Araştırma Makalesi
BibTex RIS Kaynak Göster

Biyoloji Temelli Tasarım Yaklaşımları: Canlı Organizmaların Tasarım Disiplinlerine Dahil Edilmesi

Yıl 2025, Sayı: 36, 351 - 378, 27.06.2025
https://doi.org/10.18603/sanatvetasarim.1707655

Öz

Bu makale, biyolojinin tasarımla kesişimini ele alarak miselyum, alg ve bakteri gibi canlı organizmaların sürdürülebilir ve yenilikçi tasarım uygulamalarındaki potansiyelini araştırmaktadır. Yapı, mimarlık, ürün ve malzeme tasarımı gibi alanlarda biyotasarım, geleneksel üretim süreçlerine doğayla simbiyotik ilişkiler kuran alternatifler sunmaktadır. Doğal halleriyle tasarıma entegre edilen organizmaların çevresel etkilere uyum, düşük enerji gereksinimi ve biyolojik olarak parçalanabilirlik gibi avantajları vurgulanmıştır. Ancak bakım ihtiyacı ve malzeme dayanıklılığı gibi sınırlılıklar da mevcuttur. Araştırma, biyotasarımın sadece ekolojik değil, düşünsel bir dönüşüm sunduğunu ve doğayla iş birliğine dayalı esnek tasarım stratejileri geliştirmek için önemli bir potansiyel taşıdığını göstermektedir.

