Araştırma Makalesi
BibTex RIS Kaynak Göster

Ilgın (Konya KB’sı) sahası Miyosen yaşlı bitümlü kiltaşlarında silisyumun kaynak incelemesi

Yıl 2025, Cilt: 31 Sayı: 3, 452 - 461, 30.06.2025

Öz

Ilgın sahasındaki organik maddece zengin (%TOC, ortalama 31.24) olan bitümlü kiltaşları üst kömür tabakasının üzerinde yer alır. Bitümlü kayaçlardaki organik madde zenginliği üst su kolonundaki biyolojik üretkenliğin bir göstergesidir. Sedimanter kayaçlardaki kuvars (SiO2) hem detritik, hem de biyolojik kaynaklı olabilir. Detritik kuvars (SiO2) silttaşları ve kumtaşlarındaki kuvars minerali ile ilişkili olup, organik madde korunumu ve zenginleşmesi için olumsuzluk teşkil eder. Biyolojik silisyum (SiO2) ise üst su kolonundaki planktonik canlılar için bir besin maddesi olan P ile birlikte biyolojik üretkenliğin bir göstergesidir. Ilgın sahası bitümlü kiltaşı örneklerinde Si/Al; Zr/Nb ve Ti/Al’dan farklı bir trend izlemektedir. İncelenen örneklerde, SiO2’in Zr ile çok zayıf (r= 0.1148) ve Al ile de zayıf korelasyon (r=0.290117) ilişkisi vardır. Bitümlü kiltaşı örneklerinde Si/Zr oranı (1.49-12.32) ortalaması: 5.71'dir; bu oran PAAS standardına göre (Si/Zr oranı 0.31) oldukça yüksektir. Ayrıca, örneklerdeki P/Al ile Si/Zr oranının yakın ilişkisi ve benzer artış eğilimleri, kayaçlardaki Silis’in kaynağının biyolojik olduğunu ve gölün üst su sütununda biyolojik verimliliğin de oldukça yüksek olduğunu göstermektedir.

