Araştırma Makalesi
BibTex RIS Kaynak Göster

Dikdörtgen Delikli İzotropik Levhalarda Gerilme Yığılması Faktörünün (GYF) Parametrik Analizi ve Yapay Sinir Ağı Yaklaşımı

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1653795

Öz

Bu çalışmada, dikdörtgen delikli ince bir plağın kayma gerilmesi altındaki davranışları parametrik olarak Sonlu Elemanlar Analizi (SEA) yöntemi ile incelenmiş ve Yapay Sinir Ağları (YSA) ile modellenmiştir. İncelenen plaka üzerindeki dikdörtgen delik nedeniyle oluşan gerilme yoğunluğu detaylı olarak analiz edilmiştir. Parametrik modelde, plakadaki geometrik parametreler değiştirilerek farklı stres dağılımları elde edilmiştir. Deneysel sonuçların doğruluğu Sonlu eleman analizi ile test edilmiş ve deneyel çalışma verileri kullanılarak YSA yöntemi ile yeni bir model oluşturulmuştur. Oluşturulan yeni model ile; gerilme, deformasyon, gerilme yoğunluğu gibi parametreler için güvenilir tahminler yapılmıştır. Bu çalışma, mühendislerin ve tasarımcıların dikdörtgen delikli plakalar üzerindeki gerilme analizlerini hızlı ve verimli bir şekilde yapabilmelerini sağlayacak bir yöntem sunmaktadır.

