “Microwave-assisted alkali pretreatment of fruit peel wastes for enzymatic hydrolysis”. Indian Journal of Agricultural Sciences, 87(4), 77-80, 2017.
  • [28] Hermiati E, Tsubaki S, Azuma JI. “Cassava pulp hydrolysis under microwave irradiation with oxalic acid catalyst for ethanol production”. Journal of Mathematical and Fundamental Sciences, 46(2), 125-139, 2014.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

İlgi Karapınar

Müge Dalak

Wasiu Ayodele Abibu

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 5 Ağustos 2024
Kabul Tarihi 30 Eylül 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 3

Kaynak Göster

APA Karapınar, İ., Dalak, M., & Abibu, W. A. (2025). Optimization of peach pulp residue hydrolysis by acid-assisted microwave. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(3), 428-434.
AMA Karapınar İ, Dalak M, Abibu WA. Optimization of peach pulp residue hydrolysis by acid-assisted microwave. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Haziran 2025;31(3):428-434.
Chicago Karapınar, İlgi, Müge Dalak, ve Wasiu Ayodele Abibu. “Optimization of Peach Pulp Residue Hydrolysis by Acid-Assisted Microwave”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 3 (Haziran 2025): 428-34.
EndNote Karapınar İ, Dalak M, Abibu WA (01 Haziran 2025) Optimization of peach pulp residue hydrolysis by acid-assisted microwave. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 3 428–434.
IEEE İ. Karapınar, M. Dalak, ve W. A. Abibu, “Optimization of peach pulp residue hydrolysis by acid-assisted microwave”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 3, ss. 428–434, 2025.
ISNAD Karapınar, İlgi vd. “Optimization of Peach Pulp Residue Hydrolysis by Acid-Assisted Microwave”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/3 (Haziran 2025), 428-434.
JAMA Karapınar İ, Dalak M, Abibu WA. Optimization of peach pulp residue hydrolysis by acid-assisted microwave. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:428–434.
MLA Karapınar, İlgi vd. “Optimization of Peach Pulp Residue Hydrolysis by Acid-Assisted Microwave”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 3, 2025, ss. 428-34.
Vancouver Karapınar İ, Dalak M, Abibu WA. Optimization of peach pulp residue hydrolysis by acid-assisted microwave. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(3):428-34.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.