Kaynakça

  • [1] Karayiğit AI, Akgün F, Gayer RA, Temel A. “Quality, palynology, and paleoenvironmental interpretion of the Ilgın Lignite, Turkey”. International Journal of Coal Geology, 38, 219‐236, 1999.
  • [2] Çelik M, Temel A. “Ilgın (Konya) kömürlerinin tabanında bulunan killerin kökeni”. A. Suat Erk Jeoloji Sempozyumu Bildirileri, Ankara, Türkiye, 2-5 Eylül 1991.
  • [3] Sarı A, Ismayılzada K, Akıska E, Erol, F. “Ilgın (Konya) bitumlu kiltaşı çökelimi havzasında paleo-tuzluluk incelemeleri: Diyatome türü alglerle tuzluluk arasındaki ilişki”. KSÜ Mühendislik Bilimleri Dergisi, 27(3), 838-853, 2024.
  • [4] Sarı A, Ismayılzada K, Pehlivanlı BY, Erol F. The Relationship Between Depositional Processes and Biological Productivity of Bituminous Claystones: Ilgın (Konya) Field. Editor: Pehlivalı BY. General Topics in Geology and Earth Sciences 1, 23-40, Ankara, Türkiye, BIDGE Publications, 2023.
  • [5] Hüseyinca MY, Eren Y. “Ilgın (Konya) kuzeyinin stratigrafisi ve tektonik evrimi”. Selçuk Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 23, 1-2, 2007.
  • [6] Cutter EG. Plant Anatomy. Part 1 Cells and Tissues. 2nd ed. London, Edward Arnold, 1978.
  • [7] Schieber J, Krinsley D, Riciputi L. “Diagenetic origin of quartz silt in mudstones and implications for silica cycling”. Nature, 406, 981-985, 2000.
  • [8] Schieber J, Zimmerle W, Sethi P. Shales and Mudstones. 1st ed. Stuttgart, Schweizerbart'sche Verlagsbuchhandlung, 1998.
  • [9] Bohacs KM. Contrasting Expressions of Depositional Sequences İn Mudrocks From Marine to Non-Marine Environs. Editors: Schieber, J, Zimmerle, W, Sethi, PS. Basin studies, sedimentology, and paleontology. Volume 1, 33–78, Stuttgart, E. Schweizerbart’sche Verlagsbuchhandlung, 1998.
  • [10] Ratcliffe KT, Wright AM, Spain DR. “Unconventional methods for unconventional plays: Using elemental data to understand shale resource plays”. Petroleum Exploration Society of Australia News Resorces. 117, 50-54. 2012.
  • [11] Pearce TJ, Jarvis I. “Applications of geochemical data to modelling sediment dispersal patterns in distal turbidites: late quaternary of the madeira abyssal plain”. Journal of Sedimentary Petrology, 62, 1112-1129, 1992.
  • [12] Pearce TJ, Besly BM, Wray DS, Wright DK. “Chemostratigraphy: A Method to Improve Interwell Correlation in Barren Sequences-a Case Study Using Onshore Duckmantian/Stephaniansequences (West Midlands, U.K.)”. Sedimentary Geology, 124, 197-220, 1999.
  • [13] Tribovellard, N, Algeo, T, Lyons, T, Riboulleau, A. “Trace metals as paleoredox and paleoproductivity: An update”. Chemical Geology, 232, 1232, 2006.
  • [14] Sageman BB, Murphy AE, Werne JP, Ver Straeten CA, Hollander DJ, Lyons TW. “A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian basin”. Chemical Geology, 195, 229-273, 2003.
  • [15] Slomp CP, Epping EHG, Helder W, Van Raaphorst W. “Kuzey Atlantik kıtasal platform çökeltilerinde otijenik apatit oluşumunda demire bağlı fosforun anahtar rolü”. Journal of Marine Research, 54, 1179-1205, 1996.
  • [16] Slomp CP, Van der Gaast SJ, Van Raaphorst W. “Kuzey Denizi çökeltilerindeki zayıf kristalli demir oksitler tarafından fosfor bağlanması”. Marine Chemistry, 52, 55–73, 1996.
  • [17] Anschutz P, Turner JS, Blanc G. “The development of layering, fluxes through double-diffusive interfaces, and location of hydrothermal sources of brines in the Atlantis II Deep: Red Sea”. Journal of Geophysical Research, 103, 27809-27819, 1998.
  • [18] Xiong X, Wang Q, Wang S, Zhang J, Liu T, Guo L, Yu Y, Lin JD. “Mapping the molecular signatures of diet-induced NASH and its regulation by the hepatokine Tsukushi” Molecular Metabolism, 20, 128-137, 2019.
  • [19] Anadon P, Cabrera LL, Kelts K. Lacustrine Facies Analysis. 1st ed. Oxford, UK, Wiley-Blackwell, Special Publication 13 of the IAS, 1991.
  • [20] Wang GM, Zhong JH. “Review and prospect of the research on sedimentary mechanism of lacustrine laminae”. Acta Petrologica et Mineralogica, 23(1), 43-48, 2004.
  • [21] Zhu G, Jin Q, Zhang S, Dai J, Zhang L, Li J. “Combination characteristics of lake facies source rock in the Shahejie Formation, Dongying Depression”. Acta Geologica Sinica, 78(3), 416-427, 2004.
  • [22] Vishnevskaya NT, Gimpelson VE, Zaharov SV, Kapeliushnikov RI, Korshunova TI, Kudiukin PM, Maleva TM, Poletayev AV. “Obzor Zaniatosti v Rossii. Vyp. 1”. Employment Survey in Russia, Moscow, TEIS, Scientific Report, 1, 2000.
  • [23] Comer JB. “Facies distribution and hydrocarbon production potential of Woodford Shale in the Southern Midcontinent”. Unconventional Energy Resources in the Southern Midcontinent Symposium, Oklahoma, USA, 9-10 March 2004.
  • [24] Kirkland D, Denison R, Summers D, and Gormly J. “Geology and organic geochemistry of the woodford shale in the criner hills and western arbuckle mountains, Oklahoma”. Oklahoma Geological Survey, Circular 93, 38-69, 1992.
  • [25] Over J. “Conodonts and the devonian-carboniferous boundary in the upper woodford shale, arbuckle mountains, South-Central Oklahoma”. Journal of Paleontology, 66, 293-311, 1992.