Kaynakça

  • Abhijith, R., Ashok, A., & Rejeesh, C. R. (2018). Sustainable packaging applications from mycelium to substitute polystyrene: A review. Materials Today: Proceedings, 5, 2139–2145.
  • Al-Obaidi, K. M., Ismail, M., & Abdul Rahman, A. M. (2014). Passive cooling techniques through reflective and radiative roofs in tropical houses in Southeast Asia: A literature review. Frontiers of Architectural Research, 3, 283–297.
  • Alves, C., Silva, A. J., Reis, L. G., Freitas, M., Rodrigues, L. B., & Alves, D. E. (2010). Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner Production, 18(4), 313–327.
  • Álvarez-Chávez, C. R., Edwards, S., Moure-Eraso, R., & Geiser, K. (2012). Sustainability of bio-based plastics: General comparative analysis and recommendations for improvement. Journal of Cleaner Production, 23(1), 47–56.
  • Ashby, M. F. (2013). Materials and the environment: Eco-informed material choice. Butterworth-Heinemann.
  • Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207–210.
  • Beyer, B., & Suarez, D. (2018). Column Project: Microbial textiles as a biologically-enhanced construction material. Autodesk ACADIA Emerging Research Award Paper.
  • Castro, T., Pitrou, P., & Rebecchi, M. (2020). Puissance du Végétal et Cinéma Animiste: La Vitalité Révélée par la Technique. La Presse du Réel.
  • Chayaamor-Heil, N., Perricone, V., & Gruber, P. (2023). Bioinspired, biobased and living material designs: A review of recent research in architecture and construction. Bioinspiration & Biomimetics, 18(4). https://doi.org/10.1088/1748-3190/acec49
  • Chayaamor-Heil, N., Houette, T., Demirci, Ö., & Badarnah, L. (2024). The potential of co-designing with living organisms: Towards a new ecological paradigm in architecture. Sustainability, 16(2), 673.
  • Collet, C. (2020). Designing our future bio-materiality. AI & Society, 35, 645–653.
  • Collins, J. (2012). Synthetic biology: Bits and pieces come to life. Nature, 483(7387), 8-10.
  • Colmo, C., & Ayres, P. (2020, Eylül). 3D printed bio-hybrid structures – Investigating the architectural potentials of mycoremediation. In Proceedings of the 38th International Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe).
  • Crabbé, A., Jacobs, R., Van Hoof, V., Bergmans, A., & Van Acker, K. (2013). Transition towards sustainable material innovation: Evidence and evaluation of the Flemish case. Journal of Cleaner Production, 56, 63–72.
  • Frazzetto, G. (2003). White biotechnology: The application of biotechnology to industrial production holds many promises for sustainable development, but many products still have to pass the test of economic viability. EMBO Reports, 4(9), 835–837.
  • Garg, S., Inamuddin, I., & Asiri, A. M. (2020). Green technologies for the treatment and utilisation of dairy product wastes. In I. Inamuddin & A. M. Asiri (Eds.), Sustainable green chemical processes and their allied applications (pp. 323–333). Springer.
  • Geiser, K. (2001). Materials matter: Towards a sustainable materials policy. MIT Press.
  • Ginsberg, A. D., & Chieza, N. (2018). Editorial: Other biological futures. Journal of Design and Science.
  • Ginsberg, A. D., Calvert, J., Schyfter, P., Elfick, A., & Endy, D. (2014). Synthetic aesthetics: Investigating synthetic biology’s designs on nature. MIT Press.
  • Groutars, E. G., Risseeuw, C. C., Ingham, C. J., Hamidjaja, R., Elkhuizen, W. S., Pont, S. C., & Karana, E. (2022). Flavorium: An exploration of Flavobacteria’s living aesthetics for living color interfaces. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (pp. 1–19).
  • Haider, A., & Eder, A. (2010). Markets, applications, and processes for wood polymer composites (WPC) in Europe. In Proceedings of the 1st International Conference on Processing Technologies for the Forest and Biobased Product Industries (pp. 146–151). Salzburg Üniversitesi.
  • Haneef, M., Ceseracciu, L., Canale, C., Bayer, I. S., Heredia-Guerrero, J. A., & Athanassiou, A. (2017). Advanced materials from fungal mycelium: Fabrication and tuning of physical properties. Scientific Reports, 7, 41292.
  • Hebel, D. E., & Heisel, F. (2017). Cultivated building materials: Industrialized natural resources for architecture and construction (1st ed.). Birkhäuser.
  • Holt, G., McIntyre, G., Flagg, D., Bayer, E., Wanjura, J. D., & Pelletier, M. (2012). Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: Evaluation study of select blends of cotton byproducts. Journal of Biobased Materials and Bioenergy, 6(4), 431–439.
  • Huang, W.-C., & Tang, I.-C. (2007). Bacterial and yeast cultures — Process characteristics, products and applications. In S.-T. Yang (Ed.), Bioprocessing for value-added products from renewable resources (pp. 186–189). Elsevier.
  • Iguchi, M., Yamanaka, S., & Budhiono, A. (2000). Bacterial cellulose — A masterpiece of nature’s arts. Journal of Material Science, 35, 261–262.
  • Jiang, P., Leng, J., & Koren, Y. (2016). Social manufacturing as a sustainable paradigm for mass individualization. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(10).
  • Jonkers, H. M. (2007). Self-healing concrete: A biological approach. In S. van der Zwaag (Ed.), Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science (pp. 195–204). Springer.
  • Karana, E., Giaccardi, E., Nimkulrat, N., Niedderer, K., & Camere, S. (2015). Material driven design (MDD): A method to design for material experiences. International Journal of Design, 9(2), 39–54.
  • Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17, 36. https://doi.org/10.1186/s12934-018-0879-x
  • Kim, S. K., & Wijesekara, I. (2010). Development and biological activities of marine-derived bioactive peptides: A review. Journal of Functional Foods, 2(1), 1–9. https://doi.org/10.1016/j.jff.2010.01.003
  • Kim, R., Linehan, C., & Pschetz, L. (2022). Navigating imaginaries of DNA-based digital data storage. In CHI Conference on Human Factors in Computing Systems (pp. 1–15). https://doi.org/10.1145/3491102.3517455
