Araştırma Makalesi
BibTex RIS Kaynak Göster

Su arıtma prosesinde ters osmoz ve nanofiltrasyon membranlarının karşılaştırılması

Yıl 2025, Cilt: 31 Sayı: 3, 499 - 505, 30.06.2025

Öz

Su yaşamın devamı için vazgeçilmezdir. Ancak dünyadaki tatlı su kaynakları her geçen gün azalmaktadır. Bu nedenle mevcut su kaynaklarının etkin yönetimi ve atık suların arıtılması önem kazanmaktadır. Bu çalışmada su arıtımında öne çıkan iki membran filtrasyon prosesi, ters osmoz ve nanofiltrasyon prosesleri karşılaştırılmıştır. Bu karşılaştırmada aynı üretici firmaya ait ticari NF90 nanofiltrasyon membranı ve BW30 ters osmoz membranı kullanıldı. Besleme çözeltisi olarak ise musluk suyu, 2000 ppm NaCl çözeltisi ve sentetik yağlı çözeltinin ultrafiltrasyon süzüntüsü seçildi. Ultrafiltrasyon işlemi ile yalnızca ön arıtma gerçekleştirildi. Her iki membranın toplam çözünmüş katı madde reddi oranları birbirine yakın olmakla birlikte, NF90 membranı ile elde edilen akı tüm basınç değerlerinde BW30 membranı ile elde edilen akının yaklaşık iki katıdır. Su arıtmada her iki membran da aynı miktarda enerji tükettiğinden NF membranlarla su arıtmanın daha ekonomik olduğu sonucu elde edilmiştir.