  • [26] Snow JL, Duncan RA, Bralower TJ. “Trace element abundances in the Rock Canyon Anticline, Pueblo, Colorado, marine sedimentary section and their releationship to Caribbean Plateau construction an ocean anoxic event 2”. Paleoceanography, 20, 1-14, 2005.
  • [27] Davies SJ, Leng MJ, Macquaker JHS, Hawkins K. “Sedimentary process control on carbon isotope composition of sedimentary organic matter in an ancient shallow-water shelf succession”. Geophysics, Geosystems, Geochemistry, 13(1), 1-15, 2012.
  • 28] Ratcliffe KT, Wright AM, Schmidt K. “Application of inorganic whole-rock geochemistry to shale resource plays: an example from the Eagle Ford Shale Formation, Texas”. The Sedimentary Record, 10, 4-9, 2012.
  • [29] Sageman BB, Lyons TW. Geochemistry of Fine-grained Sediments and Sedimentary Rocks. Editors: Holland HD, Turekian KK. Readings from the Treatise on Geochemistry, 424-456, USA, Academic Press, 2009.
  • [30] Dymond J, Suess E, Lyle M. “Barium in deep-sea sediment: A geochemical proxy for paleoproductivity”. Paleoceanography, 7, 163-181,1992.
  • [31] Dymond J, Collier R “Particulate barium fluxes and their relationships to biological productivity”. Deep Sea Research Part II: Topical Studies in Oceanography, 43, 1283-1308, 1996.
  • [32] Schmitz B, Charisi SD, Thompson E, Speijer RP. “Barium, SiO2 (excess), and P2O5 as proxies of biological productivity in the Middle East during the Paleocene and the latest Paleocene benthic extinction event”. Terra Nova, 9, 95-99, 1997.
  • [33] Tyrrell T. “The relative influences of nitrogen and phosphorus on oceanic primary production”. Nature, 400, 525-531, 1999.
  • [34] Algeo TJ, Kuwahara K, Sano H, Bates S, Lyons T, Elswick E, Hinnov L, Ellwood B, Moser J, Maynard JB. “Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian–Triassic Panthalassic Ocean”. Palaeogeography, Palaeoclimatology, Palaeoecology, 308, 65-83, 2011.
  • [35] Ingall ED, Bustin RM, Cappellen P. “Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales”. Geochimica et Cosmochimica Acta, 57, 303-316, 1993.
  • [36] Berryman RR. Constraints on Development of Anoxia Through Geochemical Facies Mapping of Devonian Black Shales in the Midcontinent. MSc Thesis, Faculty of the Graduate College of the Oklahoma State University, Oklahoma, USA, 2012.
  • [37] Sarı A. Ismayılzada K. Akıska E. Erol F. “Ilgın sahası (Konya) bitümlü kiltaşı çökelimi havzasında paleohidrotermal çökelme koşulları, paleo-hidrodinamik olaylar ve paleo-iklim incelemeleri”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 32(3), 1432-1447, 2024.
  • [38] Fritz SC, Juggins S, Battarbee RW. “Diatom assemblages and ionic characterization of lakes of the Northern Great Plains, North America: A tool for reconstructing past salinity and climate fluctuations”. Canadian Journal of Fisheries and Aquatic Sciences, 50(9), 1844-1856, 1993.
  • [39] Gasse F, Juggins S, Khelifa LB. “Diatom-Based transferfunctions for inferring past hydrochemica characteristics of African lakes”. Palaeogeography, Palaeoclimatology, Palaeoecology, 117, 31-54, 1995.
  • [40] Gasse F. “Diatoms for reconstructing palaeoenvironments and palaeohydrology in tropical semi-arid zones. Examples of some lakes from Niger since 12,000 B.P.”. Hydrobiologia, 154, 127-163, 1987.
  • [41] Afonina EY, Tashlykova NA. “Plankton community and the relationship with the environment in saline lakes of OnonTorey Plain, Northeastern Mongolia”. Saudi Journal of Biological Sciences, 25(2), 399–408, 2018.
  • [42] Afonina EY, Tashlykova NA. “Fluctuations in plankton community structure of endorheic soda lakes of southeastern Transbaikalia (Russia)”. Hydrobiologia, 847, 1383–1398, 2020.
  • [43] Gasse F, Fontes JC, Plaziat P, Darbonel P, Kaczmarska I, De Dekker P, Soulie-Märsche I, Callot Y, Dupeuple DA. “Biological remains, geochemistry and stable isotopes for the reconstruction of environmental and hydrological changes in the Holocene lakes from North Sahara”. Palaeogeography, Palaeoclimatology, Palaeoecology, 60(1-2), 1-46, 1987.
  • [44] Gasse F, Barker P, Gell PA, Fritz SC, Chalie F. “Diatominferred salinity in palaeolakes: An indirect tracer of climate change”. Quaternary Science Reviews, 16, 547-563, 1997.
  • [45] Reed, JM. “Diatom preservation in the recent sediment record of Spanish saline lakes: implications for palaeoclimate study”. Journal of Paleolimnology, 19, 129-137, 1998.
  • [46] Reed, JM. “A diatom-conductivity transfer function for Spanish salt lakes”. Journal of Paleolimnology, 19, 399-416, 1998.
  • [47] Żelazna–Wieczorek J. Olszyński RM. Nowicka–Krawczyk P. “Half a century of research on diatoms in athalassic habitats in central Poland”. Oceanological and Hydrobiological Studies, 441, 51-67, 2015.
  • [48] Edlund MB, Taylor CM, Schelske CL, Stoermer EF. “Thalassiosira baltica (Grunow) Ostenfeld (Bacillariophyta), a new exotic species in the Great Lakes”. Canadian Journal of Fisheries and Aquatic Sciences, 57, 610-615, 2000.