  • Largurgue, X. (2020). Vertical greening of buildings: Towards an eco-aesthetic of the living (Doctoral dissertation). Université Paris Nanterre, Nanterre, France.
  • Lu, Q., et al. (2019). Application of a novel microalgae-film-based air purifier to improve air quality through oxygen production and fine particulates removal. Journal of Chemical Technology and Biotechnology, 94(1), 1057–1059.
  • Ludwig, F., & Schönle, D. (2022). Growing architecture: How to design and build with trees. https://doi.org/10.1515/9783035603392
  • Ma, Z., Ren, H., & Lin, W. (2019). A review of heating, ventilation and air conditioning technologies and innovations used in solar-powered net zero energy Solar Decathlon houses. Journal of Cleaner Production, 240, 118158.
  • Sheldrake, M. (2020). Entangled life: How fungi make our worlds, change our minds & shape our futures. Random House.
  • Myers, W., & Antonelli, P. (2012). Biodesign: Nature, science, creativity. Thames & Hudson.
  • Myers, W. (2018). Bio design. Thames & Hudson.
  • Nijhuis, S., Jauslin, D., & van der Hoeven, F. (2015). Flowscapes: Designing infrastructure as landscape. TU Delft.
  • Ng, F. M. C., & Wang, P. W. (2016). Natural self-grown fashion from bacterial cellulose: A paradigm shift design approach in fashion creation. The Design Journal, 19(6), 839–840.
  • Nguyen, H. D., et al. (2018). Design of fungal-based materials for sustainable architecture. Frontiers in Materials, 5, 65. https://doi.org/10.3389/fmats.2018.00065
  • Oxman, N. (2010). Material-based design computation. In Proceedings of the 2010 SIGGRAPH (pp. 27–40). Massachusetts Institute of Technology.
  • Papadopoulos, G. (2015) Moving from Traditional to Agile Software Development Methodologies Also on Large, Distributed Projects. Procedia—Social and Behavioral Sciences, 175, 455-463.
  • Pardes, A. (2024). Slip into earth-friendly running shoes made of algae. Wired.
  • Pasquero, C., & Poletto, M. (2020). Bio-digital aesthetics as value system of post-Anthropocene architecture. International Journal of Architectural Computing, 18(2).
  • Pelletier, M. G., Holt, G. A., Wanjura, J. D., Bayer, E., & McIntyre, G. (2013). An evaluation study of mycelium-based acoustic absorbers grown on agricultural by-product substrates. Industrial Crops and Products, 51(1), 480–485.
  • Peters, S. (2014). Material revolution II: New sustainable and multipurpose materials for design and architecture. Birkhäuser Verlag GmbH.
  • Pick, A., & Dymond, C. (2022). Permacinema. Philosophies, 7, 122. https://doi.org/10.3390/philosophies7060122. Poullain, P., Barnaure, M., & Bonnet, S. (2022). Variability of the mechanical properties of earthen composites. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4159294
  • Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick, W. J. Jr., Hallett, J. P., Leak, D. J., Liotta, C. L., Mielenz, J. R., Murphy, R., Templer, R., & Tschaplinski, T. (2006). The path forward for biofuels and biomaterials. Science, 311(5760), 484–489.
  • Ribul, M. (2018). Material translation: Validation and visualization as transdisciplinary methods for textile design and materials science in the circular bioeconomy. Journal of Textile Design Research and Practice, 6(1), 66–88.
  • Sagbansua, L., & Balo, F. (2017). Decision making model development in increasing wind farm energy efficiency. Renewable Energy, 109, 354–362.
  • Sandak, A., Sandak, J., Brzezicki, M., & Kutnar, A. (2019). Bio-based building skin. Springer. https://doi.org/10.1007/978-981-13-3747-5
  • Travagliani, S., Noble, J., Ross, P. G., & Dharan, C. K. H. (2013). Mycology matrix composites. In Proceedings of the 28th Annual Technical Conference of the American Society for Composites (pp. 517–535).
  • Trombadore, et al. (2019). Lush growth and biophilic principles: The role of nature-inspired materials in architecture. Journal of Design Studies, 37(5), 61–73.
  • Wang, et al. (2022). Biodesign: The future of nature-inspired innovation in manufacturing. Tech-Innovations Journal, 15(2), 120–1
  • GÖRSEL KAYNAKLAR
  • Görsel 1-2. https://www.mdpi.com/2071-1050/16/2/673 (Erişim Tarihi: 2025)
  • Görsel 2-3. https://blog.interface.com/en-au/carbon-absorbing-curtain/ (Erişim Tarihi: 2025)
  • Görsel 4. https://www.re-thinkingthefuture.com/architectural-community/a12278-utilizing-cutting-edge-technologies-and-materials-in-design/ (Erişim Tarihi: 2025)
  • Görsel 5-6. https://www.mycologyforarchitecture.com/post/remediating-architecture-a-bio-hybrid-approach-employing-fungal-mycelium (Erişim Tarihi: 2025)
  • Görsel 7. https://www.dezeen.com/2013/04/15/arup-unveils-worldsfirst-algae-powered-building/ (Erişim Tarihi: 2025)
  • Görsel 8. https://taylortuxford.co.uk/tag/dezeen/ (Erişim Tarihi: 2025)
  • Görsel 9. https://mushroompackaging.com/blogs/news/seedlips-latest-groovy-gift-set-stars-mushroom-packaging (Erişim Tarihi: 2025)
  • Görsel 10-11. https://www.futurematerialsbank.com/maker/jonas-edvard-studio/ (Erişim Tarihi: 2025)
  • Görsel 12-13. https://livingcolour.eu/experiments/ (Erişim Tarihi: 2025)
  • Görsel 14-15. https://livingcolour.eu/experiments/ - https://mogu.bio/wp-content/uploads/2022/05/Mogu-Floor-TILE-technical-datasheet.pdf (Erişim Tarihi: 2025)
  • Görsel 16. https://vegconomist.com/materials/amsilk-and-21st-bio-scale-bioproduced-spider-silk-proteins/ (Erişim Tarihi: 2025)
  • Görsel 17-18. https://www.solaga.de/en/alwa-die-algenwand-wasserwand-trifft-auf-alge/ (Erişim Tarihi: 2025)
  • İNTERNET KAYNAKLARI
  • Benson, P. (2022, Temmuz). The power of plants in film. Film and Furniture. https://filmandfurniture.com/2022/07/power-of-plants-in-film/
  • Collet, C. (2013). This is alive. http://thisisalive.com/
  • Fulbright, S. (2016, Ağustos 23). Is algae the ink of the future? TEDxMileHigh [YouTube video]. https://www.youtube.com/watch?v=4uAAegPkCKo&t=1s
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Güzel Sanatlar
Bölüm Makaleler
Yazarlar

