Araştırma Makalesi
BibTex RIS Kaynak Göster

Optimal Placement Allocation of DGs in Northwest Anatolia Power System by Using a Multi-Objective Genetic Algorithm

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1481051

Öz

The voltage profile and power losses of traditional network are influenced by the location, power and the number of Distributed Generation (DG) resources. To prevent the network from being adversely affected by DG resources, the integration of DG resources into the grid is done using various optimization methods. In this study, the allocation of DG resources in the Northwest Anatolian (NWA) power system with 114 buses, was discussed by using one of the most common optimization methods, the Genetic Algorithm (GA). For this purpose, minimizing active power losses, enhancement of voltage profile and maximization of voltage stability index were used as objective functions. 4 different cases were created and DG resources were integrated according to these cases. The power system was examined in terms of active power losses, index values and voltage profile. In two of these cases, load increase was made in the power system to evaluate the possible load increases that may occur during the operation. The simulation results verified the effectiveness of the recommended approach; the active power losses decreased, the voltage profile enhanced and the voltage stability index increased within the specified range. It has been observed that the proposed approach reduces losses in the power system by between 27.84% and 33.63% for different conditions.

Kaynakça

  • [1] Ackermann, T., Ran Andersson, G. ve Sö Der A, L. ‘Distributed generation: a definition.’ Electric Power Systems Research, 57, 195–204, (2001).
  • [2] G. Pepermans, J. Driesen, D. Haeseldonckx, R. Belmans, and W. D’haeseleer, “Distributed generation: definition, benefits and issues,” Energy Policy, 33(6), 787–798, (2005).
  • [3] Türkiye Elektrik İletim Anonim Şirketi, “Türkiye Elektrik İletim Anonim Şirketi Teiaş 2021 Yılı Faaliyet Raporu.” [Online]. Available:https://www.teias.gov.tr/faaliyet-raporlari , (2021).
  • [4] J. A. Sa’ed, M. K. Jubran, S. Favuzza, and F. Massaro, “Reassessment of voltage stability for distribution networks in presence of DG”, IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), 1-5, (2016).
  • [5] N. Dkhili, J. Eynard, S. Thil, and S. Grieu, “A survey of modelling and smart management tools for power grids with prolific distributed generation,” Sustainable Energy, Grids and Networks, 21(100284), (2020).
  • [6] S. Mashayekh, M. Stadler, G. Cardoso, and M. Heleno, “A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids,”, Applied Energy, 187(154-168), (2016).
  • [7] A. A. M. Frrı ve M. T. Guneser, “Belirsiz Yük Koşullarında Bir Dek Sisteminin Pratik Radyal Dağıtımlı Besleyicide Tekno-ekonomik ve Çevresel Analizi”, Politeknik Dergisi, 26(2),731–741, (2023).
  • [8] N. Hosseinzadeh, A. Aziz, A. Mahmud, A. Gargoom, and M. Rabbani, “Voltage stability of power systems with renewable-energy inverter-based generators: A review,” Electronics (Switzerland), 10(2), (2021).
  • [9] I. Oladeji, R. Zamora, and T. T. Lie, “Security constrained optimal placement of renewable energy sources distributed generation for modern grid operations,” Sustainable Energy, Grids and Networks, 32(100897), (2022).
  • [10] H. Hashemi-Dezaki, A.-M. Hariri, and M. A. Hejazi, “Impacts of load modeling on generalized analytical reliability assessment of smart grid under various penetration levels of wind/solar/non-renewable distributed generations,” Sustainable Energy, Grids and Networks, 20, (2019).
  • [11] S. L. Gbadamosi and N. I. Nwulu, “A comparative analysis of generation and transmission expansion planning models for power loss minimization,” Sustainable Energy, Grids and Networks, 26(100456), (2021).
