In this research, by using the principle of quantum calculus, we introduce a modified fractional derivative operator $\mathcal{T}^{\xi,\digamma}_{q,\varsigma}$ of the analytic functions in the open unit disc $\diamondsuit=\{\varsigma:\varsigma\in\mathbb{C},|\varsigma|<1\}$. The operator $\mathcal{T}^{\xi,\digamma}_{q,\varsigma}$ can then be used to introduce a new subclass of analytic functions $\mathcal{D}\bigoplus(\vartheta,\digamma,d,\xi,\gamma;q)$. We present the necessary conditions for functions belonging to the subclass $\mathcal{D}\bigoplus(\vartheta,\digamma,d,\xi,\gamma;q) $.\\
Furthermore, we discuss a growth and distortion bounds, the convolution condition, and the radii of starlikeness. In addition, we present neighbourhoods problems involving the $\mathfrak{q}$-analogue of a modified Tremblay operator for functions in the introduced class $\mathcal{D}\bigoplus(\vartheta,\digamma,d,\xi,\gamma;q)$.
Analytic functions Starlikeness Radii of starlikeness Neighbourhoods Problems Fractional Operator q-calculus
This research is the original work of the authors and has not been published elsewhere. The authors confirm that this manuscript complies with the ethical standards of the journal and that no data fabrication, falsification, plagiarism, or inappropriate data manipulation occurred during the research.
Philadelphia University
Birincil Dil | İngilizce |
---|---|
Konular | Matematiksel Yöntemler ve Özel Fonksiyonlar, Matematikte Kompleks Sistemler |
Bölüm | Articles |
Yazarlar | |
Erken Görünüm Tarihi | 6 Aralık 2024 |
Yayımlanma Tarihi | 28 Aralık 2024 |
Gönderilme Tarihi | 20 Ağustos 2024 |
Kabul Tarihi | 9 Ekim 2024 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 6 Sayı: 2 |