Araştırma Makalesi
BibTex RIS Kaynak Göster

Karstik kaynak boşalım modelleme esasları: Susuz karst akifer kavramsal modeli örneği, Seydişehir, Türkiye

Yıl 2025, Cilt: 31 Sayı: 3, 469 - 483, 30.06.2025

Öz

Karstik akiferler sahip oldukları beslenme (noktasal ve alansal), depolama (kanal ve matriks), dolaşım (yerel ve yaygın) ve boşalım (laminar ve türbülanslı) özellikleri bakımından heterojen yeraltısuyu sistemleri olup, hem doğal hem de doğal olmayan tehditlere karşı gözenekli akiferlere kıyasla çok hızlı tepki veren hassas ortamlardır. İklim değişikliği ve nüfus artışı gibi güncel tehditler dikkate alındığında karstik yeraltısuları üzerindeki baskının günden güne artması kaçınılmazdır. Karstik yeraltısularının sürdürülebilir kullanımı ise onların kavramsal ve sayısal modellerinin geliştirilmesi ile mümkün olmaktadır. Karstik akiferlerin sayısal modelleri ise basitten karmaşığa doğru (i) kara kutu modeller, (ii) kavramsal modeller ve (iii) fiziksel modeller olmak üzere üç farklı yaklaşıma göre oluşturulabilmektedir. Bu çalışma karstik bir akiferin sayısal boşalım modelinin kavramsal modelleme yaklaşımı kullanılarak nasıl oluşturulması gerektiği hususunu en temelden ele alarak açıklamıştır. Bu kapsamda veri ihtiyacı, veri toplama teknikleri, veri işleme yöntemleri, model yapısal yeterliliği ve son olarak model uygulamasının yapılması hususlarına değinilmiştir. Çalışmada değinilen metodolojinin örnek bir uygulaması Orta Toros karst kuşağında yer alan Susuz karst akiferi ve Pınarbaşı karst kaynağı boşalım modeli sonuçları üzerinden açıklanmıştır.