Kaynakça

  • [1] Manju S, Sagar N. “Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India”. Renewable & Sustainable Energy Reviews, 73, 594-609, 2017.
  • [2] WHO/UNICEF Joint Water Supply & Sanitation Monitoring Programme. Progress on Drinking Water and Sanitation: 2014 Update. World Health Organization, 2014.
  • [3] Dotto GL, McKay G. “Current scenario and challenges in adsorption for water treatment”. Journal of Environmental Chemical Engineering, 8(4), 103988, 2020.
  • [4] Ang WL, Mohammad AW, Hilal N, Leo CP. “A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants”. Desalination, 363, 2-18, 2015.
  • [5] Crini G, Lichtfouse E. “Advantages and disadvantages of techniques used for wastewater treatment”. Environmental Chemistry Letters, 17(1), 145-155, 2019.
  • [6] Kyzas GZ, Matis KA. “Flotation in Water and Wastewater Treatment”. Processes, 6(8), 116, 2018.
  • [7] Sena M, Hicks A. “Life cycle assessment review of struvite precipitation in wastewater treatment”. Resources Conservation and Recycling, 139, 194-204, 2018.
  • [8] Oturan MA, Aaron JJ. “Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review”. Critical Reviews in Environmental Science and Technology, 44(23), 2577-2641, 2014.
  • [9] Hu HS, Yang MD, Dang H. “Treatment of strong acid dye wastewater by solvent extraction”. Separation and Purification Technology, 42(2), 129-136, 2005.
  • [10] Wakamiya W. "Shale-oil-wastewater treatment by evaporation". 73rd Annual American Institute of Chemical Engineers Meeting, Chicago, IL, USA, 16-20 November 1980.
  • [11] Ying WC, Zhang W, Chang QG, Jiang WX, Li GH. “Improved methods for carbon adsorption studies for water and wastewater treatment”. Environmental Progress, 25(2), 110-120, 2006.
  • [12] Eom TH, Lee CH, Kim J.H, Lee CH. “Development of an ion exchange system for plating wastewater treatment”. Desalination, 180(1-3), 163-172, 2005.
  • [13] Schröder P, Navarro-Aviñó J, Azaizeh H, Goldhirsh AG, DiGregorio S, Komives T, Langergraber G, Lenz A, Maestri E, Memon AR. “Using phytoremediation technologies to upgrade waste water treatment in Europe”. Environmental Science and Pollution ResearchInternational, 14(7), 490-497, 2007.
  • [14] Chen G. “Electrochemical technologies in wastewater treatment”. Separation and Purification Technology, 38(1), 11-41, 2004.
  • [15] Tomei MC, Mosca AD, Clagnan E, Brusetti L. “Anaerobic biodegradation of phenol in wastewater treatment: achievements and limits”. Applied Microbiology and Biotechnology, 105(6), 2195-2224, 2021.
  • [16] Chang IS, Kim SN. “Wastewater treatment using membrane filtration-effect of biosolids concentration on cake resistance”. Process Biochemistry, 40(3-4), 1307-1314, 2005.
  • [17] Mert BK, Doğan EC, Balcı E, Tilki YM, Aksu S, Gören AY, Aydıner C. “Tekstil endüstrisinde bütünleşik membran sistemi ile su geri kazanımı ve hibrit ileri oksidasyon/membran filtrasyonu ile konsantrelerin arıtımı ve yönetimi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(3), 468-475, 2018.
  • [18] Doğan EC, Aydıner C, Mert BK, Narcı AO, Kılıçoğlu O, Durna E, Akbacak UA. “Kağıt endüstrisi atıksularının yeniden kullanımında uygun nanofiltrasyon membranların belirlenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(3), 280-288, 2017.
  • [19] Bazzarelli F, Piacentini E, Poerio T, Mazzei R, Cassano A, Giorno L. “Advances in membrane operations for water purification and biophenols recovery/valorization from OMWWs”. Journal of Membrane Science, 497, 402-409, 2016.
  • [20] Deng H. “A review on the application of ozonation to NF/RO concentrate for municipal wastewater reclamation”. Journal of Hazardous Material, 391, 122071, 2020.
  • [21] Pearce G. “Introduction to membranes: Filtration for water and wastewater treatment”. Filtration & Separation, 44(2), 24-27, 2007.
  • [22] Beier SP. Pressure Driven Membrane Processes. 3rd ed. London, UK, BookBooN, 2007.
  • [23] Matsuura T. Synthetic Membranes and Membrane Separation Processes. 1st ed. Boca Raton, FL, USA, CRC Press, 1993.
  • [24] ElSherbiny IMA, Panglisch S. “Enhancing the Efficiency of Membrane Processes for Water Treatment”. Membranes, 11(3), 215, 2021.
  • [25] Gürel L, Büyükgüngör H. “Kütle aktariminin membran sistemlerindeki rolü”. Pamukkale University Journal of Engineering Sciences, 21(6), 224-238, 2015.
  • [26] Zhang WX, Luo JQ, Ding LH, Jaffrin MY. “A review on flux decline control strategies in pressure-driven membrane processes”. Industrial & Engineering Chemistry Research, 54(11), 2843-2861, 2015.
  • [27] Wakeman RJ, Williams CJ. “Additional techniques to improve microfiltration”. Separation and Purification Technology, 26(1), 3-18, 2002.