Source investigation of silicon in Miocene aged bituminous claystones of Ilgın (NW of Konya) area

Yıl 2025, Cilt: 31 Sayı: 3, 452 - 461, 30.06.2025

Öz

Bituminous claystones in the Ilgın area, which are rich in organic matter (%TOC, average 31.24), are located above the upper coal layer. The abundance of organic matter in bituminous rocks serves as an indicator of biological productivity within the upper water column. Quartz (SiO2) in sedimentary rocks can be originated from both detrital and biological origin. Detrital quartz (SiO2) is associated with the quartz mineral found in siltstones and sandstones, posing a detrimental impact on the preservation and enrichment of organic matter. Biological silica (SiO2) serves an indicator of biological productivity, along with a presence of phosphorus (P), which acts a nutrient for planktonic organisms inhabiting the upper water column. In bituminous claystone samples from the Ilgın area, the Si/Al demonstrates a different trend compared to Zr/Nb and Ti/Al. In the examined samples, SiO2 exhibits a very weak correlation with Zr(r=0.1148) and a weak correlation with Al (r=0.290117). The average Si/Zr ratio (1.49-12.32) in bituminous claystone samples is 5.71; This ratio is significantly exceeds the PAAS standard (Si/Zr ratio 0.31). In addition, the close relationship between P/Al and Si/Zr ratios in the samples, as well as similar increasing trends suggest that the source of Silica in the rocks is biological, indicating notably high biological productivity within the upper water column of the lake.