Kaynakça

  • [1] Smart PL, Hobbs SL. “Characterisation of carbonate aquifers: a conceptual base”. Environmental Problems in Karst Terranes and Their Solutions Conference. National Water Well Association, Dublin, Ohio, USA, 28-30 October 1986.
  • [2] Ford D, and Williams PD. Karst Hydrogeology and Geomorphology. 2nd ed. New York, USA. John Wiley & Sons, 2007.
  • [3] Bakalowicz M. “Karst groundwater: a challenge for new resources”. Hydrogeology Journal, 13, 148-160, 2005.
  • [4] Giorgi F, Lionello P. “Climate change projections for the Mediterranean region”. Global and Planetary Change, 63(2-3), 90-104, 2008.
  • [5] Lelieveld J, Hadjinicolaou P, Kostopoulou E, Chenoweth J, El Maayar M, Giannakopoulos C, Xoplaki E. “Climate change and impacts in the Eastern Mediterranean and the Middle East”. Climatic Change, 114, 667-687, 2012.
  • [6] Cramer W, Guiot J, Fader M, Garrabou J, Gattuso JP, Iglesias A, ... Xoplaki E. “Climate change and interconnected risks to sustainable development in the Mediterranean”. Nature Climate Change, 8(11), 972-980, 2018.
  • [7] Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M. “Karst water resources in a changing world: Review of hydrological modeling approaches”. Reviews of Geophysics, 52(3), 218-242, 2014.
  • [8] Jukić D, Denić-Jukić V. “Nonlinear kernel functions for karst aquifers”. Journal of Hydrology, 328(1-2), 360-374, 2006.
  • [9] Denić-Jukić V, Jukić D. “Composite transfer functions for karst aquifers”. Journal of Hydrology, 274(1-4), 80-94, 2003.
  • [10] Jukić D, Denić-Jukić V. “Groundwater balance estimation in karst by using a conceptual rainfall–runoff model”. Journal of Hydrology, 373(3-4), 302-315, 2009.
  • [11] Salerno F, Tartari G. “A coupled approach of surface hydrological modelling and Wavelet Analysis for understanding the baseflow components of river discharge in karst environments”. Journal of Hydrology, 376(1-2), 295-306, 2009.
  • [12] Hao Y, Zhao J, Li H, Cao B, Li Z, Yeh TCJ. “Karst hydrological processes and grey system model 1”. JAWRA Journal of the American Water Resources Association, 48(4), 656-666, 2012.
  • [13] Kurtulus B, Razack M. “Modeling daily discharge responses of a large karstic aquifer using soft computing methods: Artificial neural network and neuro-fuzzy”. Journal of Hydrology, 381(1-2), 101-111, 2010.
  • [14] Kovačević M, Ivanišević N, Dašić T, Marković L. “Application of artificial neural networks for hydrological modelling in karst”. Građevinar, 70(1), 1-10, 2018.
  • [15] Sezen C, Partal T. “The utilization of a GR4J model and wavelet-based artificial rainfall–runoff neural networkmodelling”. Water for Supply, 19(5), 1295-1304, 2019.
  • [16] Wunsch A, Liesch T, Cinkus G, Ravbar N, Chen Z, Mazzilli N, Goldscheider N. “Karst spring discharge modeling based on deep learning using spatially distributed input data”. Hydrology and Earth System Sciences, 26(9), 2405-2430, 2022.
  • [17] Li J, Yuan D, Liu J, Jiang Y, Chen Y, Hsu KL, Sorooshian S. “Predicting floods in a large karst river basin by coupling PERSIANN-CCS QPEs with a physically based distributed hydrological model”. Hydrology and Earth System Sciences, 23(3), 1505-1532, 2019.
  • [18] Li J, Hong A, Yuan D, Jiang Y, Deng S, Cao C, Liu J. “A new distributed karst-tunnel hydrological model and tunnel hydrological effect simulations”. Journal of Hydrology, 593, 125639, 2021.
  • [19] Yang W, Chen L, Deng F, Lv S. “Application of an improved distributed Xinanjiang hydrological model for flood prediction in a karst catchment in South‐Western China”. Journal of 13(4), e12649, 2020. Flood Risk Management,
  • [20] Yang W, Chen L, Chen X, Chen H. “Sub-daily precipitation-streamflow modelling of the karstdominated basin using an improved grid-based distributed Xinanjiang hydrological model”. Journal of Hydrology: Regional Studies, 42, 101125, 2022.
  • [21] Kiraly L. “Modelling karst aquifers by the combined discrete channel and continuum approach”. Bulletin du Centre d'hydrogéologie, 16, 77-98, 1998.
  • [22] Jaiswal RK, Ali S, Bharti B. “Comparative evaluation of conceptual and physical rainfall–runoff models”. Applied Water Science, 10(1), 48, 2020.
  • [23] Sezen C, Bezak N, Bai Y, Šraj M. “Hydrological modelling of karst catchment using lumped conceptual and data mining models”. Journal of Hydrology, 576, 98-110, 2019.
  • [24] Sarrazin F, Hartmann A, Pianosi F, Rosolem R, Wagener T. “V2Karst V1. 1: a parsimonious large-scale integrated vegetation-recharge model to simulate the impact of climate and land cover change in karst regions”. Geoscientific Model Development, 11(12), 4933-4964, 2018.
  • [25] Mazzilli N, Guinot V, Jourde H, Lecoq N, Labat D, Arfib B, Baudement C, Danquigny C, Dal Soglio L, Bertin D. “KarstMod: a modelling platform for rainfall-discharge analysis and modelling dedicated to karst systems”. Environmental Modelling and Software 122, 103927, 2019.
  • [26] Hartmann A, Barbera JA, Lange J, Andreo B, Weiler M. “Progress in the hydrologic simulation of time variant recharge areas of karst systems-exemplified at a karst spring in Southern Spain”. Advances in Water Resources 54, 149-160, 2013.
  • [27] Bittner D, Narany TS, Kohl B, Disse M, Chiogna G. “Modeling the hydrological impact of land use change in a dolomite-dominated karst system”. Journal of Hydrology, 567, 267-279, 2018.
  • [28] Ollivier C, Mazzilli N, Olioso A, Chalikakis K, Carrière SD, Danquigny C, Emblanch C. “Karst recharge-discharge semi distributed model to assess spatial variability of flows”. Science of the Total Environment, 703, 134368, 2020.
  • [29] Çallı SS, Çallı KÖ, Yılmaz MT, Çelik M. “Contribution of the satellite-data driven snow routine to a karst hydrological model”. Journal of Hydrology, 607, 127511, 2022.
  • [30] Herczeg AL, Leaney FWJ, Stadler MF, Allan GL, Fifield LK. “Chemical and isotopic indicators of point-source recharge to a karst aquifer, South Australia”. Journal of Hydrology, 192(1-4), 271-299, 1997.
  • [31] Perrin J, Jeannin PY, Zwahlen F. “Epikarst storage in a karst aquifer: a conceptual model based on isotopic data, Milandre test site, Switzerland”. Journal of Hydrology, 279(1-4), 106-124, 2003.
  • [32] Doctor DH, Lojen S, Horvat M. “A stable isotope investigation of the classical karst aquifer: evaluating karst groundwater components for water quality preservation”. Acta Carsologica, 29(1), 79-92, 2000.
  • [33] White WB. “Karst Hydrology: Recent Developments and Open Questions”. Engineering geology, 65(2-3), 85-105, 2002.
  • [34] White W. “Chemistry and karst”. Acta Carsologica, 44(3), 349-362, 2015.