Kaynakça

  • [1] Özkan, M. and M. Kaygisiz," Elipsel Delikli Plakalarda Oluşan Gerilmelerin Tanımlanması ve Yapay Sinir Ağları ile Tahmini". Gazi University Journal of Science Part C, 4: p. 135-145, (2016).
  • [2] Ozkan, M.T. and F. Erdemir," Determination of theoretical stress concentration factor for circular/elliptical holes with reinforcement using analytical, finite element method and artificial neural network techniques". Neural Computing and Applications, 33(19): p. 12641-12659, (2021).
  • [3] Özkan, M. and F. Erdemir," Determination of theoretical stress concentration factor for circular/elliptical holes with reinforcement using analytical, finite element method and artificial neural network techniques". Neural Computing and Applications, 33, (2021).
  • [4] Özkan, M.T., M. Eren, and İ. Toktaş," Modeling of Stress Concentration Factor Using Artificial Neural Networks for a Flat Tension Bar with Opposite V-Shaped Notches". Politeknik Dergisi, 26(3): p. 1199-1205, (2023).
  • [5] Erdemir, F., et al.," Determination of Stress Concentration Factor (Kt) for a Crankshaft Under Bending Loading: An Artificial Neural Networks Approach". Politeknik Dergisi, 23(3): p. 813-819, (2020).
  • [6] Ozkan, M.T. and F. Erdemir," Determination of stress concentration factors for shafts under tension". 62(4): p. 413-421, (2020).
  • [7] Pandey, M., et al." Investigation of Variation in Stress Concentration Factor with the Change in Orientation of Central Hole on a Rectangular Plate". in Recent Advances in Mechanical Engineering., Singapore: Springer Singapore. (2021).
  • [8] Patel, B.P. and R.H. Patel," Determination and Analysis of Stress Concentration Factor in Finite Plate With Different Polygonal Discontinuities Under Uniaxial Compression Using Finite Element Analysis (FEA)". Engineering Research Express, 6(2): p. 025552, (2024).
  • [9] Akour, S. and D. Nicholson," Defense Hole Design for a Shear Dominant Loaded Plate". International Journal of Applied Mechanics, 2: p. 381-398, (2010).
  • [10] Guan, Y. and Y. Li," Stress Concentration and Optimized Analysis of an Arbitrarily Shaped Hole with a Graded Layer under Anti-Plane Shear". Applied Sciences, 8: p. 2619, (2018).
  • [11] Zhu, Z., et al.," Shear Buckling of Ship Plates With Different Holes". Mechanics & Industry, 23: p. 4, (2022).
  • [12] Kambale, S.R. and U.D. Gulhane," Relief holes for the mitigation of stress concentration factor of a thin rectangular plate under in-plane loading". International Journal of Advance Research and Innovative Ideas in Education, 1: p. 166-174, (2015).
  • [13] Yang, Z., et al.," The Concentration of Stress and Strain in Finite Thickness Elastic Plate Containing a Circular Hole". International Journal of Solids and Structures, 45(3-4): p. 713-731, (2008).
  • [14] Chauhan, M.M. and D.S. Sharma," Stresses in finite anisotropic plate weakened by rectangular hole". International Journal of Mechanical Sciences, 101-102: p. 272-279, (2015).
  • [15] Dave, J.M. and D.S. Sharma," Stress field around rectangular hole in functionally graded plate". International Journal of Mechanical Sciences, 136: p. 360-370, (2018).
  • [16] Jafari, M., M.H. Bayati Chaleshtari, and H. Abdolalian," General solution of stress field in exponential functionally graded material plates containing a quasi-rectangular cutout". Journal of Composite Materials, 53(3): p. 405-421, (2019).
  • [17] Louhghalam, A., et al.," Analysis of stress concentrations in plates with rectangular openings by a combined conformal mapping – Finite element approach". International Journal of Solids and Structures, 48(13): p. 1991-2004, (2011).
  • [18] Nageswara Rao, D.K., et al.," Stress around square and rectangular cutouts in symmetric laminates". Composite Structures, 92(12): p. 2845-2859, (2010).
  • [19] Pan, Z., Y. Cheng, and J. Liu," Stress analysis of a finite plate with a rectangular hole subjected to uniaxial tension using modified stress functions". International Journal of Mechanical Sciences, 75: p. 265-277, (2013).
  • [20] Rahman, S.," Stress Analysis of Finite Steel Plate with a Rectangular Hole Subjected to Uniaxial Stress Using Finite Element Method". Journal of Marine Science: Research & Development, 08, (2018).
  • [21] Gunwant, D.," Stress Concentration Studies in Flat Plates with Rectangular Cut-Outs Using Finite Element Method". International Journal of Mathematical, Engineering and Management Sciences, 4: p. 66-76, (2019).
  • [22] L.Bharambe, S.I.K.," Stress Concentration of plate with rectangular cutout". International Research Journal of Engineering and Technology (IRJET), 6(4): p. 3671-3675, (2019).
  • [23] Toktaş, İ.," Eliptik Delikli İnce Cidarlı Küresel Bir Elemanın Basınç Altında Gerilme Yığılma Faktörünün Sonlu Elemanlar Analizi Ve Yapay Sinir Ağları İle Modellenmesi". Politeknik Dergisi, 27(2): p. 819-827, (2024).
  • [24] Pilkey, W. and D. Pilkey," Peterson's Stress Concentration Factors, Third Edition". Peterson's Stress Concentration Factors, Third Edition: p. 1-522, (2008).
  • [25] Beale, M.H. and H.B. Demuth," Neural network toolbox for MATLAB". MathWorks, 2, (2002).
  • [26] Beale, M.H., M.T. Hagan, and H.B. Demuth," Neural network toolbox Getting Started Guide". MathWorks, 2, (2016).
  • [27] Beale, M.H., M.T. Hagan, and H.B. Demuth," Neural network toolbox 1User's Guide". MathWorks, 2, (2018).
  • [28] Domany, E., J.L. van Hemmen, and K. Schulten," Models of neural networks II". Springer Science & Business Media, (1995).
  • [29] Hagan, M.T., H.B. Demuth, and M.H. Beale," Neural Network Design". PWS Pub. (1996).
  • [30] Hagan, M.T. and M.B. Menhaj," Training feedforward networks with the Marquardt algorithm". IEEE transactions on Neural Networks, 5(6): p. 989-993, (1994).
  • [31] Haykin, S.S.," Neural Networks: A Comprehensive Foundation". Prentice Hall PTR, (1998).
  • [32] Haykin, S.S." Neural Networks and Learning Machines"., (2008).
  • [33] Smith, J.," Neural Network Architectures. Examples Using MATLAB". CreateSpace Independent Publishing Platform, (2017).
  • [34] Werbos, P.," Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Science. Thesis (Ph. D.). Appl. Math. Harvard University", (1974).
  • [35] Rosenblatt, J.," Basic Statistical Methods and Models for the Sciences (1st ed.)". Oxford University Press (2002).
  • [36] Perez, C.," Cluster Analysis and Applications (Statistics And Data Analysis with Matlab) ". CESAR PEREZ (2019).