Kaynakça

  • [1] Karayiğit AI, Akgün F, Gayer RA, Temel A. “Quality, palynology, and paleoenvironmental interpretion of the Ilgın Lignite, Turkey”. International Journal of Coal Geology, 38, 219‐236, 1999.
  • [2] Çelik M, Temel A. “Ilgın (Konya) kömürlerinin tabanında bulunan killerin kökeni”. A. Suat Erk Jeoloji Sempozyumu Bildirileri, Ankara, Türkiye, 2-5 Eylül 1991.
  • [3] Sarı A, Ismayılzada K, Akıska E, Erol, F. “Ilgın (Konya) bitumlu kiltaşı çökelimi havzasında paleo-tuzluluk incelemeleri: Diyatome türü alglerle tuzluluk arasındaki ilişki”. KSÜ Mühendislik Bilimleri Dergisi, 27(3), 838-853, 2024.
  • [4] Sarı A, Ismayılzada K, Pehlivanlı BY, Erol F. The Relationship Between Depositional Processes and Biological Productivity of Bituminous Claystones: Ilgın (Konya) Field. Editor: Pehlivalı BY. General Topics in Geology and Earth Sciences 1, 23-40, Ankara, Türkiye, BIDGE Publications, 2023.
  • [5] Hüseyinca MY, Eren Y. “Ilgın (Konya) kuzeyinin stratigrafisi ve tektonik evrimi”. Selçuk Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 23, 1-2, 2007.
  • [6] Cutter EG. Plant Anatomy. Part 1 Cells and Tissues. 2nd ed. London, Edward Arnold, 1978.
  • [7] Schieber J, Krinsley D, Riciputi L. “Diagenetic origin of quartz silt in mudstones and implications for silica cycling”. Nature, 406, 981-985, 2000.
  • [8] Schieber J, Zimmerle W, Sethi P. Shales and Mudstones. 1st ed. Stuttgart, Schweizerbart'sche Verlagsbuchhandlung, 1998.
  • [9] Bohacs KM. Contrasting Expressions of Depositional Sequences İn Mudrocks From Marine to Non-Marine Environs. Editors: Schieber, J, Zimmerle, W, Sethi, PS. Basin studies, sedimentology, and paleontology. Volume 1, 33–78, Stuttgart, E. Schweizerbart’sche Verlagsbuchhandlung, 1998.
  • [10] Ratcliffe KT, Wright AM, Spain DR. “Unconventional methods for unconventional plays: Using elemental data to understand shale resource plays”. Petroleum Exploration Society of Australia News Resorces. 117, 50-54. 2012.
  • [11] Pearce TJ, Jarvis I. “Applications of geochemical data to modelling sediment dispersal patterns in distal turbidites: late quaternary of the madeira abyssal plain”. Journal of Sedimentary Petrology, 62, 1112-1129, 1992.
  • [12] Pearce TJ, Besly BM, Wray DS, Wright DK. “Chemostratigraphy: A Method to Improve Interwell Correlation in Barren Sequences-a Case Study Using Onshore Duckmantian/Stephaniansequences (West Midlands, U.K.)”. Sedimentary Geology, 124, 197-220, 1999.
  • [13] Tribovellard, N, Algeo, T, Lyons, T, Riboulleau, A. “Trace metals as paleoredox and paleoproductivity: An update”. Chemical Geology, 232, 1232, 2006.
  • [14] Sageman BB, Murphy AE, Werne JP, Ver Straeten CA, Hollander DJ, Lyons TW. “A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian basin”. Chemical Geology, 195, 229-273, 2003.
  • [15] Slomp CP, Epping EHG, Helder W, Van Raaphorst W. “Kuzey Atlantik kıtasal platform çökeltilerinde otijenik apatit oluşumunda demire bağlı fosforun anahtar rolü”. Journal of Marine Research, 54, 1179-1205, 1996.
  • [16] Slomp CP, Van der Gaast SJ, Van Raaphorst W. “Kuzey Denizi çökeltilerindeki zayıf kristalli demir oksitler tarafından fosfor bağlanması”. Marine Chemistry, 52, 55–73, 1996.
  • [17] Anschutz P, Turner JS, Blanc G. “The development of layering, fluxes through double-diffusive interfaces, and location of hydrothermal sources of brines in the Atlantis II Deep: Red Sea”. Journal of Geophysical Research, 103, 27809-27819, 1998.
  • [18] Xiong X, Wang Q, Wang S, Zhang J, Liu T, Guo L, Yu Y, Lin JD. “Mapping the molecular signatures of diet-induced NASH and its regulation by the hepatokine Tsukushi” Molecular Metabolism, 20, 128-137, 2019.
  • [19] Anadon P, Cabrera LL, Kelts K. Lacustrine Facies Analysis. 1st ed. Oxford, UK, Wiley-Blackwell, Special Publication 13 of the IAS, 1991.
  • [20] Wang GM, Zhong JH. “Review and prospect of the research on sedimentary mechanism of lacustrine laminae”. Acta Petrologica et Mineralogica, 23(1), 43-48, 2004.
  • [21] Zhu G, Jin Q, Zhang S, Dai J, Zhang L, Li J. “Combination characteristics of lake facies source rock in the Shahejie Formation, Dongying Depression”. Acta Geologica Sinica, 78(3), 416-427, 2004.
  • [22] Vishnevskaya NT, Gimpelson VE, Zaharov SV, Kapeliushnikov RI, Korshunova TI, Kudiukin PM, Maleva TM, Poletayev AV. “Obzor Zaniatosti v Rossii. Vyp. 1”. Employment Survey in Russia, Moscow, TEIS, Scientific Report, 1, 2000.
  • [23] Comer JB. “Facies distribution and hydrocarbon production potential of Woodford Shale in the Southern Midcontinent”. Unconventional Energy Resources in the Southern Midcontinent Symposium, Oklahoma, USA, 9-10 March 2004.
  • [24] Kirkland D, Denison R, Summers D, and Gormly J. “Geology and organic geochemistry of the woodford shale in the criner hills and western arbuckle mountains, Oklahoma”. Oklahoma Geological Survey, Circular 93, 38-69, 1992.
  • [25] Over J. “Conodonts and the devonian-carboniferous boundary in the upper woodford shale, arbuckle mountains, South-Central Oklahoma”. Journal of Paleontology, 66, 293-311, 1992.