  • [35] Perrin J, Jeannin PY, Zwahlen F. “Implications of the spatial variability of infiltration-water chemistry for the investigation of a karst aquifer: a field study at Milandre test site, Swiss Jura”. Hydrogeology Journal, 11, 673-686, 2003.
  • [36] Barbieri M, Boschetti T, Petitta M, Tallini M. “Stable isotope (2H, 18O and 87Sr/86Sr) and hydrochemistry monitoring for groundwater hydrodynamics analysis in a karst aquifer (Gran Sasso, Central Italy)”. Applied Geochemistry, 20(11), 2063-2081, 2005.
  • [37] Doctor DH, Alexander EC, Petrič M, Kogovšek J, Urbanc J, Lojen S, Stichler W. “Quantification of karst aquifer discharge components during storm events through end-member mixing analysis using natural chemistry and stable isotopes as tracers”. Hydrogeology Journal, 14, 1171-1191, 2006.
  • [38] Goldscheider N, Meiman J, Pronk M, Smart C. “Tracer tests in karst hydrogeology and speleology”. International Journal of speleology, 37(1), 27-40, 2008.
  • [39] Aydin H, Ekmekçi M, Soylu ME. “Effects of sinuosity factor on hydrodynamic parameters estimation in karst systems: a dye tracer experiment from the Beyyayla sinkhole (Eskişehir, Turkey)”. Environmental Earth Sciences, 71, 3921-3933, 2014.
  • [40] Mahler BJ, Lynch FL. “Muddy waters: temporal variation in sediment discharging from a karst spring”. Journal of Hydrology, 214(1-4), 165-178, 1999.
  • [41] Drysdale R, Pierotti L, Piccini L, Baldacci F. “Suspended sediments in karst spring waters near Massa (Tuscany), Italy”. Environmental Geology, 40, 1037-1050, 2001.
  • [42] Herman EK, Tancredi JH, Toran L, White WB. “Mineralogy of suspended sediment in three karst springs”. Hydrogeology Journal, 15, 255-266, 2007.
  • [43] Çelik M, Çallı SS, Karakaş ZS. “The role of mineralogical studies in delineating the recharge area and groundwater circulation of Susuz springs, Central Taurus Belt, Turkey”. Hydrogeology Journal, 30(8), 2399-2415, 2022.
  • [44] Mahler B, Massei N. “Anthropogenic contaminants as tracers in an urbanizing karst aquifer”. Journal of Contaminant Hydrology, 91(1-2), 81-106, 2007.
  • [45] Palandačić A, Bonacci O, Snoj A. “Molecular data as a possible tool for tracing groundwater flow in karst environment: example of Delminichthys adspersus in Dinaric karst system”. Ecohydrology, 5(6), 791-797, 2012.
  • [46] Bandy AM, Cook K, Fryar AE, Zhu J. “Differential transport of Escherichia coli isolates compared to abiotic tracers in a karst aquifer”. Groundwater, 58(1), 70-78, 2020.
  • [47] Yi Y, Zhong J, Bao H, Mostofa KM, Xu S, Xiao HY, Li SL. “The impacts of reservoirs on the sources and transport of riverine organic carbon in the karst area: a multitracer study”. Water Research, 194, 116933, 2021.
  • [48] Kovács A, Perrochet P, Király L, Jeannin PY. “A quantitative method for the characterisation of karst aquifers based on spring hydrograph analysis”. Journal of hydrology, 303(1-4), 152-164, 2005.
  • [49] Malík P, Vojtková S. “Use of recession-curve analysis for estimation of karstification degree and its application in assessing overflow/underflow conditions in closely spaced karstic springs”. Environmental Earth Sciences, 65, 2245-2257, 2012.
  • [50] Fiorillo F. “The recession of spring hydrographs, focused on karst aquifers”. Water Resources Management, 28, 1781-1805, 2014.
  • [51] Eris E, Wittenberg H. “Estimation of baseflow and water transfer in karst catchments in Mediterranean Turkey by nonlinear recession analysis”. Journal of Hydrology, 530, 500-507, 2015.
  • [52] Çelik M, Çallı SS. “Conduit and fracture flow characteristics of Pınarbaşı spring, Central Taurus Region, Seydişehir, Turkey”. Acta Carsologica, 50(1), 97-118, 2021.
  • [53] Olarinoye T, Gleeson T, Hartmann A. “Karst spring recession and classification: efficient, automated methods for both fast-and slow-flow components”. Hydrology and Earth 26(21), 5431-5447, 2022. System Sciences,
  • [54] Çallı KÖ, Hartmann A. “A Comparative Evaluation of Automated Recession Extraction Procedures for Karst Spring Hydrographs”. Turkish Journal of Water Science and Management, 6(1), 2-30, 2022.
  • [55] Panagopoulos G, Lambrakis N. “The contribution of time series analysis to the study of the hydrodynamic characteristics of the karst systems: Application on two typical karst aquifers of Greece (Trifilia, Almyros Crete)”. Journal of Hydrology, 329(3-4), 368-376, 2006.
  • [56] Katsanou K, Lambrakis N, Tayfur G, Baba A. “Describing the karst evolution by the exploitation of hydrologic time-series data”. Water Resources Management, 29, 3131-3147, 2015.
  • [57] Kurniawan IA, Adji TN, Nurkholis A, Haryono E, Fatoni H, Waskito WA, Agniy RF. “Karst aquifer response by time series analysis applications in Jonggrangan Karst, Java Island, Indonesia”. Environmental Earth Sciences, 78, 1-14, 2019.
  • [58] Willimas PW. “The role of the epikarst in karst and cave hydrogeology: a review”. International Journal of Speleology, 37, 1-10, 2008.
  • [59] Dreiss SJ. “Regional scale transport in a karst aquifer: 2. Linear systems and time moment analysis”. Water Resources Research, 25(1), 126-134, 1989.
  • [60] Zhang Z, Chen X, Cheng Q, Soulsby C. “Characterizing the variability of transit time distributions and young water fractions in karst catchments using flux tracking”. Hydrological Processes, 34(15), 3156-3174, 2020.
  • [61] Çallı KÖ, Bittner D, Liu Y, Çallı SS, Melsen LA, Bense V, Hartmann A. “Revealing the positive influence of Young Water Fractions derived from stable isotopes on the robustness of karst water resources predictions”. Journal of Hydrology, 621, 129549, 2023.
  • [62] Dogwiler T, Wicks C. “Thermal variations in the hyporheic zone of a karst stream”. International Journal of Speleology, 35(2), 59-66 2006.
  • [63] Xiao B, Bai X, Zhao C, Tan Q, Li Y, Luo G, Du C. “Responses of carbon and water use efficiencies to climate and land use changes in China's karst areas”. Journal of Hydrology, 617, 128968, 2023.
  • [64] Martínez-Santos P, Andreu JM. “Lumped and distributed approaches to model natural recharge in semiarid karst aquifers”. Journal of Hydrology, 388(3-4), 389-398, 2010.
  • [65] Baalousha HM, Barth N, Ramasomanana FH, Ahzi S. “Groundwater recharge estimation and its spatial distribution in arid regions using GIS: a case study from Qatar karst aquifer”. Modeling Earth Systems and Environment, 4, 1319-1329, 2018.
  • [66] Allocca V, De Vita P, Manna F, Nimmo JR. “Groundwater recharge assessment at local and episodic scale in a soil mantled perched karst aquifer in southern Italy”. Journal of Hydrology, 529, 843-853, 2015.
  • [67] Berthelin R, Olarinoye T, Rinderer M, Mudarra M, Demand D, Scheller M, Hartmann A. “Estimating karst groundwater recharge from soil moisture observations–a new method tested at the Swabian Alb, southwest Germany”. Hydrology and Earth System Sciences, 27(2), 385-400. 2023.
