Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of dynamic response variability in aluminum honeycomb sandwich panels using PCE and Kriging-based metamodel

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1498060

Öz

The aim of this study is to model the dynamic response variability in commercial aluminum honeycomb sandwich panels. An experimental modal analysis is performed on 35 identical commercial AHSPs. Based on 10,000 samples, a computational model is constructed according to the estimated weight of the panel. The modal frequencies of the 35 samples for the first 10 flexible modes are compared with the computational results and deviations are referred to as errors. The thickness of the facing sheets and thickness of the cell wall of the core are considered as sources of uncertainty. A data-driven meta-model called PCE-Kriging is created.

Etik Beyan

The authors of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission

Destekleyen Kurum

This study was supported by Scientific and Technological Research Council of Turkey (TUBITAK) under the Grant 122M921.

Proje Numarası

TUBITAK 122M921

Teşekkür

The authors thank TUBITAK for their supports.

Kaynakça

  • [1] Xiong J, Du Y, Mousanezhad D, Eydani Asl M, Norato J, Vaziri A., “Sandwich structures with prismatic and foam cores: A review”, Advanced Engineering Materials, 21(1):1800036, (2019).
  • [2] Tan HL, He ZC, Li KX, Li E, Cheng AG, Xu B., “In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson’s ratio”, Composite Structures, 1;229:111415, (2019).
  • [3] Li QQ, Li E, Chen T, Wu L, Wang GQ, He ZC., “Improve the frontal crashworthiness of vehicle through the design of front rail”, Thin-Walled Structures, 1;162:107588, (2021).
  • [4] Tan H, He Z, Li E, Cheng A, Chen T, Tan X, Li Q, Xu B., “Crashworthiness design and multi-objective optimization of a novel auxetic hierarchical honeycomb crash box”, Structural and Multidisciplinary Optimization, Oct;64(4):2009-24, (2021).
  • [5] Xie S, Li H, Yang C, Yao S., “Crashworthiness optimisation of a composite energy-absorbing structure for subway vehicles based on hybrid particle swarm optimization”, Structural and Multidisciplinary Optimization, 58:2291-308 (2018).
  • [6] He W, Liu J, Wang S, Xie D., “Low-velocity impact response and post-impact flexural behaviour of composite sandwich structures with corrugated cores”, Composite Structures, 1;189:37-53, (2018).
  • [7] Bai Y, Wang N, Cheng P, Yu B, Badaruddin MF, Ashri M., “Collapse of Reinforced Thermoplastic Pipe (RTP) under external pressure”, International Conference on Offshore Mechanics and Arctic Engineering, Jan 1 44366: 275-280 (2011).
  • [8] Xiong J, Zhang M, Stocchi A, Hu H, Ma L, Wu L, Zhang Z., “Mechanical behaviors of carbon fiber composite sandwich columns with three-dimensional honeycomb cores under in-plane compression”, Composites Part B: Engineering, Apr 1;60:350-8, (2014).
  • [9] Wang X, Khodaparast HH, Shaw AD, Friswell MI, Zheng G., “Localisation of local nonlinearities in structural dynamics using spatially incomplete measured data”, Mechanical Systems and Signal Processing, Jan 15;99:364-83, (2018).
  • [10] Palomba G, Crupi V, Epasto G., “Collapse modes of aluminium honeycomb sandwich structures under fatigue bending loading”, Thin-Walled Structures, Dec 1;145:106363, (2019).
  • [11] Wang Z, Wang X, Liu K, Zhang J, Lu Z., “Crashworthiness index of honeycomb sandwich structures under low-speed oblique impact”, International Journal of Mechanical Sciences, Oct 15;208:106683, (2021).
  • [12] Palomba G, Epasto G, Crupi V. Lightweight sandwich structures for marine applications: a review. Mechanics of Advanced Materials and Structures. Oct 26;29(26):4839-64 (2022).
  • [13] Sun Y, Li QM., “Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling”, International Journal of Impact Engineering, Feb 1;112:74-115 (2018).
  • [14] Castanie B, Bouvet C, Ginot M., “Review of composite sandwich structure in aeronautic applications”, Composites Part C: Open Access Aug 1;1:100004 (2020).
  • [15] Qi C, Jiang F, Yang S., “Advanced honeycomb designs for improving mechanical properties: A review”, Composites Part B: Engineering, Dec 15;227:109393, (2021).
  • [16] Boschetto A, Bottini L, Macera L, Vatanparast S., “Additive Manufacturing for Lightweighting Satellite Platform”, Applied Sciences, Feb 22;13(5):2809, (2023).
  • [17] Zhang X, Zhou H, Shi W, Zeng F, Zeng H, Chen G., “Vibration tests of 3D printed satellite structure made of lattice sandwich panels”, AIAA Journal, Oct;56(10):4213-7, (2018).
