R260 Ray Çeliğine Uygulanan Östemperleme+Kriyojenik ısıl işlemlerin Sinerjik Etkilerinin Ortaya Çıkarılması
Yıl 2025,
ERKEN GÖRÜNÜM, 1 - 1
Mehmet Gülsün
,
Mustafa Boz
,
Uğur Arabacı
Öz
Bu çalışmada, ticari olarak temin edilen R260 kalite ray çelikleri, farklı östemperleme sürelerinde izotermal tutma işleminin ardından kriyojenik işleme tabi tutulmuştur. Deney numunelerine 950 ℃'de beş dakika östenitlemenin ardından -70 ℃'de beş saat uygulanan kriyojenik işlemin, ardından farklı izotermal tutma süreleriyle (30-180 dk) nötr tuz banyosunda 350 ℃'de östemperleme ısıl işleminin mikroyapı, mekanik ve kristalografi üzerindeki etkileri incelenmiştir. Alaşımın SEM mikro yapıları incelendiğinde, artan izotermal tutma süreleri ile önemli subbainit dönüşümünün tamamlandığı ve sertliklerin arttığı gözlenmiştir. İşlem görmemiş numunenin sertlik değeri 269 HV1 iken, sertlik 180 dk östemperleme ve kriyojenik işlemler sonrasında %226 artışla 607 HV1 olarak ölçülmüştür. XRD ölçümleri sonucunda, ara karbür ve kalıntı ostenit miktarının artan ısıl işlem süresiyle azaldığı ve mekanik özelliklerin iyileştiği belirlendi.
Kaynakça
- [1] Wang W. J., Jiang W. J., Wang H. Y., Liu Q. Y., Zhu M. H., & Jin X. S., ''Experimental study on the wear and damage behavior of different wheel/rail materials'', Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230: 3-14, (2016).
- [2] Ekberg A., & Kabo E., ''Fatigue of railway wheels and rails under rolling contact and thermal loading—an overview'', Wear, 258: 1288-1300, (2005).
- [3] Ma L., He C. G., Zhao X. J., Guo J., Zhu Y., Wang W. J., & Jin X. S., ''Study on wear and rolling contact fatigue behaviors of wheel/rail materials under different slip ratio conditions'', Wear, 366: 13-26, (2016).
- [4] Bower A. F., & Johnson K. L., ''Shakedown, residual stress and plastic flow in repeated wheel-rail contact'', Rail Quality and Maintenance for Modern Railway Operation: International Conference on Rail Quality and Maintenance for Modern Railway Operation Delft June 1992, Springer Netherlands, 239-249, (1993).
- [5] Nikas D., Zhang X., & Ahlström J., ''Evaluation of local strength via microstructural quantification in a pearlitic rail steel deformed by simultaneous compression and torsion'', Materials Science and Engineering: A, 737: 341-347, (2018).
- [6] Altuntaş O., Güral A., & Tekeli S., ''Microstructure engineering for superior wear and impact toughness strength of hypereutectoid powder metallurgy steel'', Powder Metallurgy, 65: 101-111, (2022).
- [7] Adamczyk-Cieślak B., ''Low-cycle fatigue behaviour and microstructural evolution of pearlitic and bainitic steels'', Materials Science and Engineering: A, 747: 144-153, (2019).
- [8] Muniz-Mangas M., ''Welding of carbide-free bainitic steels for railway applications'', Doctoral dissertation, University of Sheffield, (2021).
- [9] Pacyna J., ''The microstructure and properties of the new bainitic rail steels'', Journal of Achievements in Materials and Manufacturing Engineering, 28: 19-22, (2008).
- [10] Messaadi M., Oomen M., & Kumar A., ''Friction modifiers effects on tribological behaviour of bainitic rail steels'', Tribology International, 140: 105857, (2019).
- [11] Jabłońska M., Lewandowski F., Chmiela B., & Gronostajski Z., ''Advanced heat treatment of pearlitic rail steel'', Materials, 16: 6430, (2023).
- [12] Altuntaş G., Altuntaş O., & Bostan B., ''Evaluation of the Effect of Shallow Cryogenic Treatment on Tribological Properties and Microstructure of High Manganese Steel'', International Journal of Metalcasting, 18: 1523-1534, (2024).