  • [68] Çallı SS. Dağlık Karst Akiferleri için Parametrik YağışKarstik Kaynak Boşalımı Modeli Geliştirilmesi. Doktora Tezi. Ankara Üniversitesi, Ankara, Türkiye. 2023.
  • [69] Dymond JR, Christian R. “Accuracy of discharge determined from a rating curve”. Hydrological Sciences Journal, 27(4), 493-504, 1982.
  • [70] Sivapragasam C, Muttil N. “Discharge rating curve extension–a new approach”. Water Resources Management, 19, 505-520, 2005.
  • [71] Dottori F, Martina MLV, Todini E. “A dynamic rating curve approach to indirect discharge measurement”. Hydrology and Earth System Sciences, 13(6), 847-863, 2009.
  • [72] Cassel DK, Nielsen DR. “Field capacity and available water capacity. Methods of soil analysis: Part 1”. Physical and Mineralogical Methods, 5, 901-926, 1986.
  • [73] Schaap MG, Leij FJ, Van Genuchten MT. “Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions”. Journal of Hydrology, 251(3-4), 163-176, 2001.
  • [74] Bergström S. “Development and Application of a Conceptual Runoff Catchments”. Model Sveriges for Scandinavian Meteorologiska Och Hydrologiska Institut, Norrköping, Sweden, Project Report, 162, 1976.
  • [75] Bergstrom S. “The HBV Model-İts Structure and Applications”. SMHI Hydrology, RH No. 4, Norrkoping, Sweden, Project Report, 32, 1992.
  • [76] Tong R, Parajka J, Salentinig A, Pfeil I, Komma J, Széles B, Blöschl G. “The value of ASCAT soil moisture and MODIS snow cover data for calibrating a conceptual hydrologic model”. Hydrology and Earth System Sciences, 25(3), 1389-1410, 2021.
  • [77] Nash JE, Sutclife JV. “River fow forecasting through conceptual models, Part 1-a discussion of principles”. Journal of Hydrology 10, 282-290, 1970.
  • [78] Gupta HV, Kling H, Yilmaz KK, Martinez GF. “Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling”. Journal of Hydrology, 377(1-2), 80-91, 2009.
  • [79] Karaboga D, Akay B. “A modified artificial bee colony (ABC) algorithm for constrained optimization problems”. Applied Soft Computing, 11(3), 3021-3031, 2011.
  • [80] Yang XS. A New Metaheuristic Bat-Inspired Algorithm. Editors: Gonzalez JR, Pelta DA, Cruz C, Terrazas G, Krasnogor N. Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), 65-74, Berlin, Germany, Springer, 2010.
  • [81] Mullen K, Ardia D, Gil DL, Windover D, Cline J. “DEoptim: an R package for global optimization by differential evolution”. Journal of Statistical Software, 40(6), 1-26, 2011.
  • [82] Kennedy J, Eberhart R. “Particle swarm optimization”. ICNN'95-International Conference on Neural Networks, Perth, WA, Australia, 27 November-1 December 1995.
  • [83] Mirjalili S. “SCA: a sine cosine algorithm for solving optimization problems”. Knowledge-Based Systems, 96, 120-133, 2016.
  • [84] Wagener T, Wheater H, Gupta HV. Rainfall-Runoff Modelling in Gauged and Ungauged Catchments. 1st ed. London, UK, Imperial College Press, 2004.
  • [85] Hastings WK. “Monte Carlo sampling methods using Markov chains and their applications”. Biometrika, 50(1), 97-109, 1970.
  • [86] Stein M. “Large sample properties of simulations using Latin hypercube sampling”. Technometrics, 29(2), 143-151, 1987.
  • [87] Özgül N. “Toroslar'ın bazı temel jeoloji özellikleri”. Bulletin of the Geological Society of Turkey, 19, 65-78, 1976.
  • [88] Blumenthal MM. Seydişehir-Beyşehir Hinterlandındaki Toros Dağlarının Jeolojisi. 1. Baskı Ankara, Türkiye, Maden Tetkik Arama Enstitüsü, 1947.
  • [89] Çallı SS. “Pınarbaşı karst kaynağının (Seydişehir, Konya) Hidrograf-Kemograf Analizleriyle İncelenmesi”. Yüksek Lisans Tezi, Ankara Üniversitesi, Ankara, Türkiye, 2017.
  • [90] Şenel M, Metin Y. “Türkiye Jeoloji Haritaları Serisi, Konya-N28 Paftası.” Maden Tetkik ve Arama Genel Müdürlüğü, Ankara, Türkiye, 2016.
  • [91] Çelik M. “Karstik kaynakların ani boşalım ölçümleri ile kaynak sularının değerlendirilmesi, Susuz kaynakları, Seydişehir, Türkiye”. TÜBİTAK Proje Sonuç Raporu, Ankara, Türkiye, 66, 2017.
  • [92] Çelik M, Çallı SS, Arslan Ş, Karakaş ZS, Çelik M. “Pınarbaşı karst kaynağı beslenme-boşalım ilişkilerinin hidrokimyasal ve mineralojik incelemesi”. Ankara Üniversitesi BAP Proje Sonuç Raporu, Ankara, Türkiye, 87, 2018.
  • [93] Çallı SS. “Susuz karst kaynaklarının (Seydişehir, Konya) beslenme alanının belirlenmesi”. TÜBİTAK 1002 Hızlı Destek Projesi, Sonuç Raporu, Ankara, Türkiye, 37, 2021.
  • [94] Çallı SS, Çelik M. “Pınarbaşı kaynağı boşalımının (Seydişehir-Konya) çekilme eğrisi analizleriyle incelenmesi”. Ulusal Hidroloji ve Su Kaynakları Sempozyumu, Hidro 2018, Ankara, Türkiye, 27-29 Eylül 2018.
  • [95] Malik P. “Assessment of regional karstification degree and groundwater sensitivity to pollution using hydrograph analysis in the Velka Fatra Mountains, Slovakia”. Environmental Geology, 51, 707-711, 2007.
  • [96] Türkiye Meteoroloji İşleri Genel Müdürlüğü. “MEVBİS Sistemi”. A new metaheuristic bat-inspired algorithm. www.mevbis.mgm.gov.tr/ (01.01.2020).
  • [97] Thornthwaite CW. “An approach toward a rational classification of climate”. Geographical Review, 38(1), 55-94, 1948.
  • [98] Busetto L, Ranghetti L. “MODIStsp: An R package for automatic preprocessing of MODIS Land Products time series”. Computers & Geosciences, 97, 40-48, 2016.
  • [99] Guinot V, Savéan M, Jourde H, Neppel L. “Conceptual rainfall–runoff model with a two‐parameter, infinite characteristic time transfer function”. Hydrological Processes, 29(22), 4756-4778, 2015.
  • [100] Beven K, Binley A. “The future of distributed models: model calibration and uncertainty prediction”. Hydrological Processes, 6(3), 279-298, 1992.
  • [101] Hall DK, Riggs GA. “Accuracy assessment of the MODIS snow products”. Hydrological Processes: An International Journal, 21(12), 1534-1547, 2007.
  • [102] Parajka J, Blöschl G. “Spatio‐temporal combination of MODIS images–potential for snow cover mapping”. Water Resources Research, 44(3), 1-13, 2008.
  • [103] Tong R, Parajka J, Komma J, Blöschl G. “Mapping snow cover from daily Collection 6 MODIS products over Austria”. Journal of Hydrology, 590, 125548, 2020.
  • [104] Cinkus G, Wunsch A, Mazzilli N, Liesch T, Chen Z, Ravbar N, Jourde H. Comparison of artificial neural networks and reservoir models for simulating karst spring discharge on five test sites in the Alpine and Mediterranean regions. Hydrology and Earth System Sciences, 27(10), 1961-1985, 2022
  • [105] Çelik M, Çallı SS, Altın S, Çallı KÖ. Reducing climate impacts on karst groundwater resources by constructing a cave dam. A case study from Central Taurus Karst, Türkiye. Journal of Hydrology, 636, 131245, 2024.