  • [12] D. H. Popović, J. A. Greatbanks, M. Begović, and A. Pregelj, “Placement of distributed generators and reclosers for distribution network security and reliability,” International Journal of Electrical Power and Energy Systems, 27(5–6), 398–408, (2005).
  • [13] S. Heslop, I. Macgill, and J. Fletcher, “Maximum PV generation estimation method for residential low voltage feeders,” Sustainable Energy, Grids and Networks, 7, 58–69, (2016).
  • [14] J. Bojod and B. Erkal, “Practical Radial Distribution Feeder for Techno Economic in DERs based on ANN and Chameleon Optimization Algorithms”, Politeknik Dergisi, 26(3),1285–1297, (2023).
  • [15] Z. Öztürk ve A. Demırcı, “Yenilenebilir Enerji Kaynaklı Hibrit Güç Sistemlerinin Farklı Penetrasyon ve Şebeke Tarifeleri Altında Optimizasyonu”, Politeknik Dergisi, 26(3), 1267–1275, (2023).
  • [16] R. B. Aymaz, "The effects of renewable energy sources on voltage stability in Northwest Anatolia power system," M.S. thesis, Dept. of Electrical Engineering, Inst. of Sci., Sakarya Univ., Sakarya, Türkiye, (2022).
  • [17] N. Khalesi, N. Rezaei, and M. R. Haghifam, “DG allocation with application of dynamic programming for loss reduction and reliability improvement,” International Journal of Electrical Power & Energy Systems, 33(2), 288–295, (2011).
  • [18] J. B. V. Subrahmanyam and C. Radhakrishna, “Distributed generator placement and sizing in unbalanced radial distribution system,” International Journal of Electrical and Computer Engineering, vol. 3(4), 753–760, (2009).
  • [19] A. Elmitwally, “A new algorithm for allocating multiple distributed generation units based on load centroid concept,” Alexandria Engineering Journal, 52(4), 655–663, (2013).
  • [20] R. Shi, C. Cui, K. Su, and Z. Zain, “Comparison Study of Two Meta-heuristic Algorithms with their Applications to Distributed Generation Planning,” Energy Procedia, 12, 245–252, (2011).
  • [21] B. Poornazaryan, P. Karimyan, G. B. Gharehpetian, and M. Abedi, “Optimal allocation and sizing of DG units considering voltage stability, losses and load variations,” International Journal of Electrical Power & Energy Systems, 79, 42–52, (2016).
  • [22] M. Gomez-Gonzalez, A. López, and F. Jurado, “Optimization of distributed generation systems using a new discrete PSO and OPF,” Electric Power Systems Research, 84(1), 174–180, (2012).
  • [23] T. Boonraksa, P. Boonraksa, B. Marungsri, and S. L. L. Wynn, “Location and Sizing Optimization of Distributed Generation Systems on Smart Grid with the Whale Optimization Algorithm,” in Proceeding of the 2021 9th International Electrical Engineering Congress, iEECON 2021, 81–84, (2021).
  • [24] S. Md. R. H. Shawon, X. Liang, and M. Janbakhsh, “Optimal Placement of Distributed Generation Units for Microgrid Planning in Distribution Networks,” IEEE Trans Ind Appl, 1–11, (2023).
  • [25] N. B. Roy and D. Das, “Optimal allocation of active and reactive power of dispatchable distributed generators in a droop controlled islanded microgrid considering renewable generation and load demand uncertainties,” Sustainable Energy, Grids and Networks, 27(100482), (2021). [26] I. Oladeji, R. Zamora, and T. T. Lie, “Security constrained optimal placement of renewable energy sources distributed generation for modern grid operations,” Sustainable Energy, Grids and Networks, 32(100897), (2022).
  • [27] E. M. Nihat, “380 ve 154 kv’luk kuzeybatı anadolu ebekesi güç akıı benzetimleri”, master thesis, Sakarya University, Faculty of Engineering, (2009).
  • [28] Matlab MathWorks. (2022, 3 Mayıs). Genetic Algorithm Options Options for Genetic Algorithm. https://www.mathworks.com/help/gads/genetic-algorithm.html
  • [29] G. T. Enes, “Sözde Thevenin Eşdeğer Devre Parametreleri Kullanılarak Güç Sistemlerinde Gerilim Kararlılığı Değerlendirmesi”, phd thesis, Sakarya University, Faculty of Engineering, (2021).