  • [18] Lionnet C, Lardeur P., “A hierarchical approach to the assessment of the variability of interior noise levels measured in passenger cars”, Noise Control Engineering Journal, Jan 1;55(1):29-37, (2007).
  • [19] Oktav A, Anlaş G, Yılmaz Ç., “Assessment of vehicle noise variability through structural transfer path analysis”, International Journal of Vehicle Design, 71(1-4):300-20, (2016).
  • [20] Oberkampf WL, Roy CJ., “Verification and validation in scientific computing”, Cambridge University Press (2010).
  • [21] Begg SH, Welsh MB, Bratvold RB., “Uncertainty vs. Variability: What’s the Difference and Why is it Important?”, SPE Hydrocarbon Economics and Evaluation Symposium May 19 (p. D011S003R002). SPE, (2014).
  • [22] Oktav A., “Determination of the effect of adhesive fillets and viscous damping on the dynamic response of aluminum honeycomb sandwich panels”, Mechanics of Advanced Materials and Structures, Sep 23:1-11, (2023).
  • [23] Dai X, Shao X, Ma C, Yun H, Yang F, Zhang D., “Experimental and numerical investigation on vibration of sandwich plates with honeycomb cores based on radial basis function”, Experimental Techniques, Feb;42:79-92 (2018).
  • [24] Wang YJ, Zhang ZJ, Xue XM, Zhang L., “Free vibration analysis of composite sandwich panels with hierarchical honeycomb sandwich core”, Thin-Walled Structures, Dec 1;145:106425, (2019).
  • [25] Pourriahi V, Heidari-Rarani M, Torabpour Isfahani A., “Influence of geometric parameters on free vibration behavior of an aluminum honeycomb core sandwich beam using experimentally validated finite element models”, Journal of Sandwich Structures & Materials, Feb;24(2):1449-69, (2022).
  • [26] Rahman H, Jamshed R, Hameed H, Raza S., “Finite element analysis (FEA) of honeycomb sandwich panel for continuum properties evaluation and core height influence on dynamic behavior”, Advanced Materials Research, Oct 1; 326:1-0, (2011).
  • [27] Aborehab A, Kassem M, Nemnem A, Kamel M., “Miscellaneous modeling approaches and testing of a satellite honeycomb sandwich plate”, Journal of Applied and Computational Mechanics, Dec 26, (2019).
  • [28] Wang JT, Wang CJ, Zhao JP., “Frequency response function-based model updating using Kriging model”, Mechanical Systems and Signal Processing, Mar 15;87:218-28, (2017).
  • [29] Zhao Z, Wang H, Liu C, Xu X, Sun L, Wang J, Li Y., “An FFT-based method for uncertainty quantification of Nomex honeycomb’s in-plane elastic properties”, Composite Structures, Dec 1;301:116217, (2022).
  • [30] Dey S, Mukhopadhyay T, Naskar S, Dey TK, Chalak HD, Adhikari S., “Probabilistic characterisation for dynamics and stability of laminated soft core sandwich plates”, Journal of Sandwich Structures & Materials, Jan;21(1):366-97, (2019).
  • [31] Zhang F, Du R, Qiao Z, Wang W, Zhang J, Wang X., “Quantitative structural uncertainty analysis of composite honeycomb sandwich using a feedback neural network”, Physica D: Nonlinear Phenomena, Nov 9:133985, (2023).
  • [32] Lajili R, Chikhaoui K, Zergoune Z, Bouazizi ML, Ichchou MN., “Impact of the vibration measurement points geometric coordinates uncertainties on two-dimensional k-space identification: Application to a sandwich plate with honeycomb core”, Mechanical Systems and Signal Processing, Mar 15;167:108509, (2022).
  • [33] Cheng YC, Yeh HC, Lee CK., “Multi-objective optimization of the honeycomb core in a honeycomb structure using uniform design and grey relational analysis”, Engineering Optimization, Feb 1;54(2):286-304, (2022).
  • [34] Dutta S, Ghosh S, Inamdar MM., “Optimisation of tensile membrane structures under uncertain wind loads using PCE and kriging based metamodels”, Structural and Multidisciplinary Optimization, Mar;57:1149-61, (2018).
  • [35] Dutta S., “A sequential metamodel-based method for structural optimization under uncertainty”, Structures, 26:54-65, (2020).
  • [36] Denimal E, Sinou JJ., “Advanced kriging-based surrogate modelling and sensitivity analysis for rotor dynamics with uncertainties”, European Journal of Mechanics-A/Solids, Nov 1;90:104331, (2021).
  • [37] Sudret B., “Global sensitivity analysis using polynomial chaos expansions”, Reliability Engineering & System Safety, Jul 1;93(7):964-79, (2008).
  • [38] Blatman G, Sudret B., “Adaptive sparse polynomial chaos expansion based on least angle regression”, Journal of Computational Physics, Mar 20;230(6):2345-67 (2011).
  • [39] Kleijnen JP., “Kriging metamodeling in simulation: A review”, European Journal of Operational Research, Feb 1;192(3):707-16, (2009).