A guideline for karst spring discharge modeling: The example of Susuz karst aquifer conceptual model, Seydişehir, Türkiye

Yıl 2025, Cilt: 31 Sayı: 3, 469 - 483, 30.06.2025

Öz

Karstic aquifers are heterogeneous groundwater systems by means of recharge (diffuse and concentrated), storage (matrix and conduit), flow (local or regional), and discharge (laminar and turbulent) characteristics, hence giving quicker responses to both natural and artificial threats while compared to the porous aquifers. Considering the most devastating threats of climate change and increasing population, the stress on the karst groundwater is increasing inevitably. Sustainable usage of these groundwater systems could only be possible by developing the numerical models. Numerical models of the karst aquifers could be developed by using (i) black-box models, (ii) conceptual models, and (iii) physical models from simple to complicated, respectively. This study aims to explain how to build a successful numerical model to a karst aquifer by using the conceptual modelling approach from the very basic concepts such as data requirements and data collection methods, data processing techniques, structural adequacy of the model, and finally the application procedures. The given methodology is explained by the results of a case study of the Pınarbaşı spring, Susuz karst aquifer, Central Taurus karst belt.

Kaynakça

  • [1] Smart PL, Hobbs SL. “Characterisation of carbonate aquifers: a conceptual base”. Environmental Problems in Karst Terranes and Their Solutions Conference. National Water Well Association, Dublin, Ohio, USA, 28-30 October 1986.
  • [2] Ford D, and Williams PD. Karst Hydrogeology and Geomorphology. 2nd ed. New York, USA. John Wiley & Sons, 2007.
  • [3] Bakalowicz M. “Karst groundwater: a challenge for new resources”. Hydrogeology Journal, 13, 148-160, 2005.
  • [4] Giorgi F, Lionello P. “Climate change projections for the Mediterranean region”. Global and Planetary Change, 63(2-3), 90-104, 2008.
  • [5] Lelieveld J, Hadjinicolaou P, Kostopoulou E, Chenoweth J, El Maayar M, Giannakopoulos C, Xoplaki E. “Climate change and impacts in the Eastern Mediterranean and the Middle East”. Climatic Change, 114, 667-687, 2012.
  • [6] Cramer W, Guiot J, Fader M, Garrabou J, Gattuso JP, Iglesias A, ... Xoplaki E. “Climate change and interconnected risks to sustainable development in the Mediterranean”. Nature Climate Change, 8(11), 972-980, 2018.
  • [7] Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M. “Karst water resources in a changing world: Review of hydrological modeling approaches”. Reviews of Geophysics, 52(3), 218-242, 2014.
  • [8] Jukić D, Denić-Jukić V. “Nonlinear kernel functions for karst aquifers”. Journal of Hydrology, 328(1-2), 360-374, 2006.
  • [9] Denić-Jukić V, Jukić D. “Composite transfer functions for karst aquifers”. Journal of Hydrology, 274(1-4), 80-94, 2003.
  • [10] Jukić D, Denić-Jukić V. “Groundwater balance estimation in karst by using a conceptual rainfall–runoff model”. Journal of Hydrology, 373(3-4), 302-315, 2009.
  • [11] Salerno F, Tartari G. “A coupled approach of surface hydrological modelling and Wavelet Analysis for understanding the baseflow components of river discharge in karst environments”. Journal of Hydrology, 376(1-2), 295-306, 2009.
  • [12] Hao Y, Zhao J, Li H, Cao B, Li Z, Yeh TCJ. “Karst hydrological processes and grey system model 1”. JAWRA Journal of the American Water Resources Association, 48(4), 656-666, 2012.
  • [13] Kurtulus B, Razack M. “Modeling daily discharge responses of a large karstic aquifer using soft computing methods: Artificial neural network and neuro-fuzzy”. Journal of Hydrology, 381(1-2), 101-111, 2010.
  • [14] Kovačević M, Ivanišević N, Dašić T, Marković L. “Application of artificial neural networks for hydrological modelling in karst”. Građevinar, 70(1), 1-10, 2018.
  • [15] Sezen C, Partal T. “The utilization of a GR4J model and wavelet-based artificial rainfall–runoff neural networkmodelling”. Water for Supply, 19(5), 1295-1304, 2019.
  • [16] Wunsch A, Liesch T, Cinkus G, Ravbar N, Chen Z, Mazzilli N, Goldscheider N. “Karst spring discharge modeling based on deep learning using spatially distributed input data”. Hydrology and Earth System Sciences, 26(9), 2405-2430, 2022.
  • [17] Li J, Yuan D, Liu J, Jiang Y, Chen Y, Hsu KL, Sorooshian S. “Predicting floods in a large karst river basin by coupling PERSIANN-CCS QPEs with a physically based distributed hydrological model”. Hydrology and Earth System Sciences, 23(3), 1505-1532, 2019.
  • [18] Li J, Hong A, Yuan D, Jiang Y, Deng S, Cao C, Liu J. “A new distributed karst-tunnel hydrological model and tunnel hydrological effect simulations”. Journal of Hydrology, 593, 125639, 2021.
  • [19] Yang W, Chen L, Deng F, Lv S. “Application of an improved distributed Xinanjiang hydrological model for flood prediction in a karst catchment in South‐Western China”. Journal of 13(4), e12649, 2020. Flood Risk Management,
  • [20] Yang W, Chen L, Chen X, Chen H. “Sub-daily precipitation-streamflow modelling of the karstdominated basin using an improved grid-based distributed Xinanjiang hydrological model”. Journal of Hydrology: Regional Studies, 42, 101125, 2022.
  • [21] Kiraly L. “Modelling karst aquifers by the combined discrete channel and continuum approach”. Bulletin du Centre d'hydrogéologie, 16, 77-98, 1998.
  • [22] Jaiswal RK, Ali S, Bharti B. “Comparative evaluation of conceptual and physical rainfall–runoff models”. Applied Water Science, 10(1), 48, 2020.
  • [23] Sezen C, Bezak N, Bai Y, Šraj M. “Hydrological modelling of karst catchment using lumped conceptual and data mining models”. Journal of Hydrology, 576, 98-110, 2019.
  • [24] Sarrazin F, Hartmann A, Pianosi F, Rosolem R, Wagener T. “V2Karst V1. 1: a parsimonious large-scale integrated vegetation-recharge model to simulate the impact of climate and land cover change in karst regions”. Geoscientific Model Development, 11(12), 4933-4964, 2018.
  • [25] Mazzilli N, Guinot V, Jourde H, Lecoq N, Labat D, Arfib B, Baudement C, Danquigny C, Dal Soglio L, Bertin D. “KarstMod: a modelling platform for rainfall-discharge analysis and modelling dedicated to karst systems”. Environmental Modelling and Software 122, 103927, 2019.
  • [26] Hartmann A, Barbera JA, Lange J, Andreo B, Weiler M. “Progress in the hydrologic simulation of time variant recharge areas of karst systems-exemplified at a karst spring in Southern Spain”. Advances in Water Resources 54, 149-160, 2013.
  • [27] Bittner D, Narany TS, Kohl B, Disse M, Chiogna G. “Modeling the hydrological impact of land use change in a dolomite-dominated karst system”. Journal of Hydrology, 567, 267-279, 2018.
  • [28] Ollivier C, Mazzilli N, Olioso A, Chalikakis K, Carrière SD, Danquigny C, Emblanch C. “Karst recharge-discharge semi distributed model to assess spatial variability of flows”. Science of the Total Environment, 703, 134368, 2020.
  • [29] Çallı SS, Çallı KÖ, Yılmaz MT, Çelik M. “Contribution of the satellite-data driven snow routine to a karst hydrological model”. Journal of Hydrology, 607, 127511, 2022.