Kuzeybatı Anadolu Güç Sisteminde Dağıtık Üretim Kaynaklarının Çok Amaçlı Genetik Algoritma Kullanılarak Optimal Yerleşimi

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1481051

Öz

Geleneksel bir şebekenin gerilim profili ve güç kayıpları, dağıtık üretim kaynaklarının konumu, gücü ve sayısından etkilenmektedir. DG kaynaklarının şebekeyi olumsuz etkilemesini önlemek için, bu kaynakların entegrasyonu çeşitli optimizasyon yöntemleri kullanılarak gerçekleştirilmektedir. Bu çalışmada, 114 baraya sahip Kuzeybatı Anadolu güç sisteminde DG kaynaklarının tahsisi, en yaygın optimizasyon yöntemlerinden biri olan Genetik Algoritma (GA) kullanılarak ele alınmıştır. Bu amaçla, aktif güç kayıplarının minimum yapılması, gerilim seviyesinin iyileştirilmesi ve gerilim kararlılık indeksinin maksimum yapılması hedef fonksiyonlar olarak belirlenmiştir. Çalışmada 4 farklı senaryo oluşturulmuş ve DG kaynakları bu senaryolara göre entegre edilmiştir. Güç sistemi, aktif güç kayıpları, indeks değerleri ve gerilim profili açısından incelenmiştir. Bu senaryolardan ikisinde, işletme sırasında meydana gelebilecek olası yük artışlarını değerlendirmek amacıyla güç sisteminde yük artışı yapılmıştır. Simülasyon sonuçları, önerilen yaklaşımın etkinliğini doğrulamış; aktif güç kaybının azaldığını, gerilim seviyesinin iyileştiğini ve gerilim kararlılık indeksinin belirlenen aralık içinde arttığını göstermiştir. Önerilen yaklaşımın, güç sistemindeki kayıpları farklı çalışma koşullarına bağlı olarak %27,84 ile %33,63 arasında azalttığı gözlemlenmiştir.