  • [26] Snow JL, Duncan RA, Bralower TJ. “Trace element abundances in the Rock Canyon Anticline, Pueblo, Colorado, marine sedimentary section and their releationship to Caribbean Plateau construction an ocean anoxic event 2”. Paleoceanography, 20, 1-14, 2005.
  • [27] Davies SJ, Leng MJ, Macquaker JHS, Hawkins K. “Sedimentary process control on carbon isotope composition of sedimentary organic matter in an ancient shallow-water shelf succession”. Geophysics, Geosystems, Geochemistry, 13(1), 1-15, 2012.
  • 28] Ratcliffe KT, Wright AM, Schmidt K. “Application of inorganic whole-rock geochemistry to shale resource plays: an example from the Eagle Ford Shale Formation, Texas”. The Sedimentary Record, 10, 4-9, 2012.
  • [29] Sageman BB, Lyons TW. Geochemistry of Fine-grained Sediments and Sedimentary Rocks. Editors: Holland HD, Turekian KK. Readings from the Treatise on Geochemistry, 424-456, USA, Academic Press, 2009.
  • [30] Dymond J, Suess E, Lyle M. “Barium in deep-sea sediment: A geochemical proxy for paleoproductivity”. Paleoceanography, 7, 163-181,1992.
  • [31] Dymond J, Collier R “Particulate barium fluxes and their relationships to biological productivity”. Deep Sea Research Part II: Topical Studies in Oceanography, 43, 1283-1308, 1996.
  • [32] Schmitz B, Charisi SD, Thompson E, Speijer RP. “Barium, SiO2 (excess), and P2O5 as proxies of biological productivity in the Middle East during the Paleocene and the latest Paleocene benthic extinction event”. Terra Nova, 9, 95-99, 1997.
  • [33] Tyrrell T. “The relative influences of nitrogen and phosphorus on oceanic primary production”. Nature, 400, 525-531, 1999.
  • [34] Algeo TJ, Kuwahara K, Sano H, Bates S, Lyons T, Elswick E, Hinnov L, Ellwood B, Moser J, Maynard JB. “Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian–Triassic Panthalassic Ocean”. Palaeogeography, Palaeoclimatology, Palaeoecology, 308, 65-83, 2011.
  • [35] Ingall ED, Bustin RM, Cappellen P. “Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales”. Geochimica et Cosmochimica Acta, 57, 303-316, 1993.
  • [36] Berryman RR. Constraints on Development of Anoxia Through Geochemical Facies Mapping of Devonian Black Shales in the Midcontinent. MSc Thesis, Faculty of the Graduate College of the Oklahoma State University, Oklahoma, USA, 2012.
  • [37] Sarı A. Ismayılzada K. Akıska E. Erol F. “Ilgın sahası (Konya) bitümlü kiltaşı çökelimi havzasında paleohidrotermal çökelme koşulları, paleo-hidrodinamik olaylar ve paleo-iklim incelemeleri”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 32(3), 1432-1447, 2024.
  • [38] Fritz SC, Juggins S, Battarbee RW. “Diatom assemblages and ionic characterization of lakes of the Northern Great Plains, North America: A tool for reconstructing past salinity and climate fluctuations”. Canadian Journal of Fisheries and Aquatic Sciences, 50(9), 1844-1856, 1993.
  • [39] Gasse F, Juggins S, Khelifa LB. “Diatom-Based transferfunctions for inferring past hydrochemica characteristics of African lakes”. Palaeogeography, Palaeoclimatology, Palaeoecology, 117, 31-54, 1995.
  • [40] Gasse F. “Diatoms for reconstructing palaeoenvironments and palaeohydrology in tropical semi-arid zones. Examples of some lakes from Niger since 12,000 B.P.”. Hydrobiologia, 154, 127-163, 1987.
  • [41] Afonina EY, Tashlykova NA. “Plankton community and the relationship with the environment in saline lakes of OnonTorey Plain, Northeastern Mongolia”. Saudi Journal of Biological Sciences, 25(2), 399–408, 2018.
  • [42] Afonina EY, Tashlykova NA. “Fluctuations in plankton community structure of endorheic soda lakes of southeastern Transbaikalia (Russia)”. Hydrobiologia, 847, 1383–1398, 2020.
  • [43] Gasse F, Fontes JC, Plaziat P, Darbonel P, Kaczmarska I, De Dekker P, Soulie-Märsche I, Callot Y, Dupeuple DA. “Biological remains, geochemistry and stable isotopes for the reconstruction of environmental and hydrological changes in the Holocene lakes from North Sahara”. Palaeogeography, Palaeoclimatology, Palaeoecology, 60(1-2), 1-46, 1987.
  • [44] Gasse F, Barker P, Gell PA, Fritz SC, Chalie F. “Diatominferred salinity in palaeolakes: An indirect tracer of climate change”. Quaternary Science Reviews, 16, 547-563, 1997.
  • [45] Reed, JM. “Diatom preservation in the recent sediment record of Spanish saline lakes: implications for palaeoclimate study”. Journal of Paleolimnology, 19, 129-137, 1998.
  • [46] Reed, JM. “A diatom-conductivity transfer function for Spanish salt lakes”. Journal of Paleolimnology, 19, 399-416, 1998.
  • [47] Żelazna–Wieczorek J. Olszyński RM. Nowicka–Krawczyk P. “Half a century of research on diatoms in athalassic habitats in central Poland”. Oceanological and Hydrobiological Studies, 441, 51-67, 2015.
  • [48] Edlund MB, Taylor CM, Schelske CL, Stoermer EF. “Thalassiosira baltica (Grunow) Ostenfeld (Bacillariophyta), a new exotic species in the Great Lakes”. Canadian Journal of Fisheries and Aquatic Sciences, 57, 610-615, 2000.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Ali Sarı