  • [30] Herczeg AL, Leaney FWJ, Stadler MF, Allan GL, Fifield LK. “Chemical and isotopic indicators of point-source recharge to a karst aquifer, South Australia”. Journal of Hydrology, 192(1-4), 271-299, 1997.
  • [31] Perrin J, Jeannin PY, Zwahlen F. “Epikarst storage in a karst aquifer: a conceptual model based on isotopic data, Milandre test site, Switzerland”. Journal of Hydrology, 279(1-4), 106-124, 2003.
  • [32] Doctor DH, Lojen S, Horvat M. “A stable isotope investigation of the classical karst aquifer: evaluating karst groundwater components for water quality preservation”. Acta Carsologica, 29(1), 79-92, 2000.
  • [33] White WB. “Karst Hydrology: Recent Developments and Open Questions”. Engineering geology, 65(2-3), 85-105, 2002.
  • [34] White W. “Chemistry and karst”. Acta Carsologica, 44(3), 349-362, 2015.
  • [35] Perrin J, Jeannin PY, Zwahlen F. “Implications of the spatial variability of infiltration-water chemistry for the investigation of a karst aquifer: a field study at Milandre test site, Swiss Jura”. Hydrogeology Journal, 11, 673-686, 2003.
  • [36] Barbieri M, Boschetti T, Petitta M, Tallini M. “Stable isotope (2H, 18O and 87Sr/86Sr) and hydrochemistry monitoring for groundwater hydrodynamics analysis in a karst aquifer (Gran Sasso, Central Italy)”. Applied Geochemistry, 20(11), 2063-2081, 2005.
  • [37] Doctor DH, Alexander EC, Petrič M, Kogovšek J, Urbanc J, Lojen S, Stichler W. “Quantification of karst aquifer discharge components during storm events through end-member mixing analysis using natural chemistry and stable isotopes as tracers”. Hydrogeology Journal, 14, 1171-1191, 2006.
  • [38] Goldscheider N, Meiman J, Pronk M, Smart C. “Tracer tests in karst hydrogeology and speleology”. International Journal of speleology, 37(1), 27-40, 2008.
  • [39] Aydin H, Ekmekçi M, Soylu ME. “Effects of sinuosity factor on hydrodynamic parameters estimation in karst systems: a dye tracer experiment from the Beyyayla sinkhole (Eskişehir, Turkey)”. Environmental Earth Sciences, 71, 3921-3933, 2014.
  • [40] Mahler BJ, Lynch FL. “Muddy waters: temporal variation in sediment discharging from a karst spring”. Journal of Hydrology, 214(1-4), 165-178, 1999.
  • [41] Drysdale R, Pierotti L, Piccini L, Baldacci F. “Suspended sediments in karst spring waters near Massa (Tuscany), Italy”. Environmental Geology, 40, 1037-1050, 2001.
  • [42] Herman EK, Tancredi JH, Toran L, White WB. “Mineralogy of suspended sediment in three karst springs”. Hydrogeology Journal, 15, 255-266, 2007.
  • [43] Çelik M, Çallı SS, Karakaş ZS. “The role of mineralogical studies in delineating the recharge area and groundwater circulation of Susuz springs, Central Taurus Belt, Turkey”. Hydrogeology Journal, 30(8), 2399-2415, 2022.
  • [44] Mahler B, Massei N. “Anthropogenic contaminants as tracers in an urbanizing karst aquifer”. Journal of Contaminant Hydrology, 91(1-2), 81-106, 2007.
  • [45] Palandačić A, Bonacci O, Snoj A. “Molecular data as a possible tool for tracing groundwater flow in karst environment: example of Delminichthys adspersus in Dinaric karst system”. Ecohydrology, 5(6), 791-797, 2012.
  • [46] Bandy AM, Cook K, Fryar AE, Zhu J. “Differential transport of Escherichia coli isolates compared to abiotic tracers in a karst aquifer”. Groundwater, 58(1), 70-78, 2020.
  • [47] Yi Y, Zhong J, Bao H, Mostofa KM, Xu S, Xiao HY, Li SL. “The impacts of reservoirs on the sources and transport of riverine organic carbon in the karst area: a multitracer study”. Water Research, 194, 116933, 2021.
  • [48] Kovács A, Perrochet P, Király L, Jeannin PY. “A quantitative method for the characterisation of karst aquifers based on spring hydrograph analysis”. Journal of hydrology, 303(1-4), 152-164, 2005.
  • [49] Malík P, Vojtková S. “Use of recession-curve analysis for estimation of karstification degree and its application in assessing overflow/underflow conditions in closely spaced karstic springs”. Environmental Earth Sciences, 65, 2245-2257, 2012.
  • [50] Fiorillo F. “The recession of spring hydrographs, focused on karst aquifers”. Water Resources Management, 28, 1781-1805, 2014.
  • [51] Eris E, Wittenberg H. “Estimation of baseflow and water transfer in karst catchments in Mediterranean Turkey by nonlinear recession analysis”. Journal of Hydrology, 530, 500-507, 2015.
  • [52] Çelik M, Çallı SS. “Conduit and fracture flow characteristics of Pınarbaşı spring, Central Taurus Region, Seydişehir, Turkey”. Acta Carsologica, 50(1), 97-118, 2021.
  • [53] Olarinoye T, Gleeson T, Hartmann A. “Karst spring recession and classification: efficient, automated methods for both fast-and slow-flow components”. Hydrology and Earth 26(21), 5431-5447, 2022. System Sciences,
  • [54] Çallı KÖ, Hartmann A. “A Comparative Evaluation of Automated Recession Extraction Procedures for Karst Spring Hydrographs”. Turkish Journal of Water Science and Management, 6(1), 2-30, 2022.
  • [55] Panagopoulos G, Lambrakis N. “The contribution of time series analysis to the study of the hydrodynamic characteristics of the karst systems: Application on two typical karst aquifers of Greece (Trifilia, Almyros Crete)”. Journal of Hydrology, 329(3-4), 368-376, 2006.
  • [56] Katsanou K, Lambrakis N, Tayfur G, Baba A. “Describing the karst evolution by the exploitation of hydrologic time-series data”. Water Resources Management, 29, 3131-3147, 2015.
  • [57] Kurniawan IA, Adji TN, Nurkholis A, Haryono E, Fatoni H, Waskito WA, Agniy RF. “Karst aquifer response by time series analysis applications in Jonggrangan Karst, Java Island, Indonesia”. Environmental Earth Sciences, 78, 1-14, 2019.
  • [58] Willimas PW. “The role of the epikarst in karst and cave hydrogeology: a review”. International Journal of Speleology, 37, 1-10, 2008.
  • [59] Dreiss SJ. “Regional scale transport in a karst aquifer: 2. Linear systems and time moment analysis”. Water Resources Research, 25(1), 126-134, 1989.
  • [60] Zhang Z, Chen X, Cheng Q, Soulsby C. “Characterizing the variability of transit time distributions and young water fractions in karst catchments using flux tracking”. Hydrological Processes, 34(15), 3156-3174, 2020.
  • [61] Çallı KÖ, Bittner D, Liu Y, Çallı SS, Melsen LA, Bense V, Hartmann A. “Revealing the positive influence of Young Water Fractions derived from stable isotopes on the robustness of karst water resources predictions”. Journal of Hydrology, 621, 129549, 2023.
  • [62] Dogwiler T, Wicks C. “Thermal variations in the hyporheic zone of a karst stream”. International Journal of Speleology, 35(2), 59-66 2006.
  • [63] Xiao B, Bai X, Zhao C, Tan Q, Li Y, Luo G, Du C. “Responses of carbon and water use efficiencies to climate and land use changes in China's karst areas”. Journal of Hydrology, 617, 128968, 2023.
  • [64] Martínez-Santos P, Andreu JM. “Lumped and distributed approaches to model natural recharge in semiarid karst aquifers”. Journal of Hydrology, 388(3-4), 389-398, 2010.
  • [65] Baalousha HM, Barth N, Ramasomanana FH, Ahzi S. “Groundwater recharge estimation and its spatial distribution in arid regions using GIS: a case study from Qatar karst aquifer”. Modeling Earth Systems and Environment, 4, 1319-1329, 2018.