- [13] Wang K. K., Gu K. X., Miao J. H., Weng Z. J., Wang J. J., Tan Z. L., & Bai B. Z., ''Toughening optimization on a low carbon steel by a novel quenching-partitioning-cryogenic-tempering treatment'', Materials Science and Engineering: A, 743: 259-264, (2019).
[14] Liu, W., Jiang, Y. H., Guo, H., Zhang, Y., Zhao, A. M., & Huang, Y., “Mechanical properties and wear resistance of ultrafine bainitic steel under low austempering temperature.” International Journal of Minerals, Metallurgy and Materials, 27, 483-493., (2020).
- [15] Hasan, S. M., Chakrabarti, D., & Singh, S. B., “Dry rolling/sliding wear behaviour of pearlitic rail and newly developed carbide-free bainitic rail steels.” Wear, 408, 151-159., (2018).
- [16] Zhao, J., Lv, B., Zhang, F., Yang, Z., Qian, L., Chen, C., & Long, X., “Effects of austempering temperature on bainitic microstructure and mechanical properties of a high-C high-Si steel.” Materials Science and Engineering: A, 742, 179-189. (2019).
- [17] Aglan H. A., et al., ''Mechanical and fracture behavior of bainitic rail steel'', Journal of Materials Processing Technology, 151: 268-274, (2004).
- [18] Wang Y., Zhang Y., Song R., Huang L., & Pei Y., ''Effect of the austenitizing temperature on microstructure evolution and impact toughness of a novel bainite ductile iron'', Metals and Materials International, 27: 4014-4022, (2021).
- [19] Zhang T., et al., ''Effects of deep cryogenic treatment on the microstructure and mechanical properties of an ultrahigh-strength TRIP-aided bainitic steel'', Materials Characterization, 178: 111247, (2021).
- [20] Hasan S. M., et al., ''Development of continuously cooled low-carbon, low-alloy, high strength carbide-free bainitic rail steels'', Materials Science and Engineering: A, 771: 138590, (2020).
- [21] Wang Y., et al., ''A new effect of retained austenite on ductility enhancement in high strength bainitic steel'', Materials Science and Engineering: A, 552: 288-294, (2012).
- [22] Arabaci, U., & Turan, Ş., “Weldability of austempered rail steel using the flash-butt process.” Materials Testing, 63(7), 662-667., (2021).
- [23] Yang, J., Wang, T. S., Zhang, B., & Zhang, F. C. “Microstructure and mechanical properties of high-carbon Si–Al-rich steel by low-temperature austempering.” Materials & Design, 35, 170-174., (2012).
- [24] Zhang, F. C., Wang, T. S., Zhang, P., Zheng, C. L., Lv, B., Zhang, M., & Zheng, Y. Z. “A novel method for the development of a low-temperature bainitic microstructure in the surface layer of low-carbon steel.” Scripta Materialia, 59(3), 294-296., (2008).
- [25] Altuntaş O., et al., ''Investigation of the microstructure, hardness and electrical conductivity properties of Fe/Graphene compacts'', Materials Science and Technology, 39: 2670-2679, (2023).
- [26] Podder A. S., & Bhadeshia H. K. D. H., ''Thermal stability of austenite retained in bainitic steels'', Materials Science and Engineering: A, 527: 2121-2128, (2010).
- [27] Srijampan, W., Wiengmoon, A., Wanalerkngam, A., Boonmee, S., Yotkaew, T., Tosangthum, N., & Tongsri, R., “Identification of carbides and phase transformations in sintered Fe–Mo–Mn–C alloys produced under a slow continuous cooling.” ISIJ International, 62(11), 2366-2373., (2022).
- [28] Liu, X., Man, T. H., Yin, J., Lu, X., Guo, S. Q., Ohmura, T., & Ping, D. H., “In situ heating TEM observations on carbide formation and α-Fe recrystallization in twinned martensite. Scientific Reports, 8(1), 14454., (2018).