Kamal Ismayılzada

Elif Akıska

Fuat Erol

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 5 Şubat 2024
Kabul Tarihi 9 Eylül 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 3

Kaynak Göster

APA Sarı, A., Ismayılzada, K., Akıska, E., Erol, F. (2025). Ilgın (Konya KB’sı) sahası Miyosen yaşlı bitümlü kiltaşlarında silisyumun kaynak incelemesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(3), 452-461.
AMA Sarı A, Ismayılzada K, Akıska E, Erol F. Ilgın (Konya KB’sı) sahası Miyosen yaşlı bitümlü kiltaşlarında silisyumun kaynak incelemesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Haziran 2025;31(3):452-461.
Chicago Sarı, Ali, Kamal Ismayılzada, Elif Akıska, ve Fuat Erol. “Ilgın (Konya KB’sı) Sahası Miyosen yaşlı bitümlü kiltaşlarında Silisyumun Kaynak Incelemesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 3 (Haziran 2025): 452-61.
EndNote Sarı A, Ismayılzada K, Akıska E, Erol F (01 Haziran 2025) Ilgın (Konya KB’sı) sahası Miyosen yaşlı bitümlü kiltaşlarında silisyumun kaynak incelemesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 3 452–461.
IEEE A. Sarı, K. Ismayılzada, E. Akıska, ve F. Erol, “Ilgın (Konya KB’sı) sahası Miyosen yaşlı bitümlü kiltaşlarında silisyumun kaynak incelemesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 3, ss. 452–461, 2025.
ISNAD Sarı, Ali vd. “Ilgın (Konya KB’sı) Sahası Miyosen yaşlı bitümlü kiltaşlarında Silisyumun Kaynak Incelemesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/3 (Haziran 2025), 452-461.
JAMA Sarı A, Ismayılzada K, Akıska E, Erol F. Ilgın (Konya KB’sı) sahası Miyosen yaşlı bitümlü kiltaşlarında silisyumun kaynak incelemesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:452–461.
MLA Sarı, Ali vd. “Ilgın (Konya KB’sı) Sahası Miyosen yaşlı bitümlü kiltaşlarında Silisyumun Kaynak Incelemesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 3, 2025, ss. 452-61.
Vancouver Sarı A, Ismayılzada K, Akıska E, Erol F. Ilgın (Konya KB’sı) sahası Miyosen yaşlı bitümlü kiltaşlarında silisyumun kaynak incelemesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(3):452-61.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.