Kaynakça

  • [1] Ackermann, T., Ran Andersson, G. ve Sö Der A, L. ‘Distributed generation: a definition.’ Electric Power Systems Research, 57, 195–204, (2001).
  • [2] G. Pepermans, J. Driesen, D. Haeseldonckx, R. Belmans, and W. D’haeseleer, “Distributed generation: definition, benefits and issues,” Energy Policy, 33(6), 787–798, (2005).
  • [3] Türkiye Elektrik İletim Anonim Şirketi, “Türkiye Elektrik İletim Anonim Şirketi Teiaş 2021 Yılı Faaliyet Raporu.” [Online]. Available:https://www.teias.gov.tr/faaliyet-raporlari , (2021).
  • [4] J. A. Sa’ed, M. K. Jubran, S. Favuzza, and F. Massaro, “Reassessment of voltage stability for distribution networks in presence of DG”, IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), 1-5, (2016).
  • [5] N. Dkhili, J. Eynard, S. Thil, and S. Grieu, “A survey of modelling and smart management tools for power grids with prolific distributed generation,” Sustainable Energy, Grids and Networks, 21(100284), (2020).
  • [6] S. Mashayekh, M. Stadler, G. Cardoso, and M. Heleno, “A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids,”, Applied Energy, 187(154-168), (2016).
  • [7] A. A. M. Frrı ve M. T. Guneser, “Belirsiz Yük Koşullarında Bir Dek Sisteminin Pratik Radyal Dağıtımlı Besleyicide Tekno-ekonomik ve Çevresel Analizi”, Politeknik Dergisi, 26(2),731–741, (2023).
  • [8] N. Hosseinzadeh, A. Aziz, A. Mahmud, A. Gargoom, and M. Rabbani, “Voltage stability of power systems with renewable-energy inverter-based generators: A review,” Electronics (Switzerland), 10(2), (2021).
  • [9] I. Oladeji, R. Zamora, and T. T. Lie, “Security constrained optimal placement of renewable energy sources distributed generation for modern grid operations,” Sustainable Energy, Grids and Networks, 32(100897), (2022).
  • [10] H. Hashemi-Dezaki, A.-M. Hariri, and M. A. Hejazi, “Impacts of load modeling on generalized analytical reliability assessment of smart grid under various penetration levels of wind/solar/non-renewable distributed generations,” Sustainable Energy, Grids and Networks, 20, (2019).
  • [11] S. L. Gbadamosi and N. I. Nwulu, “A comparative analysis of generation and transmission expansion planning models for power loss minimization,” Sustainable Energy, Grids and Networks, 26(100456), (2021).
  • [12] D. H. Popović, J. A. Greatbanks, M. Begović, and A. Pregelj, “Placement of distributed generators and reclosers for distribution network security and reliability,” International Journal of Electrical Power and Energy Systems, 27(5–6), 398–408, (2005).
  • [13] S. Heslop, I. Macgill, and J. Fletcher, “Maximum PV generation estimation method for residential low voltage feeders,” Sustainable Energy, Grids and Networks, 7, 58–69, (2016).
  • [14] J. Bojod and B. Erkal, “Practical Radial Distribution Feeder for Techno Economic in DERs based on ANN and Chameleon Optimization Algorithms”, Politeknik Dergisi, 26(3),1285–1297, (2023).
  • [15] Z. Öztürk ve A. Demırcı, “Yenilenebilir Enerji Kaynaklı Hibrit Güç Sistemlerinin Farklı Penetrasyon ve Şebeke Tarifeleri Altında Optimizasyonu”, Politeknik Dergisi, 26(3), 1267–1275, (2023).
  • [16] R. B. Aymaz, "The effects of renewable energy sources on voltage stability in Northwest Anatolia power system," M.S. thesis, Dept. of Electrical Engineering, Inst. of Sci., Sakarya Univ., Sakarya, Türkiye, (2022).
  • [17] N. Khalesi, N. Rezaei, and M. R. Haghifam, “DG allocation with application of dynamic programming for loss reduction and reliability improvement,” International Journal of Electrical Power & Energy Systems, 33(2), 288–295, (2011).
  • [18] J. B. V. Subrahmanyam and C. Radhakrishna, “Distributed generator placement and sizing in unbalanced radial distribution system,” International Journal of Electrical and Computer Engineering, vol. 3(4), 753–760, (2009).
  • [19] A. Elmitwally, “A new algorithm for allocating multiple distributed generation units based on load centroid concept,” Alexandria Engineering Journal, 52(4), 655–663, (2013).
  • [20] R. Shi, C. Cui, K. Su, and Z. Zain, “Comparison Study of Two Meta-heuristic Algorithms with their Applications to Distributed Generation Planning,” Energy Procedia, 12, 245–252, (2011).
  • [21] B. Poornazaryan, P. Karimyan, G. B. Gharehpetian, and M. Abedi, “Optimal allocation and sizing of DG units considering voltage stability, losses and load variations,” International Journal of Electrical Power & Energy Systems, 79, 42–52, (2016).
  • [22] M. Gomez-Gonzalez, A. López, and F. Jurado, “Optimization of distributed generation systems using a new discrete PSO and OPF,” Electric Power Systems Research, 84(1), 174–180, (2012).
  • [23] T. Boonraksa, P. Boonraksa, B. Marungsri, and S. L. L. Wynn, “Location and Sizing Optimization of Distributed Generation Systems on Smart Grid with the Whale Optimization Algorithm,” in Proceeding of the 2021 9th International Electrical Engineering Congress, iEECON 2021, 81–84, (2021).
  • [24] S. Md. R. H. Shawon, X. Liang, and M. Janbakhsh, “Optimal Placement of Distributed Generation Units for Microgrid Planning in Distribution Networks,” IEEE Trans Ind Appl, 1–11, (2023).
  • [25] N. B. Roy and D. Das, “Optimal allocation of active and reactive power of dispatchable distributed generators in a droop controlled islanded microgrid considering renewable generation and load demand uncertainties,” Sustainable Energy, Grids and Networks, 27(100482), (2021). [26] I. Oladeji, R. Zamora, and T. T. Lie, “Security constrained optimal placement of renewable energy sources distributed generation for modern grid operations,” Sustainable Energy, Grids and Networks, 32(100897), (2022).
  • [27] E. M. Nihat, “380 ve 154 kv’luk kuzeybatı anadolu ebekesi güç akıı benzetimleri”, master thesis, Sakarya University, Faculty of Engineering, (2009).
  • [28] Matlab MathWorks. (2022, 3 Mayıs). Genetic Algorithm Options Options for Genetic Algorithm. https://www.mathworks.com/help/gads/genetic-algorithm.html
  • [29] G. T. Enes, “Sözde Thevenin Eşdeğer Devre Parametreleri Kullanılarak Güç Sistemlerinde Gerilim Kararlılığı Değerlendirmesi”, phd thesis, Sakarya University, Faculty of Engineering, (2021).
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Enerjisi Üretimi (Yenilenebilir Kaynaklar Dahil, Fotovoltaikler Hariç), Elektrik Tesisleri
Bölüm Araştırma Makalesi
Yazarlar