  • [28] Anis SF, Hashaikeh R, Hilal N. “Microfiltration membrane processes: A review of research trends over the past decade”. Journal of Water Process Engineering, 32, 100941, 2019.
  • [29] Gao W, Liang H, Ma J, Han M, Chen ZL, Han ZS, Li GB. “Membrane fouling control in ultrafiltration technology for drinking water production: A review”. Desalination, 272(1-3), 1-8, 2011.
  • [30] Shi XF, Tal G, Hankins NP, Gitis V. “Fouling and cleaning of ultrafiltration membranes: A review”. Journal of Water Process Engineering, 1, 121-138, 2014.
  • [31] Busch M, Chu R, Kolbe U, Meng QQ, Li SJ. “Ultrafiltration pretreatment to reverse osmosis for seawater desalination-three years field experience in the Wangtan Datang power plant”. Desalination and Water Treatment, 10(1-3), 1-20, 2009.
  • [32] Knops F, Van H, Futselaar H, Broens L. “Economic evaluation of a new ultrafiltration membrane for pretreatment of seawater reverse osmosis”. Desalination, 203(1-3), 300-306, 2007.
  • [33] Lee S, Lee CH. “Microfiltration and ultrafiltration as a pretreatment for nanofiltration of surface water”. Separation Science and Technology, 41(1), 1-23, 2006.
  • [34] Tabatabai SAA, Schippers JC, Kennedy MD. “Effect of coagulation on fouling potential and removal of algal organic matter in ultrafiltration pretreatment to seawater reverse osmosis”. Water Research, 59, 283-294, 2014.
  • [35] Li D, Wang HT. “Recent developments in reverse osmosis desalination membranes”. Journal of Materials Chemistry, 20(22), 4551-4566, 2010.
  • [36] Wenten IG, Khoiruddin. “Reverse osmosis applications: Prospect and challenges”. Desalination, 391, 112-125, 2016.
  • [37] Wijmans JG, Baker RW. “The solution-diffusion model-a review”. Journal of Membrane Science, 107(1-2), 1-21, 1995.
  • [38] Subramani A, Jacangelo JG. “Treatment technologies for reverse osmosis concentrate volume minimization: A review”. Separation and Purification Technology, 122, 472-489, 2014.
  • [39] Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P. “Reverse osmosis desalination: water sources, technology, and today's challenges”. Water Research, 43(9), 2317-2348, 2009.
  • [40] Van der BB, Mänttäri M, Nyström M. “Drawbacks of applying nanofiltration and how to avoid them: a review”. Separation and Purification Technology, 63(2), 251-263, 2008.
  • [41] Hilal N, Al-Zoubi H, Darwish NA, Mohammad AW, Abu AM. “A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modelling, and atomic force microscopy”. Desalination, 170(3), 281-308, 2004.
  • [42] Mohammad AW, Teow YH, Ang WL, Chung YT, OatleyRadcliffe DL, Hilal N. “Nanofiltration membranes review: Recent advances and future prospects”. Desalination, 356, 226-254, 2015.
  • [43] Oatley-Radcliffe DL, Walters M, Ainscough TJ, Williams PM, Mohammad AW, Hilal N. “Nanofiltration membranes and processes: A review of research trends over the past decade”. Journal of Water Process Engineering, 19, 164171, 2017.
  • [44] Shon HK, Phuntsho S, Chaudhary DS, Vigneswaran S, Cho J. “Nanofiltration for water and wastewater treatment–a mini review”. Drinking Water Engineering and Science, 6(1), 47-53, 2013.
  • [45] Paul M, Jons SD. “Chemistry and fabrication of polymeric nanofiltration membranes: A review”. Polymer, 103, 417-456, 2016.
  • [46] Kosutic K, Dolar D, Asperger D, Kunst B. “Removal of antibiotics from a model wastewater by RO/NF membranes”. Separation and Purification Technology, 53(3), 244-249, 2007.
  • [47] Nghiem LD, Manis A, Soldenhoff K, Schäfer AI. “Estrogenic hormone removal from wastewater using NF/RO membranes”. Journal of Membrane Science, 242(1-2), 3745, 2004.
  • [48] Sun XF, Wang CW, Li YB, Wang WG, Wei J. “Treatment of phenolic wastewater by combined UF and NF/RO processes”. Desalination, 355, 68-74, 2015.
  • [49] Rusydi AF. "Correlation between conductivity and total dissolved solid in various type of water: A review". IOP Conference Series: Earth and Environmental Science, Bandung, Indonesia, 18-19 October 2017.
  • [50] Visconti F, De Paz JM, Rubio JL. “An empirical equation to calculate soil solution electrical conductivity at 25 degrees C from major ion concentrations”. European Journal of Soil Science, 61(6), 980-993, 2010.
  • [51] Li YB, Wei JA, Wang CW, Wang WG. “Comparison of phenol removal in synthetic wastewater by NF or RO membranes”. Desalination and Water Treatment, 22(1-3), 211-219, 2010.
  • [52] Gündogdu M, Jarma YA, Kabay N, Pek TÖ, Yüksel M. “Integration of MBR with NF/RO processes for industrial wastewater reclamation and water reuse-effect of membrane type on product water quality”. Journal of Water Process Engineering, 29, 100574, 2019.
  • [53] Valdivia-Medina RY, Pedro-Valdés S, Laurel-Gómez M. “Agua para uso en laboratorios”. Instituto Nacional de Investigaciones en Metrología, Habana, Cuba, 2010.