  • [40] Rasmussen CE, Williams CK., “Gaussian processes for machine learning”, Cambridge, MA: MIT press, (2006).
  • [41] Possenti KA, de Menezes VG, Vandepitte D, Tita V, Medeiros RD., “Detection of changes in dynamic characteristics of composite structures using Kriging metamodeling procedure: Experimental and computational analysis”, Mechanics of Advanced Materials and Structures, Aug 8:1-18, (2023).
  • [42] Schwarz BJ, Richardson MH., “Experimental modal analysis”, CSI Reliability, Oct 4;35(1):1-2, (1999).
  • [43] Avitabile P., “Modal testing: a practitioner's guide”, John Wiley & Sons (2017).
  • [44] Oktav A, Başaran MA, Darıcık F., “Dynamic response optimization of a thermoplastic composite sandwich beam under random vibration”, Mechanics of Advanced Materials and Structures, Jun 19:1-14, (2023).
  • [45] Altıgen Co., Türkiye https://www.6genpanel.com.tr/page12.html#extHeader26-57 accessed on March 23rd, (2025).
  • [46] Santner TJ, Williams BJ, Notz WI, Williams BJ., “The design and analysis of computer experiments”, New York: Springer (2003).
  • [47] Hadj Kacem M, El Hami A, Dammak K, Trabelsi H, Walha L, Haddar M., “Consideration of multi-variable uncertainty using the GPC method for the dynamic study of a two-stage gearbox of a wind turbine”, Mechanics of Advanced Materials and Structures, Oct 20:1-4., DOI: 10.1080/15376494.2022.2138650, (2022).
  • [48] Umesh K, Ganguli R., “Material uncertainty effect on vibration control of smart composite plate using polynomial chaos expansion”, Mechanics of Advanced Materials and Structures, Aug 9;20(7):580-91, (2013).
  • [49] Azrar A, Ben Said M, Azrar L, Aljinaidi AA., “Dynamic analysis of Carbon NanoTubes conveying fluid with uncertain parameters and random excitation”, Mechanics of Advanced Materials and Structures, May 19;26(10):898-913, (2019).
  • [50] Peng X, Ye T, Li J, Wu H, Jiang S, Chen G., “Multi-scale uncertainty quantification of composite laminated plate considering random and interval variables with data driven PCE method”, Mechanics of Advanced Materials and Structures, Nov 19;28(23):2429-39, (2021).
  • [51] Chen M, Zhang X, Pan G., “Data-driven approach for uncertainty quantification and risk analysis of composite cylindrical shells for underwater vehicles”, Mechanics of Advanced Materials and Structures, 14:1-5. DOI: 10.1080/15376494.2023.2190762, (2023).
  • [52] Aversano G, D’Alessio G, Coussement A, Contino F, Parente A., “Combination of polynomial chaos and Kriging for reduced-order model of reacting flow applications”, Results in Engineering, Jun 1;10:100223, (2021).
  • [53] García-Macías E, Ubertini F., “Real-time Bayesian damage identification enabled by sparse PCE-Kriging meta-modelling for continuous SHM of large-scale civil engineering structures”, Journal of Building Engineering, Nov 1;59:105004, (2022).
  • [54] Sinou JJ, Denimal E., “Reliable crack detection in a rotor system with uncertainties via advanced simulation models based on kriging and Polynomial Chaos Expansion”, European Journal of Mechanics-A/Solids, Mar 1;92:104451, (2022).
  • [55] Marelli S, Sudret B., “UQLab: A framework for uncertainty quantification in Matlab”, Vulnerability, Uncertainty, and Risk: Quantification, Mitigation, and Management, Jul 13: 2554-2563, (2014).
  • [56] Li L, He Q, Jing X, Jiang Y, Yan D., “Study on three-point bending behavior of sandwich beams with novel auxetic honeycomb core”, Materials Today Communications, 35:106259, (2023).
  • [57] Dai X, Ye H, Yang W, Qi J, Liu Y, Yuan T, Wang Y., “Mechanical behaviors of inner and outer sidewalls of honeycomb cores subjected to out-of-plane compression”, Aerospace Science and Technology, 127:107659, (2022).
  • [58] Wang WJ, Zhang WM, Guo MF, Yang JS, Ma L., “Energy absorption characteristics of a lightweight auxetic honeycomb under low-velocity impact loading”, Thin-Walled Structures, 185:110577, (2023).
  • [59] Keshavanarayana SR, Shahverdi H, Kothare A, Yang C, Bingenheimer J., “The effect of node bond adhesive fillet on uniaxial in-plane responses of hexagonal honeycomb core”, Composite Structures, 175:111-122, (2017).
  • [60] Kendall P, Sun M, Wowk D, Mechefske C, Kim IY., “Experimental investigation of adhesive fillet size on barely visible impact damage in metallic honeycomb sandwich panels”, Composites Part B: Engineering, 184:107723, (2020).
  • [61] Chen X, Yu G, Wang Z, Feng L, Wu L., “Enhancing out-of-plane compressive performance of carbon fiber composite honeycombs”, Composite Structures, 255:112984, (2021).