Parametric Analysis of Stress Concentration Factor in Rectangular Holed Isotropic Plates and Artificial Neural Network Approach

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1653795

Öz

In this study, the behavior of a thin plate with rectangular holes under shear stress was investigated parametrically using the Finite Element Analysis (FEA) method and modeled using Artificial Neural Networks (ANN). The stress intensity caused by the rectangular hole on the examined plate was analyzed in detail. In the parametric model, different stress distributions were obtained by changing the geometric parameters on the plate. The accuracy of the experimental results was tested using the Finite Element Analysis and a new model was created using the experimental study data using the ANN method. With the new model created, reliable estimates were made for parameters such as stress, deformation, and stress intensity. This study offers a method that will enable engineers and designers to perform stress analyses on plates with rectangular holes quickly and efficiently.

Kaynakça

  • [1] Özkan, M. and M. Kaygisiz," Elipsel Delikli Plakalarda Oluşan Gerilmelerin Tanımlanması ve Yapay Sinir Ağları ile Tahmini". Gazi University Journal of Science Part C, 4: p. 135-145, (2016).
  • [2] Ozkan, M.T. and F. Erdemir," Determination of theoretical stress concentration factor for circular/elliptical holes with reinforcement using analytical, finite element method and artificial neural network techniques". Neural Computing and Applications, 33(19): p. 12641-12659, (2021).
  • [3] Özkan, M. and F. Erdemir," Determination of theoretical stress concentration factor for circular/elliptical holes with reinforcement using analytical, finite element method and artificial neural network techniques". Neural Computing and Applications, 33, (2021).
  • [4] Özkan, M.T., M. Eren, and İ. Toktaş," Modeling of Stress Concentration Factor Using Artificial Neural Networks for a Flat Tension Bar with Opposite V-Shaped Notches". Politeknik Dergisi, 26(3): p. 1199-1205, (2023).
  • [5] Erdemir, F., et al.," Determination of Stress Concentration Factor (Kt) for a Crankshaft Under Bending Loading: An Artificial Neural Networks Approach". Politeknik Dergisi, 23(3): p. 813-819, (2020).
  • [6] Ozkan, M.T. and F. Erdemir," Determination of stress concentration factors for shafts under tension". 62(4): p. 413-421, (2020).
  • [7] Pandey, M., et al." Investigation of Variation in Stress Concentration Factor with the Change in Orientation of Central Hole on a Rectangular Plate". in Recent Advances in Mechanical Engineering., Singapore: Springer Singapore. (2021).
  • [8] Patel, B.P. and R.H. Patel," Determination and Analysis of Stress Concentration Factor in Finite Plate With Different Polygonal Discontinuities Under Uniaxial Compression Using Finite Element Analysis (FEA)". Engineering Research Express, 6(2): p. 025552, (2024).
  • [9] Akour, S. and D. Nicholson," Defense Hole Design for a Shear Dominant Loaded Plate". International Journal of Applied Mechanics, 2: p. 381-398, (2010).
  • [10] Guan, Y. and Y. Li," Stress Concentration and Optimized Analysis of an Arbitrarily Shaped Hole with a Graded Layer under Anti-Plane Shear". Applied Sciences, 8: p. 2619, (2018).
  • [11] Zhu, Z., et al.," Shear Buckling of Ship Plates With Different Holes". Mechanics & Industry, 23: p. 4, (2022).
  • [12] Kambale, S.R. and U.D. Gulhane," Relief holes for the mitigation of stress concentration factor of a thin rectangular plate under in-plane loading". International Journal of Advance Research and Innovative Ideas in Education, 1: p. 166-174, (2015).
  • [13] Yang, Z., et al.," The Concentration of Stress and Strain in Finite Thickness Elastic Plate Containing a Circular Hole". International Journal of Solids and Structures, 45(3-4): p. 713-731, (2008).