  • [66] Allocca V, De Vita P, Manna F, Nimmo JR. “Groundwater recharge assessment at local and episodic scale in a soil mantled perched karst aquifer in southern Italy”. Journal of Hydrology, 529, 843-853, 2015.
  • [67] Berthelin R, Olarinoye T, Rinderer M, Mudarra M, Demand D, Scheller M, Hartmann A. “Estimating karst groundwater recharge from soil moisture observations–a new method tested at the Swabian Alb, southwest Germany”. Hydrology and Earth System Sciences, 27(2), 385-400. 2023.
  • [68] Çallı SS. Dağlık Karst Akiferleri için Parametrik YağışKarstik Kaynak Boşalımı Modeli Geliştirilmesi. Doktora Tezi. Ankara Üniversitesi, Ankara, Türkiye. 2023.
  • [69] Dymond JR, Christian R. “Accuracy of discharge determined from a rating curve”. Hydrological Sciences Journal, 27(4), 493-504, 1982.
  • [70] Sivapragasam C, Muttil N. “Discharge rating curve extension–a new approach”. Water Resources Management, 19, 505-520, 2005.
  • [71] Dottori F, Martina MLV, Todini E. “A dynamic rating curve approach to indirect discharge measurement”. Hydrology and Earth System Sciences, 13(6), 847-863, 2009.
  • [72] Cassel DK, Nielsen DR. “Field capacity and available water capacity. Methods of soil analysis: Part 1”. Physical and Mineralogical Methods, 5, 901-926, 1986.
  • [73] Schaap MG, Leij FJ, Van Genuchten MT. “Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions”. Journal of Hydrology, 251(3-4), 163-176, 2001.
  • [74] Bergström S. “Development and Application of a Conceptual Runoff Catchments”. Model Sveriges for Scandinavian Meteorologiska Och Hydrologiska Institut, Norrköping, Sweden, Project Report, 162, 1976.
  • [75] Bergstrom S. “The HBV Model-İts Structure and Applications”. SMHI Hydrology, RH No. 4, Norrkoping, Sweden, Project Report, 32, 1992.
  • [76] Tong R, Parajka J, Salentinig A, Pfeil I, Komma J, Széles B, Blöschl G. “The value of ASCAT soil moisture and MODIS snow cover data for calibrating a conceptual hydrologic model”. Hydrology and Earth System Sciences, 25(3), 1389-1410, 2021.
  • [77] Nash JE, Sutclife JV. “River fow forecasting through conceptual models, Part 1-a discussion of principles”. Journal of Hydrology 10, 282-290, 1970.
  • [78] Gupta HV, Kling H, Yilmaz KK, Martinez GF. “Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling”. Journal of Hydrology, 377(1-2), 80-91, 2009.
  • [79] Karaboga D, Akay B. “A modified artificial bee colony (ABC) algorithm for constrained optimization problems”. Applied Soft Computing, 11(3), 3021-3031, 2011.
  • [80] Yang XS. A New Metaheuristic Bat-Inspired Algorithm. Editors: Gonzalez JR, Pelta DA, Cruz C, Terrazas G, Krasnogor N. Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), 65-74, Berlin, Germany, Springer, 2010.
  • [81] Mullen K, Ardia D, Gil DL, Windover D, Cline J. “DEoptim: an R package for global optimization by differential evolution”. Journal of Statistical Software, 40(6), 1-26, 2011.
  • [82] Kennedy J, Eberhart R. “Particle swarm optimization”. ICNN'95-International Conference on Neural Networks, Perth, WA, Australia, 27 November-1 December 1995.
  • [83] Mirjalili S. “SCA: a sine cosine algorithm for solving optimization problems”. Knowledge-Based Systems, 96, 120-133, 2016.
  • [84] Wagener T, Wheater H, Gupta HV. Rainfall-Runoff Modelling in Gauged and Ungauged Catchments. 1st ed. London, UK, Imperial College Press, 2004.
  • [85] Hastings WK. “Monte Carlo sampling methods using Markov chains and their applications”. Biometrika, 50(1), 97-109, 1970.
  • [86] Stein M. “Large sample properties of simulations using Latin hypercube sampling”. Technometrics, 29(2), 143-151, 1987.
  • [87] Özgül N. “Toroslar'ın bazı temel jeoloji özellikleri”. Bulletin of the Geological Society of Turkey, 19, 65-78, 1976.
  • [88] Blumenthal MM. Seydişehir-Beyşehir Hinterlandındaki Toros Dağlarının Jeolojisi. 1. Baskı Ankara, Türkiye, Maden Tetkik Arama Enstitüsü, 1947.
  • [89] Çallı SS. “Pınarbaşı karst kaynağının (Seydişehir, Konya) Hidrograf-Kemograf Analizleriyle İncelenmesi”. Yüksek Lisans Tezi, Ankara Üniversitesi, Ankara, Türkiye, 2017.
  • [90] Şenel M, Metin Y. “Türkiye Jeoloji Haritaları Serisi, Konya-N28 Paftası.” Maden Tetkik ve Arama Genel Müdürlüğü, Ankara, Türkiye, 2016.
  • [91] Çelik M. “Karstik kaynakların ani boşalım ölçümleri ile kaynak sularının değerlendirilmesi, Susuz kaynakları, Seydişehir, Türkiye”. TÜBİTAK Proje Sonuç Raporu, Ankara, Türkiye, 66, 2017.
  • [92] Çelik M, Çallı SS, Arslan Ş, Karakaş ZS, Çelik M. “Pınarbaşı karst kaynağı beslenme-boşalım ilişkilerinin hidrokimyasal ve mineralojik incelemesi”. Ankara Üniversitesi BAP Proje Sonuç Raporu, Ankara, Türkiye, 87, 2018.
  • [93] Çallı SS. “Susuz karst kaynaklarının (Seydişehir, Konya) beslenme alanının belirlenmesi”. TÜBİTAK 1002 Hızlı Destek Projesi, Sonuç Raporu, Ankara, Türkiye, 37, 2021.
  • [94] Çallı SS, Çelik M. “Pınarbaşı kaynağı boşalımının (Seydişehir-Konya) çekilme eğrisi analizleriyle incelenmesi”. Ulusal Hidroloji ve Su Kaynakları Sempozyumu, Hidro 2018, Ankara, Türkiye, 27-29 Eylül 2018.
  • [95] Malik P. “Assessment of regional karstification degree and groundwater sensitivity to pollution using hydrograph analysis in the Velka Fatra Mountains, Slovakia”. Environmental Geology, 51, 707-711, 2007.
  • [96] Türkiye Meteoroloji İşleri Genel Müdürlüğü. “MEVBİS Sistemi”. A new metaheuristic bat-inspired algorithm. www.mevbis.mgm.gov.tr/ (01.01.2020).
  • [97] Thornthwaite CW. “An approach toward a rational classification of climate”. Geographical Review, 38(1), 55-94, 1948.
  • [98] Busetto L, Ranghetti L. “MODIStsp: An R package for automatic preprocessing of MODIS Land Products time series”. Computers & Geosciences, 97, 40-48, 2016.
  • [99] Guinot V, Savéan M, Jourde H, Neppel L. “Conceptual rainfall–runoff model with a two‐parameter, infinite characteristic time transfer function”. Hydrological Processes, 29(22), 4756-4778, 2015.
  • [100] Beven K, Binley A. “The future of distributed models: model calibration and uncertainty prediction”. Hydrological Processes, 6(3), 279-298, 1992.
  • [101] Hall DK, Riggs GA. “Accuracy assessment of the MODIS snow products”. Hydrological Processes: An International Journal, 21(12), 1534-1547, 2007.
  • [102] Parajka J, Blöschl G. “Spatio‐temporal combination of MODIS images–potential for snow cover mapping”. Water Resources Research, 44(3), 1-13, 2008.
  • [103] Tong R, Parajka J, Komma J, Blöschl G. “Mapping snow cover from daily Collection 6 MODIS products over Austria”. Journal of Hydrology, 590, 125548, 2020.
  • [104] Cinkus G, Wunsch A, Mazzilli N, Liesch T, Chen Z, Ravbar N, Jourde H. Comparison of artificial neural networks and reservoir models for simulating karst spring discharge on five test sites in the Alpine and Mediterranean regions. Hydrology and Earth System Sciences, 27(10), 1961-1985, 2022
  • [105] Çelik M, Çallı SS, Altın S, Çallı KÖ. Reducing climate impacts on karst groundwater resources by constructing a cave dam. A case study from Central Taurus Karst, Türkiye. Journal of Hydrology, 636, 131245, 2024.
Toplam 105 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Süleyman Selim Çallı