Alüminyum Petek Sandviç Panellerde Dinamik Tepki Değişkenliğinin PCE ve Kriging Tabanlı Meta-Model Kullanılarak Değerlendirilmesi

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1498060

Öz

Bu çalışmanın amacı, ticari alüminyum petek sandviç panellerdeki (APSP) dinamik tepki değişkenliğini modellemektir. Özdeş 35 ticari APSP üzerinde deneysel modal analiz çalışması gerçekleştirilmiştir. Panelin tahmini ağırlığına göre 10.000 örnek temel alınarak bir hesaplamalı model oluşturulmuştur. İlk 10 esnek mod için 35 numunenin deneysel modal frekansları, deterministik hesaplama modelinin sonuçlarıyla karşılaştırılmış ve sapmalar hata olarak nitelenmiştir. Kaplama levhalarının kalınlıkları ve çekirdek hücre duvarının kalınlığı belirsizlik kaynakları olarak kabul edilmiştir. Hata ve stokastik değişkenler arasındaki ilişkiyi ifade etmek için PCE-Kriging adı verilen veri güdümlü bir meta-model oluşturulmuştur. Sonuçlar, düşük frekanslardaki değişkenliğin kaplama tabakalarından kaynaklandığını, yüksek frekanslardaki değişkenliğin ise çekirdek tarafından domine edildiğini göstermektedir.