  • [14] Chauhan, M.M. and D.S. Sharma," Stresses in finite anisotropic plate weakened by rectangular hole". International Journal of Mechanical Sciences, 101-102: p. 272-279, (2015).
  • [15] Dave, J.M. and D.S. Sharma," Stress field around rectangular hole in functionally graded plate". International Journal of Mechanical Sciences, 136: p. 360-370, (2018).
  • [16] Jafari, M., M.H. Bayati Chaleshtari, and H. Abdolalian," General solution of stress field in exponential functionally graded material plates containing a quasi-rectangular cutout". Journal of Composite Materials, 53(3): p. 405-421, (2019).
  • [17] Louhghalam, A., et al.," Analysis of stress concentrations in plates with rectangular openings by a combined conformal mapping – Finite element approach". International Journal of Solids and Structures, 48(13): p. 1991-2004, (2011).
  • [18] Nageswara Rao, D.K., et al.," Stress around square and rectangular cutouts in symmetric laminates". Composite Structures, 92(12): p. 2845-2859, (2010).
  • [19] Pan, Z., Y. Cheng, and J. Liu," Stress analysis of a finite plate with a rectangular hole subjected to uniaxial tension using modified stress functions". International Journal of Mechanical Sciences, 75: p. 265-277, (2013).
  • [20] Rahman, S.," Stress Analysis of Finite Steel Plate with a Rectangular Hole Subjected to Uniaxial Stress Using Finite Element Method". Journal of Marine Science: Research & Development, 08, (2018).
  • [21] Gunwant, D.," Stress Concentration Studies in Flat Plates with Rectangular Cut-Outs Using Finite Element Method". International Journal of Mathematical, Engineering and Management Sciences, 4: p. 66-76, (2019).
  • [22] L.Bharambe, S.I.K.," Stress Concentration of plate with rectangular cutout". International Research Journal of Engineering and Technology (IRJET), 6(4): p. 3671-3675, (2019).
  • [23] Toktaş, İ.," Eliptik Delikli İnce Cidarlı Küresel Bir Elemanın Basınç Altında Gerilme Yığılma Faktörünün Sonlu Elemanlar Analizi Ve Yapay Sinir Ağları İle Modellenmesi". Politeknik Dergisi, 27(2): p. 819-827, (2024).
  • [24] Pilkey, W. and D. Pilkey," Peterson's Stress Concentration Factors, Third Edition". Peterson's Stress Concentration Factors, Third Edition: p. 1-522, (2008).
  • [25] Beale, M.H. and H.B. Demuth," Neural network toolbox for MATLAB". MathWorks, 2, (2002).
  • [26] Beale, M.H., M.T. Hagan, and H.B. Demuth," Neural network toolbox Getting Started Guide". MathWorks, 2, (2016).
  • [27] Beale, M.H., M.T. Hagan, and H.B. Demuth," Neural network toolbox 1User's Guide". MathWorks, 2, (2018).
  • [28] Domany, E., J.L. van Hemmen, and K. Schulten," Models of neural networks II". Springer Science & Business Media, (1995).
  • [29] Hagan, M.T., H.B. Demuth, and M.H. Beale," Neural Network Design". PWS Pub. (1996).
  • [30] Hagan, M.T. and M.B. Menhaj," Training feedforward networks with the Marquardt algorithm". IEEE transactions on Neural Networks, 5(6): p. 989-993, (1994).
  • [31] Haykin, S.S.," Neural Networks: A Comprehensive Foundation". Prentice Hall PTR, (1998).
  • [32] Haykin, S.S." Neural Networks and Learning Machines"., (2008).
  • [33] Smith, J.," Neural Network Architectures. Examples Using MATLAB". CreateSpace Independent Publishing Platform, (2017).
  • [34] Werbos, P.," Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Science. Thesis (Ph. D.). Appl. Math. Harvard University", (1974).
  • [35] Rosenblatt, J.," Basic Statistical Methods and Models for the Sciences (1st ed.)". Oxford University Press (2002).
  • [36] Perez, C.," Cluster Analysis and Applications (Statistics And Data Analysis with Matlab) ". CESAR PEREZ (2019).
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Modelleme ve Simülasyon, Sonlu Elemanlar Analizi, Katı Mekanik, Makine Tasarımı ve Makine Elemanları
Bölüm Araştırma Makalesi
Yazarlar