Mehmet Çelik

Yayımlanma Tarihi 30 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 3

Kaynak Göster

APA Çallı, S. S., & Çelik, M. (2025). Karstik kaynak boşalım modelleme esasları: Susuz karst akifer kavramsal modeli örneği, Seydişehir, Türkiye. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(3), 469-483.
AMA Çallı SS, Çelik M. Karstik kaynak boşalım modelleme esasları: Susuz karst akifer kavramsal modeli örneği, Seydişehir, Türkiye. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Haziran 2025;31(3):469-483.
Chicago Çallı, Süleyman Selim, ve Mehmet Çelik. “Karstik Kaynak boşalım Modelleme esasları: Susuz Karst Akifer Kavramsal Modeli örneği, Seydişehir, Türkiye”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 3 (Haziran 2025): 469-83.
EndNote Çallı SS, Çelik M (01 Haziran 2025) Karstik kaynak boşalım modelleme esasları: Susuz karst akifer kavramsal modeli örneği, Seydişehir, Türkiye. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 3 469–483.
IEEE S. S. Çallı ve M. Çelik, “Karstik kaynak boşalım modelleme esasları: Susuz karst akifer kavramsal modeli örneği, Seydişehir, Türkiye”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 3, ss. 469–483, 2025.
ISNAD Çallı, Süleyman Selim - Çelik, Mehmet. “Karstik Kaynak boşalım Modelleme esasları: Susuz Karst Akifer Kavramsal Modeli örneği, Seydişehir, Türkiye”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/3 (Haziran 2025), 469-483.
JAMA Çallı SS, Çelik M. Karstik kaynak boşalım modelleme esasları: Susuz karst akifer kavramsal modeli örneği, Seydişehir, Türkiye. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:469–483.
MLA Çallı, Süleyman Selim ve Mehmet Çelik. “Karstik Kaynak boşalım Modelleme esasları: Susuz Karst Akifer Kavramsal Modeli örneği, Seydişehir, Türkiye”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 3, 2025, ss. 469-83.
Vancouver Çallı SS, Çelik M. Karstik kaynak boşalım modelleme esasları: Susuz karst akifer kavramsal modeli örneği, Seydişehir, Türkiye. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(3):469-83.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.