Comparison of reverse osmosis and nanofiltration membranes in water purification process

Yıl 2025, Cilt: 31 Sayı: 3, 499 - 505, 30.06.2025

Öz

Water is indispensable for the continuation of life. However, fresh water resources in the world are decreasing day by day. For this reason, effective management of existing water resources and treatment of wastewater becomes important. In this study, two prominent membrane filtration processes in water treatment, reverse osmosis and nanofiltration processes, were compared. In this comparison, commercial NF90 nanofiltration membrane and BW30 reverse osmosis membrane from the same manufacturer were used. Tap water, 2000 ppm NaCl and ultrafiltration filtrate of synthetic oily solution were chosen as the feed solution. Only pretreatment was carried out by ultrafiltration process. Although the total dissolved solids rejection rates of both membranes are close to each other, the flux obtained with the NF90 membrane is approximately twice the flux obtained with the BW30 membrane at all pressure values. Since both membranes consume the same amount of energy in water treatment, it has been concluded that water treatment with NF membranes is more economical.

Kaynakça

  • [1] Manju S, Sagar N. “Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India”. Renewable & Sustainable Energy Reviews, 73, 594-609, 2017.
  • [2] WHO/UNICEF Joint Water Supply & Sanitation Monitoring Programme. Progress on Drinking Water and Sanitation: 2014 Update. World Health Organization, 2014.
  • [3] Dotto GL, McKay G. “Current scenario and challenges in adsorption for water treatment”. Journal of Environmental Chemical Engineering, 8(4), 103988, 2020.
  • [4] Ang WL, Mohammad AW, Hilal N, Leo CP. “A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants”. Desalination, 363, 2-18, 2015.
  • [5] Crini G, Lichtfouse E. “Advantages and disadvantages of techniques used for wastewater treatment”. Environmental Chemistry Letters, 17(1), 145-155, 2019.
  • [6] Kyzas GZ, Matis KA. “Flotation in Water and Wastewater Treatment”. Processes, 6(8), 116, 2018.
  • [7] Sena M, Hicks A. “Life cycle assessment review of struvite precipitation in wastewater treatment”. Resources Conservation and Recycling, 139, 194-204, 2018.
  • [8] Oturan MA, Aaron JJ. “Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review”. Critical Reviews in Environmental Science and Technology, 44(23), 2577-2641, 2014.
  • [9] Hu HS, Yang MD, Dang H. “Treatment of strong acid dye wastewater by solvent extraction”. Separation and Purification Technology, 42(2), 129-136, 2005.
  • [10] Wakamiya W. "Shale-oil-wastewater treatment by evaporation". 73rd Annual American Institute of Chemical Engineers Meeting, Chicago, IL, USA, 16-20 November 1980.
  • [11] Ying WC, Zhang W, Chang QG, Jiang WX, Li GH. “Improved methods for carbon adsorption studies for water and wastewater treatment”. Environmental Progress, 25(2), 110-120, 2006.
  • [12] Eom TH, Lee CH, Kim J.H, Lee CH. “Development of an ion exchange system for plating wastewater treatment”. Desalination, 180(1-3), 163-172, 2005.
  • [13] Schröder P, Navarro-Aviñó J, Azaizeh H, Goldhirsh AG, DiGregorio S, Komives T, Langergraber G, Lenz A, Maestri E, Memon AR. “Using phytoremediation technologies to upgrade waste water treatment in Europe”. Environmental Science and Pollution ResearchInternational, 14(7), 490-497, 2007.
  • [14] Chen G. “Electrochemical technologies in wastewater treatment”. Separation and Purification Technology, 38(1), 11-41, 2004.
  • [15] Tomei MC, Mosca AD, Clagnan E, Brusetti L. “Anaerobic biodegradation of phenol in wastewater treatment: achievements and limits”. Applied Microbiology and Biotechnology, 105(6), 2195-2224, 2021.
  • [16] Chang IS, Kim SN. “Wastewater treatment using membrane filtration-effect of biosolids concentration on cake resistance”. Process Biochemistry, 40(3-4), 1307-1314, 2005.
  • [17] Mert BK, Doğan EC, Balcı E, Tilki YM, Aksu S, Gören AY, Aydıner C. “Tekstil endüstrisinde bütünleşik membran sistemi ile su geri kazanımı ve hibrit ileri oksidasyon/membran filtrasyonu ile konsantrelerin arıtımı ve yönetimi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(3), 468-475, 2018.
  • [18] Doğan EC, Aydıner C, Mert BK, Narcı AO, Kılıçoğlu O, Durna E, Akbacak UA. “Kağıt endüstrisi atıksularının yeniden kullanımında uygun nanofiltrasyon membranların belirlenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(3), 280-288, 2017.
  • [19] Bazzarelli F, Piacentini E, Poerio T, Mazzei R, Cassano A, Giorno L. “Advances in membrane operations for water purification and biophenols recovery/valorization from OMWWs”. Journal of Membrane Science, 497, 402-409, 2016.
  • [20] Deng H. “A review on the application of ozonation to NF/RO concentrate for municipal wastewater reclamation”. Journal of Hazardous Material, 391, 122071, 2020.
  • [21] Pearce G. “Introduction to membranes: Filtration for water and wastewater treatment”. Filtration & Separation, 44(2), 24-27, 2007.
  • [22] Beier SP. Pressure Driven Membrane Processes. 3rd ed. London, UK, BookBooN, 2007.
  • [23] Matsuura T. Synthetic Membranes and Membrane Separation Processes. 1st ed. Boca Raton, FL, USA, CRC Press, 1993.
  • [24] ElSherbiny IMA, Panglisch S. “Enhancing the Efficiency of Membrane Processes for Water Treatment”. Membranes, 11(3), 215, 2021.