Oğuzhan Nazlım 0000-0002-7557-6333

Erken Görünüm Tarihi 9 Nisan 2025
Yayımlanma Tarihi
Gönderilme Tarihi 8 Mart 2025
Kabul Tarihi 23 Mart 2025
Yayımlandığı Sayı Yıl 2025 ERKEN GÖRÜNÜM

Kaynak Göster

APA Nazlım, O. (2025). Dikdörtgen Delikli İzotropik Levhalarda Gerilme Yığılması Faktörünün (GYF) Parametrik Analizi ve Yapay Sinir Ağı Yaklaşımı. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1653795
AMA Nazlım O. Dikdörtgen Delikli İzotropik Levhalarda Gerilme Yığılması Faktörünün (GYF) Parametrik Analizi ve Yapay Sinir Ağı Yaklaşımı. Politeknik Dergisi. Published online 01 Nisan 2025:1-1. doi:10.2339/politeknik.1653795
Chicago Nazlım, Oğuzhan. “Dikdörtgen Delikli İzotropik Levhalarda Gerilme Yığılması Faktörünün (GYF) Parametrik Analizi Ve Yapay Sinir Ağı Yaklaşımı”. Politeknik Dergisi, Nisan (Nisan 2025), 1-1. https://doi.org/10.2339/politeknik.1653795.
EndNote Nazlım O (01 Nisan 2025) Dikdörtgen Delikli İzotropik Levhalarda Gerilme Yığılması Faktörünün (GYF) Parametrik Analizi ve Yapay Sinir Ağı Yaklaşımı. Politeknik Dergisi 1–1.
IEEE O. Nazlım, “Dikdörtgen Delikli İzotropik Levhalarda Gerilme Yığılması Faktörünün (GYF) Parametrik Analizi ve Yapay Sinir Ağı Yaklaşımı”, Politeknik Dergisi, ss. 1–1, Nisan 2025, doi: 10.2339/politeknik.1653795.
ISNAD Nazlım, Oğuzhan. “Dikdörtgen Delikli İzotropik Levhalarda Gerilme Yığılması Faktörünün (GYF) Parametrik Analizi Ve Yapay Sinir Ağı Yaklaşımı”. Politeknik Dergisi. Nisan 2025. 1-1. https://doi.org/10.2339/politeknik.1653795.
JAMA Nazlım O. Dikdörtgen Delikli İzotropik Levhalarda Gerilme Yığılması Faktörünün (GYF) Parametrik Analizi ve Yapay Sinir Ağı Yaklaşımı. Politeknik Dergisi. 2025;:1–1.
MLA Nazlım, Oğuzhan. “Dikdörtgen Delikli İzotropik Levhalarda Gerilme Yığılması Faktörünün (GYF) Parametrik Analizi Ve Yapay Sinir Ağı Yaklaşımı”. Politeknik Dergisi, 2025, ss. 1-1, doi:10.2339/politeknik.1653795.
Vancouver Nazlım O. Dikdörtgen Delikli İzotropik Levhalarda Gerilme Yığılması Faktörünün (GYF) Parametrik Analizi ve Yapay Sinir Ağı Yaklaşımı. Politeknik Dergisi. 2025:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.