Proje Numarası

TUBITAK 122M921

Kaynakça

  • [1] Xiong J, Du Y, Mousanezhad D, Eydani Asl M, Norato J, Vaziri A., “Sandwich structures with prismatic and foam cores: A review”, Advanced Engineering Materials, 21(1):1800036, (2019).
  • [2] Tan HL, He ZC, Li KX, Li E, Cheng AG, Xu B., “In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson’s ratio”, Composite Structures, 1;229:111415, (2019).
  • [3] Li QQ, Li E, Chen T, Wu L, Wang GQ, He ZC., “Improve the frontal crashworthiness of vehicle through the design of front rail”, Thin-Walled Structures, 1;162:107588, (2021).
  • [4] Tan H, He Z, Li E, Cheng A, Chen T, Tan X, Li Q, Xu B., “Crashworthiness design and multi-objective optimization of a novel auxetic hierarchical honeycomb crash box”, Structural and Multidisciplinary Optimization, Oct;64(4):2009-24, (2021).
  • [5] Xie S, Li H, Yang C, Yao S., “Crashworthiness optimisation of a composite energy-absorbing structure for subway vehicles based on hybrid particle swarm optimization”, Structural and Multidisciplinary Optimization, 58:2291-308 (2018).
  • [6] He W, Liu J, Wang S, Xie D., “Low-velocity impact response and post-impact flexural behaviour of composite sandwich structures with corrugated cores”, Composite Structures, 1;189:37-53, (2018).
  • [7] Bai Y, Wang N, Cheng P, Yu B, Badaruddin MF, Ashri M., “Collapse of Reinforced Thermoplastic Pipe (RTP) under external pressure”, International Conference on Offshore Mechanics and Arctic Engineering, Jan 1 44366: 275-280 (2011).
  • [8] Xiong J, Zhang M, Stocchi A, Hu H, Ma L, Wu L, Zhang Z., “Mechanical behaviors of carbon fiber composite sandwich columns with three-dimensional honeycomb cores under in-plane compression”, Composites Part B: Engineering, Apr 1;60:350-8, (2014).
  • [9] Wang X, Khodaparast HH, Shaw AD, Friswell MI, Zheng G., “Localisation of local nonlinearities in structural dynamics using spatially incomplete measured data”, Mechanical Systems and Signal Processing, Jan 15;99:364-83, (2018).
  • [10] Palomba G, Crupi V, Epasto G., “Collapse modes of aluminium honeycomb sandwich structures under fatigue bending loading”, Thin-Walled Structures, Dec 1;145:106363, (2019).
  • [11] Wang Z, Wang X, Liu K, Zhang J, Lu Z., “Crashworthiness index of honeycomb sandwich structures under low-speed oblique impact”, International Journal of Mechanical Sciences, Oct 15;208:106683, (2021).
  • [12] Palomba G, Epasto G, Crupi V. Lightweight sandwich structures for marine applications: a review. Mechanics of Advanced Materials and Structures. Oct 26;29(26):4839-64 (2022).
  • [13] Sun Y, Li QM., “Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling”, International Journal of Impact Engineering, Feb 1;112:74-115 (2018).
  • [14] Castanie B, Bouvet C, Ginot M., “Review of composite sandwich structure in aeronautic applications”, Composites Part C: Open Access Aug 1;1:100004 (2020).
  • [15] Qi C, Jiang F, Yang S., “Advanced honeycomb designs for improving mechanical properties: A review”, Composites Part B: Engineering, Dec 15;227:109393, (2021).
  • [16] Boschetto A, Bottini L, Macera L, Vatanparast S., “Additive Manufacturing for Lightweighting Satellite Platform”, Applied Sciences, Feb 22;13(5):2809, (2023).
  • [17] Zhang X, Zhou H, Shi W, Zeng F, Zeng H, Chen G., “Vibration tests of 3D printed satellite structure made of lattice sandwich panels”, AIAA Journal, Oct;56(10):4213-7, (2018).
  • [18] Lionnet C, Lardeur P., “A hierarchical approach to the assessment of the variability of interior noise levels measured in passenger cars”, Noise Control Engineering Journal, Jan 1;55(1):29-37, (2007).
  • [19] Oktav A, Anlaş G, Yılmaz Ç., “Assessment of vehicle noise variability through structural transfer path analysis”, International Journal of Vehicle Design, 71(1-4):300-20, (2016).
  • [20] Oberkampf WL, Roy CJ., “Verification and validation in scientific computing”, Cambridge University Press (2010).
  • [21] Begg SH, Welsh MB, Bratvold RB., “Uncertainty vs. Variability: What’s the Difference and Why is it Important?”, SPE Hydrocarbon Economics and Evaluation Symposium May 19 (p. D011S003R002). SPE, (2014).