  • [25] Gürel L, Büyükgüngör H. “Kütle aktariminin membran sistemlerindeki rolü”. Pamukkale University Journal of Engineering Sciences, 21(6), 224-238, 2015.
  • [26] Zhang WX, Luo JQ, Ding LH, Jaffrin MY. “A review on flux decline control strategies in pressure-driven membrane processes”. Industrial & Engineering Chemistry Research, 54(11), 2843-2861, 2015.
  • [27] Wakeman RJ, Williams CJ. “Additional techniques to improve microfiltration”. Separation and Purification Technology, 26(1), 3-18, 2002.
  • [28] Anis SF, Hashaikeh R, Hilal N. “Microfiltration membrane processes: A review of research trends over the past decade”. Journal of Water Process Engineering, 32, 100941, 2019.
  • [29] Gao W, Liang H, Ma J, Han M, Chen ZL, Han ZS, Li GB. “Membrane fouling control in ultrafiltration technology for drinking water production: A review”. Desalination, 272(1-3), 1-8, 2011.
  • [30] Shi XF, Tal G, Hankins NP, Gitis V. “Fouling and cleaning of ultrafiltration membranes: A review”. Journal of Water Process Engineering, 1, 121-138, 2014.
  • [31] Busch M, Chu R, Kolbe U, Meng QQ, Li SJ. “Ultrafiltration pretreatment to reverse osmosis for seawater desalination-three years field experience in the Wangtan Datang power plant”. Desalination and Water Treatment, 10(1-3), 1-20, 2009.
  • [32] Knops F, Van H, Futselaar H, Broens L. “Economic evaluation of a new ultrafiltration membrane for pretreatment of seawater reverse osmosis”. Desalination, 203(1-3), 300-306, 2007.
  • [33] Lee S, Lee CH. “Microfiltration and ultrafiltration as a pretreatment for nanofiltration of surface water”. Separation Science and Technology, 41(1), 1-23, 2006.
  • [34] Tabatabai SAA, Schippers JC, Kennedy MD. “Effect of coagulation on fouling potential and removal of algal organic matter in ultrafiltration pretreatment to seawater reverse osmosis”. Water Research, 59, 283-294, 2014.
  • [35] Li D, Wang HT. “Recent developments in reverse osmosis desalination membranes”. Journal of Materials Chemistry, 20(22), 4551-4566, 2010.
  • [36] Wenten IG, Khoiruddin. “Reverse osmosis applications: Prospect and challenges”. Desalination, 391, 112-125, 2016.
  • [37] Wijmans JG, Baker RW. “The solution-diffusion model-a review”. Journal of Membrane Science, 107(1-2), 1-21, 1995.
  • [38] Subramani A, Jacangelo JG. “Treatment technologies for reverse osmosis concentrate volume minimization: A review”. Separation and Purification Technology, 122, 472-489, 2014.
  • [39] Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P. “Reverse osmosis desalination: water sources, technology, and today's challenges”. Water Research, 43(9), 2317-2348, 2009.
  • [40] Van der BB, Mänttäri M, Nyström M. “Drawbacks of applying nanofiltration and how to avoid them: a review”. Separation and Purification Technology, 63(2), 251-263, 2008.
  • [41] Hilal N, Al-Zoubi H, Darwish NA, Mohammad AW, Abu AM. “A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modelling, and atomic force microscopy”. Desalination, 170(3), 281-308, 2004.
  • [42] Mohammad AW, Teow YH, Ang WL, Chung YT, OatleyRadcliffe DL, Hilal N. “Nanofiltration membranes review: Recent advances and future prospects”. Desalination, 356, 226-254, 2015.
  • [43] Oatley-Radcliffe DL, Walters M, Ainscough TJ, Williams PM, Mohammad AW, Hilal N. “Nanofiltration membranes and processes: A review of research trends over the past decade”. Journal of Water Process Engineering, 19, 164171, 2017.
  • [44] Shon HK, Phuntsho S, Chaudhary DS, Vigneswaran S, Cho J. “Nanofiltration for water and wastewater treatment–a mini review”. Drinking Water Engineering and Science, 6(1), 47-53, 2013.
  • [45] Paul M, Jons SD. “Chemistry and fabrication of polymeric nanofiltration membranes: A review”. Polymer, 103, 417-456, 2016.
  • [46] Kosutic K, Dolar D, Asperger D, Kunst B. “Removal of antibiotics from a model wastewater by RO/NF membranes”. Separation and Purification Technology, 53(3), 244-249, 2007.
  • [47] Nghiem LD, Manis A, Soldenhoff K, Schäfer AI. “Estrogenic hormone removal from wastewater using NF/RO membranes”. Journal of Membrane Science, 242(1-2), 3745, 2004.
  • [48] Sun XF, Wang CW, Li YB, Wang WG, Wei J. “Treatment of phenolic wastewater by combined UF and NF/RO processes”. Desalination, 355, 68-74, 2015.
  • [49] Rusydi AF. "Correlation between conductivity and total dissolved solid in various type of water: A review". IOP Conference Series: Earth and Environmental Science, Bandung, Indonesia, 18-19 October 2017.
  • [50] Visconti F, De Paz JM, Rubio JL. “An empirical equation to calculate soil solution electrical conductivity at 25 degrees C from major ion concentrations”. European Journal of Soil Science, 61(6), 980-993, 2010.
  • [51] Li YB, Wei JA, Wang CW, Wang WG. “Comparison of phenol removal in synthetic wastewater by NF or RO membranes”. Desalination and Water Treatment, 22(1-3), 211-219, 2010.
  • [52] Gündogdu M, Jarma YA, Kabay N, Pek TÖ, Yüksel M. “Integration of MBR with NF/RO processes for industrial wastewater reclamation and water reuse-effect of membrane type on product water quality”. Journal of Water Process Engineering, 29, 100574, 2019.
  • [53] Valdivia-Medina RY, Pedro-Valdés S, Laurel-Gómez M. “Agua para uso en laboratorios”. Instituto Nacional de Investigaciones en Metrología, Habana, Cuba, 2010.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Ahmet Bora Yavuz