Rukiye B. Aymaz 0000-0002-1683-6190

Mehmet Ali Yalçın 0000-0003-3846-177X

Talha Enes Gümüş 0000-0002-6716-6414

E. Mustafa Yeğin 0000-0002-1665-3132

Erken Görünüm Tarihi 26 Nisan 2025
Yayımlanma Tarihi
Gönderilme Tarihi 28 Mayıs 2024
Kabul Tarihi 2 Nisan 2025
Yayımlandığı Sayı Yıl 2025 ERKEN GÖRÜNÜM

Kaynak Göster

APA B. Aymaz, R., Yalçın, M. A., Gümüş, T. E., Yeğin, E. M. (2025). Optimal Placement Allocation of DGs in Northwest Anatolia Power System by Using a Multi-Objective Genetic Algorithm. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1481051
AMA B. Aymaz R, Yalçın MA, Gümüş TE, Yeğin EM. Optimal Placement Allocation of DGs in Northwest Anatolia Power System by Using a Multi-Objective Genetic Algorithm. Politeknik Dergisi. Published online 01 Nisan 2025:1-1. doi:10.2339/politeknik.1481051
Chicago B. Aymaz, Rukiye, Mehmet Ali Yalçın, Talha Enes Gümüş, ve E. Mustafa Yeğin. “Optimal Placement Allocation of DGs in Northwest Anatolia Power System by Using a Multi-Objective Genetic Algorithm”. Politeknik Dergisi, Nisan (Nisan 2025), 1-1. https://doi.org/10.2339/politeknik.1481051.
EndNote B. Aymaz R, Yalçın MA, Gümüş TE, Yeğin EM (01 Nisan 2025) Optimal Placement Allocation of DGs in Northwest Anatolia Power System by Using a Multi-Objective Genetic Algorithm. Politeknik Dergisi 1–1.
IEEE R. B. Aymaz, M. A. Yalçın, T. E. Gümüş, ve E. M. Yeğin, “Optimal Placement Allocation of DGs in Northwest Anatolia Power System by Using a Multi-Objective Genetic Algorithm”, Politeknik Dergisi, ss. 1–1, Nisan 2025, doi: 10.2339/politeknik.1481051.
ISNAD B. Aymaz, Rukiye vd. “Optimal Placement Allocation of DGs in Northwest Anatolia Power System by Using a Multi-Objective Genetic Algorithm”. Politeknik Dergisi. Nisan 2025. 1-1. https://doi.org/10.2339/politeknik.1481051.
JAMA B. Aymaz R, Yalçın MA, Gümüş TE, Yeğin EM. Optimal Placement Allocation of DGs in Northwest Anatolia Power System by Using a Multi-Objective Genetic Algorithm. Politeknik Dergisi. 2025;:1–1.
MLA B. Aymaz, Rukiye vd. “Optimal Placement Allocation of DGs in Northwest Anatolia Power System by Using a Multi-Objective Genetic Algorithm”. Politeknik Dergisi, 2025, ss. 1-1, doi:10.2339/politeknik.1481051.
Vancouver B. Aymaz R, Yalçın MA, Gümüş TE, Yeğin EM. Optimal Placement Allocation of DGs in Northwest Anatolia Power System by Using a Multi-Objective Genetic Algorithm. Politeknik Dergisi. 2025:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.