  • [22] Oktav A., “Determination of the effect of adhesive fillets and viscous damping on the dynamic response of aluminum honeycomb sandwich panels”, Mechanics of Advanced Materials and Structures, Sep 23:1-11, (2023).
  • [23] Dai X, Shao X, Ma C, Yun H, Yang F, Zhang D., “Experimental and numerical investigation on vibration of sandwich plates with honeycomb cores based on radial basis function”, Experimental Techniques, Feb;42:79-92 (2018).
  • [24] Wang YJ, Zhang ZJ, Xue XM, Zhang L., “Free vibration analysis of composite sandwich panels with hierarchical honeycomb sandwich core”, Thin-Walled Structures, Dec 1;145:106425, (2019).
  • [25] Pourriahi V, Heidari-Rarani M, Torabpour Isfahani A., “Influence of geometric parameters on free vibration behavior of an aluminum honeycomb core sandwich beam using experimentally validated finite element models”, Journal of Sandwich Structures & Materials, Feb;24(2):1449-69, (2022).
  • [26] Rahman H, Jamshed R, Hameed H, Raza S., “Finite element analysis (FEA) of honeycomb sandwich panel for continuum properties evaluation and core height influence on dynamic behavior”, Advanced Materials Research, Oct 1; 326:1-0, (2011).
  • [27] Aborehab A, Kassem M, Nemnem A, Kamel M., “Miscellaneous modeling approaches and testing of a satellite honeycomb sandwich plate”, Journal of Applied and Computational Mechanics, Dec 26, (2019).
  • [28] Wang JT, Wang CJ, Zhao JP., “Frequency response function-based model updating using Kriging model”, Mechanical Systems and Signal Processing, Mar 15;87:218-28, (2017).
  • [29] Zhao Z, Wang H, Liu C, Xu X, Sun L, Wang J, Li Y., “An FFT-based method for uncertainty quantification of Nomex honeycomb’s in-plane elastic properties”, Composite Structures, Dec 1;301:116217, (2022).
  • [30] Dey S, Mukhopadhyay T, Naskar S, Dey TK, Chalak HD, Adhikari S., “Probabilistic characterisation for dynamics and stability of laminated soft core sandwich plates”, Journal of Sandwich Structures & Materials, Jan;21(1):366-97, (2019).
  • [31] Zhang F, Du R, Qiao Z, Wang W, Zhang J, Wang X., “Quantitative structural uncertainty analysis of composite honeycomb sandwich using a feedback neural network”, Physica D: Nonlinear Phenomena, Nov 9:133985, (2023).
  • [32] Lajili R, Chikhaoui K, Zergoune Z, Bouazizi ML, Ichchou MN., “Impact of the vibration measurement points geometric coordinates uncertainties on two-dimensional k-space identification: Application to a sandwich plate with honeycomb core”, Mechanical Systems and Signal Processing, Mar 15;167:108509, (2022).
  • [33] Cheng YC, Yeh HC, Lee CK., “Multi-objective optimization of the honeycomb core in a honeycomb structure using uniform design and grey relational analysis”, Engineering Optimization, Feb 1;54(2):286-304, (2022).
  • [34] Dutta S, Ghosh S, Inamdar MM., “Optimisation of tensile membrane structures under uncertain wind loads using PCE and kriging based metamodels”, Structural and Multidisciplinary Optimization, Mar;57:1149-61, (2018).
  • [35] Dutta S., “A sequential metamodel-based method for structural optimization under uncertainty”, Structures, 26:54-65, (2020).
  • [36] Denimal E, Sinou JJ., “Advanced kriging-based surrogate modelling and sensitivity analysis for rotor dynamics with uncertainties”, European Journal of Mechanics-A/Solids, Nov 1;90:104331, (2021).
  • [37] Sudret B., “Global sensitivity analysis using polynomial chaos expansions”, Reliability Engineering & System Safety, Jul 1;93(7):964-79, (2008).
  • [38] Blatman G, Sudret B., “Adaptive sparse polynomial chaos expansion based on least angle regression”, Journal of Computational Physics, Mar 20;230(6):2345-67 (2011).
  • [39] Kleijnen JP., “Kriging metamodeling in simulation: A review”, European Journal of Operational Research, Feb 1;192(3):707-16, (2009).
  • [40] Rasmussen CE, Williams CK., “Gaussian processes for machine learning”, Cambridge, MA: MIT press, (2006).
  • [41] Possenti KA, de Menezes VG, Vandepitte D, Tita V, Medeiros RD., “Detection of changes in dynamic characteristics of composite structures using Kriging metamodeling procedure: Experimental and computational analysis”, Mechanics of Advanced Materials and Structures, Aug 8:1-18, (2023).
  • [42] Schwarz BJ, Richardson MH., “Experimental modal analysis”, CSI Reliability, Oct 4;35(1):1-2, (1999).