- [29] Ping, D. H., Xiang, H. P., Chen, H., Guo, L. L., Gao, K., & Lu, X., “A transition of ω-Fe3C→ ω′-Fe3C→ θ′-Fe3C in Fe-C martensite. Scientific Reports, 10(1), 6081., (2020).
Determination of Synergistic Effects of Austempering + Cryogenic Heat Treatments Applied to R260 Rail Steel
Yıl 2025,
ERKEN GÖRÜNÜM, 1 - 1
Mehmet Gülsün
,
Mustafa Boz
,
Uğur Arabacı
Öz
In this study, commercially obtained R260 grade rail steels were subjected to cryogenic treatment after isothermal holding at different austempering times. The effects of cryogenic treatment applied to the test specimens for five hours at -70 ℃ after austenitisation at 950 ℃ for five minutes, followed by austempering heat treatment at 350 ℃ in a neutral salt bath with different isothermal holding times (30-180 min) on microstructure, mechanics and crystallography were investigated. When the SEM microstructures of the alloy were examined, it was observed that with increasing isothermal retention times, significant subbainite transformation was completed, and hardnesses increased. While the untreated sample had a hardness value of 269 HV1, the hardness was measured as 607 HV1 with an increase of 226% after 180 min austempering and cryogenic processes. As a result of XRD measurements, it was determined that the amount of intermediate carbides and residual austenite decreased with increasing heat treatment time and improved mechanical properties.
Kaynakça
- [1] Wang W. J., Jiang W. J., Wang H. Y., Liu Q. Y., Zhu M. H., & Jin X. S., ''Experimental study on the wear and damage behavior of different wheel/rail materials'', Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230: 3-14, (2016).
- [2] Ekberg A., & Kabo E., ''Fatigue of railway wheels and rails under rolling contact and thermal loading—an overview'', Wear, 258: 1288-1300, (2005).
- [3] Ma L., He C. G., Zhao X. J., Guo J., Zhu Y., Wang W. J., & Jin X. S., ''Study on wear and rolling contact fatigue behaviors of wheel/rail materials under different slip ratio conditions'', Wear, 366: 13-26, (2016).
- [4] Bower A. F., & Johnson K. L., ''Shakedown, residual stress and plastic flow in repeated wheel-rail contact'', Rail Quality and Maintenance for Modern Railway Operation: International Conference on Rail Quality and Maintenance for Modern Railway Operation Delft June 1992, Springer Netherlands, 239-249, (1993).
- [5] Nikas D., Zhang X., & Ahlström J., ''Evaluation of local strength via microstructural quantification in a pearlitic rail steel deformed by simultaneous compression and torsion'', Materials Science and Engineering: A, 737: 341-347, (2018).
- [6] Altuntaş O., Güral A., & Tekeli S., ''Microstructure engineering for superior wear and impact toughness strength of hypereutectoid powder metallurgy steel'', Powder Metallurgy, 65: 101-111, (2022).
- [7] Adamczyk-Cieślak B., ''Low-cycle fatigue behaviour and microstructural evolution of pearlitic and bainitic steels'', Materials Science and Engineering: A, 747: 144-153, (2019).
- [8] Muniz-Mangas M., ''Welding of carbide-free bainitic steels for railway applications'', Doctoral dissertation, University of Sheffield, (2021).
- [9] Pacyna J., ''The microstructure and properties of the new bainitic rail steels'', Journal of Achievements in Materials and Manufacturing Engineering, 28: 19-22, (2008).
- [10] Messaadi M., Oomen M., & Kumar A., ''Friction modifiers effects on tribological behaviour of bainitic rail steels'', Tribology International, 140: 105857, (2019).
- [11] Jabłońska M., Lewandowski F., Chmiela B., & Gronostajski Z., ''Advanced heat treatment of pearlitic rail steel'', Materials, 16: 6430, (2023).
- [12] Altuntaş G., Altuntaş O., & Bostan B., ''Evaluation of the Effect of Shallow Cryogenic Treatment on Tribological Properties and Microstructure of High Manganese Steel'', International Journal of Metalcasting, 18: 1523-1534, (2024).