Osman Nuri Ata

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 29 Mayıs 2024
Kabul Tarihi 9 Eylül 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 3

Kaynak Göster

APA Yavuz, A. B., & Ata, O. N. (2025). Comparison of reverse osmosis and nanofiltration membranes in water purification process. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(3), 499-505.
AMA Yavuz AB, Ata ON. Comparison of reverse osmosis and nanofiltration membranes in water purification process. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Haziran 2025;31(3):499-505.
Chicago Yavuz, Ahmet Bora, ve Osman Nuri Ata. “Comparison of Reverse Osmosis and Nanofiltration Membranes in Water Purification Process”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 3 (Haziran 2025): 499-505.
EndNote Yavuz AB, Ata ON (01 Haziran 2025) Comparison of reverse osmosis and nanofiltration membranes in water purification process. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 3 499–505.
IEEE A. B. Yavuz ve O. N. Ata, “Comparison of reverse osmosis and nanofiltration membranes in water purification process”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 3, ss. 499–505, 2025.
ISNAD Yavuz, Ahmet Bora - Ata, Osman Nuri. “Comparison of Reverse Osmosis and Nanofiltration Membranes in Water Purification Process”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/3 (Haziran 2025), 499-505.
JAMA Yavuz AB, Ata ON. Comparison of reverse osmosis and nanofiltration membranes in water purification process. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:499–505.
MLA Yavuz, Ahmet Bora ve Osman Nuri Ata. “Comparison of Reverse Osmosis and Nanofiltration Membranes in Water Purification Process”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 3, 2025, ss. 499-05.
Vancouver Yavuz AB, Ata ON. Comparison of reverse osmosis and nanofiltration membranes in water purification process. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(3):499-505.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.