  • [43] Avitabile P., “Modal testing: a practitioner's guide”, John Wiley & Sons (2017).
  • [44] Oktav A, Başaran MA, Darıcık F., “Dynamic response optimization of a thermoplastic composite sandwich beam under random vibration”, Mechanics of Advanced Materials and Structures, Jun 19:1-14, (2023).
  • [45] Altıgen Co., Türkiye https://www.6genpanel.com.tr/page12.html#extHeader26-57 accessed on March 23rd, (2025).
  • [46] Santner TJ, Williams BJ, Notz WI, Williams BJ., “The design and analysis of computer experiments”, New York: Springer (2003).
  • [47] Hadj Kacem M, El Hami A, Dammak K, Trabelsi H, Walha L, Haddar M., “Consideration of multi-variable uncertainty using the GPC method for the dynamic study of a two-stage gearbox of a wind turbine”, Mechanics of Advanced Materials and Structures, Oct 20:1-4., DOI: 10.1080/15376494.2022.2138650, (2022).
  • [48] Umesh K, Ganguli R., “Material uncertainty effect on vibration control of smart composite plate using polynomial chaos expansion”, Mechanics of Advanced Materials and Structures, Aug 9;20(7):580-91, (2013).
  • [49] Azrar A, Ben Said M, Azrar L, Aljinaidi AA., “Dynamic analysis of Carbon NanoTubes conveying fluid with uncertain parameters and random excitation”, Mechanics of Advanced Materials and Structures, May 19;26(10):898-913, (2019).
  • [50] Peng X, Ye T, Li J, Wu H, Jiang S, Chen G., “Multi-scale uncertainty quantification of composite laminated plate considering random and interval variables with data driven PCE method”, Mechanics of Advanced Materials and Structures, Nov 19;28(23):2429-39, (2021).
  • [51] Chen M, Zhang X, Pan G., “Data-driven approach for uncertainty quantification and risk analysis of composite cylindrical shells for underwater vehicles”, Mechanics of Advanced Materials and Structures, 14:1-5. DOI: 10.1080/15376494.2023.2190762, (2023).
  • [52] Aversano G, D’Alessio G, Coussement A, Contino F, Parente A., “Combination of polynomial chaos and Kriging for reduced-order model of reacting flow applications”, Results in Engineering, Jun 1;10:100223, (2021).
  • [53] García-Macías E, Ubertini F., “Real-time Bayesian damage identification enabled by sparse PCE-Kriging meta-modelling for continuous SHM of large-scale civil engineering structures”, Journal of Building Engineering, Nov 1;59:105004, (2022).
  • [54] Sinou JJ, Denimal E., “Reliable crack detection in a rotor system with uncertainties via advanced simulation models based on kriging and Polynomial Chaos Expansion”, European Journal of Mechanics-A/Solids, Mar 1;92:104451, (2022).
  • [55] Marelli S, Sudret B., “UQLab: A framework for uncertainty quantification in Matlab”, Vulnerability, Uncertainty, and Risk: Quantification, Mitigation, and Management, Jul 13: 2554-2563, (2014).
  • [56] Li L, He Q, Jing X, Jiang Y, Yan D., “Study on three-point bending behavior of sandwich beams with novel auxetic honeycomb core”, Materials Today Communications, 35:106259, (2023).
  • [57] Dai X, Ye H, Yang W, Qi J, Liu Y, Yuan T, Wang Y., “Mechanical behaviors of inner and outer sidewalls of honeycomb cores subjected to out-of-plane compression”, Aerospace Science and Technology, 127:107659, (2022).
  • [58] Wang WJ, Zhang WM, Guo MF, Yang JS, Ma L., “Energy absorption characteristics of a lightweight auxetic honeycomb under low-velocity impact loading”, Thin-Walled Structures, 185:110577, (2023).
  • [59] Keshavanarayana SR, Shahverdi H, Kothare A, Yang C, Bingenheimer J., “The effect of node bond adhesive fillet on uniaxial in-plane responses of hexagonal honeycomb core”, Composite Structures, 175:111-122, (2017).
  • [60] Kendall P, Sun M, Wowk D, Mechefske C, Kim IY., “Experimental investigation of adhesive fillet size on barely visible impact damage in metallic honeycomb sandwich panels”, Composites Part B: Engineering, 184:107723, (2020).
  • [61] Chen X, Yu G, Wang Z, Feng L, Wu L., “Enhancing out-of-plane compressive performance of carbon fiber composite honeycombs”, Composite Structures, 255:112984, (2021).
Toplam 61 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Dinamikler, Titreşim ve Titreşim Kontrolü, Makine Teorisi ve Dinamiği
Bölüm Araştırma Makalesi
Yazarlar