- [13] Wang K. K., Gu K. X., Miao J. H., Weng Z. J., Wang J. J., Tan Z. L., & Bai B. Z., ''Toughening optimization on a low carbon steel by a novel quenching-partitioning-cryogenic-tempering treatment'', Materials Science and Engineering: A, 743: 259-264, (2019).
[14] Liu, W., Jiang, Y. H., Guo, H., Zhang, Y., Zhao, A. M., & Huang, Y., “Mechanical properties and wear resistance of ultrafine bainitic steel under low austempering temperature.” International Journal of Minerals, Metallurgy and Materials, 27, 483-493., (2020).
- [15] Hasan, S. M., Chakrabarti, D., & Singh, S. B., “Dry rolling/sliding wear behaviour of pearlitic rail and newly developed carbide-free bainitic rail steels.” Wear, 408, 151-159., (2018).
- [16] Zhao, J., Lv, B., Zhang, F., Yang, Z., Qian, L., Chen, C., & Long, X., “Effects of austempering temperature on bainitic microstructure and mechanical properties of a high-C high-Si steel.” Materials Science and Engineering: A, 742, 179-189. (2019).
- [17] Aglan H. A., et al., ''Mechanical and fracture behavior of bainitic rail steel'', Journal of Materials Processing Technology, 151: 268-274, (2004).
- [18] Wang Y., Zhang Y., Song R., Huang L., & Pei Y., ''Effect of the austenitizing temperature on microstructure evolution and impact toughness of a novel bainite ductile iron'', Metals and Materials International, 27: 4014-4022, (2021).
- [19] Zhang T., et al., ''Effects of deep cryogenic treatment on the microstructure and mechanical properties of an ultrahigh-strength TRIP-aided bainitic steel'', Materials Characterization, 178: 111247, (2021).
- [20] Hasan S. M., et al., ''Development of continuously cooled low-carbon, low-alloy, high strength carbide-free bainitic rail steels'', Materials Science and Engineering: A, 771: 138590, (2020).
- [21] Wang Y., et al., ''A new effect of retained austenite on ductility enhancement in high strength bainitic steel'', Materials Science and Engineering: A, 552: 288-294, (2012).
- [22] Arabaci, U., & Turan, Ş., “Weldability of austempered rail steel using the flash-butt process.” Materials Testing, 63(7), 662-667., (2021).
- [23] Yang, J., Wang, T. S., Zhang, B., & Zhang, F. C. “Microstructure and mechanical properties of high-carbon Si–Al-rich steel by low-temperature austempering.” Materials & Design, 35, 170-174., (2012).
- [24] Zhang, F. C., Wang, T. S., Zhang, P., Zheng, C. L., Lv, B., Zhang, M., & Zheng, Y. Z. “A novel method for the development of a low-temperature bainitic microstructure in the surface layer of low-carbon steel.” Scripta Materialia, 59(3), 294-296., (2008).
- [25] Altuntaş O., et al., ''Investigation of the microstructure, hardness and electrical conductivity properties of Fe/Graphene compacts'', Materials Science and Technology, 39: 2670-2679, (2023).
- [26] Podder A. S., & Bhadeshia H. K. D. H., ''Thermal stability of austenite retained in bainitic steels'', Materials Science and Engineering: A, 527: 2121-2128, (2010).
- [27] Srijampan, W., Wiengmoon, A., Wanalerkngam, A., Boonmee, S., Yotkaew, T., Tosangthum, N., & Tongsri, R., “Identification of carbides and phase transformations in sintered Fe–Mo–Mn–C alloys produced under a slow continuous cooling.” ISIJ International, 62(11), 2366-2373., (2022).
- [28] Liu, X., Man, T. H., Yin, J., Lu, X., Guo, S. Q., Ohmura, T., & Ping, D. H., “In situ heating TEM observations on carbide formation and α-Fe recrystallization in twinned martensite. Scientific Reports, 8(1), 14454., (2018).
- [29] Ping, D. H., Xiang, H. P., Chen, H., Guo, L. L., Gao, K., & Lu, X., “A transition of ω-Fe3C→ ω′-Fe3C→ θ′-Fe3C in Fe-C martensite. Scientific Reports, 10(1), 6081., (2020).