Akın Oktav 0000-0001-5983-3953

Murat Alper Başaran 0000-0001-9887-5531

Proje Numarası TUBITAK 122M921
Erken Görünüm Tarihi 6 Mayıs 2025
Yayımlanma Tarihi
Gönderilme Tarihi 8 Haziran 2024
Kabul Tarihi 29 Nisan 2025
Yayımlandığı Sayı Yıl 2025 ERKEN GÖRÜNÜM

Kaynak Göster

APA Oktav, A., & Başaran, M. A. (2025). Evaluation of dynamic response variability in aluminum honeycomb sandwich panels using PCE and Kriging-based metamodel. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1498060
AMA Oktav A, Başaran MA. Evaluation of dynamic response variability in aluminum honeycomb sandwich panels using PCE and Kriging-based metamodel. Politeknik Dergisi. Published online 01 Mayıs 2025:1-1. doi:10.2339/politeknik.1498060
Chicago Oktav, Akın, ve Murat Alper Başaran. “Evaluation of Dynamic Response Variability in Aluminum Honeycomb Sandwich Panels Using PCE and Kriging-Based Metamodel”. Politeknik Dergisi, Mayıs (Mayıs 2025), 1-1. https://doi.org/10.2339/politeknik.1498060.
EndNote Oktav A, Başaran MA (01 Mayıs 2025) Evaluation of dynamic response variability in aluminum honeycomb sandwich panels using PCE and Kriging-based metamodel. Politeknik Dergisi 1–1.
IEEE A. Oktav ve M. A. Başaran, “Evaluation of dynamic response variability in aluminum honeycomb sandwich panels using PCE and Kriging-based metamodel”, Politeknik Dergisi, ss. 1–1, Mayıs 2025, doi: 10.2339/politeknik.1498060.
ISNAD Oktav, Akın - Başaran, Murat Alper. “Evaluation of Dynamic Response Variability in Aluminum Honeycomb Sandwich Panels Using PCE and Kriging-Based Metamodel”. Politeknik Dergisi. Mayıs 2025. 1-1. https://doi.org/10.2339/politeknik.1498060.
JAMA Oktav A, Başaran MA. Evaluation of dynamic response variability in aluminum honeycomb sandwich panels using PCE and Kriging-based metamodel. Politeknik Dergisi. 2025;:1–1.
MLA Oktav, Akın ve Murat Alper Başaran. “Evaluation of Dynamic Response Variability in Aluminum Honeycomb Sandwich Panels Using PCE and Kriging-Based Metamodel”. Politeknik Dergisi, 2025, ss. 1-1, doi:10.2339/politeknik.1498060.
Vancouver Oktav A, Başaran MA. Evaluation of dynamic response variability in aluminum honeycomb sandwich panels using PCE and Kriging-based metamodel. Politeknik Dergisi. 2025:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.