Betül Ünal 0000-0002-4704-0304

Duygu Koca 0000-0003-4176-8115

Yayımlanma Tarihi 27 Haziran 2025
Gönderilme Tarihi 28 Mayıs 2025
Kabul Tarihi 25 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 36

Kaynak Göster

APA Ünal, B., & Koca, D. (2025). Biyoloji Temelli Tasarım Yaklaşımları: Canlı Organizmaların Tasarım Disiplinlerine Dahil Edilmesi. Sanat Ve Tasarım Dergisi(36), 351-378. https://doi.org/10.18603/sanatvetasarim.1707655
AMA Ünal B, Koca D. Biyoloji Temelli Tasarım Yaklaşımları: Canlı Organizmaların Tasarım Disiplinlerine Dahil Edilmesi. Sanat ve Tasarım Dergisi. Haziran 2025;(36):351-378. doi:10.18603/sanatvetasarim.1707655
Chicago Ünal, Betül, ve Duygu Koca. “Biyoloji Temelli Tasarım Yaklaşımları: Canlı Organizmaların Tasarım Disiplinlerine Dahil Edilmesi”. Sanat Ve Tasarım Dergisi, sy. 36 (Haziran 2025): 351-78. https://doi.org/10.18603/sanatvetasarim.1707655.
EndNote Ünal B, Koca D (01 Haziran 2025) Biyoloji Temelli Tasarım Yaklaşımları: Canlı Organizmaların Tasarım Disiplinlerine Dahil Edilmesi. Sanat ve Tasarım Dergisi 36 351–378.
IEEE B. Ünal ve D. Koca, “Biyoloji Temelli Tasarım Yaklaşımları: Canlı Organizmaların Tasarım Disiplinlerine Dahil Edilmesi”, Sanat ve Tasarım Dergisi, sy. 36, ss. 351–378, Haziran 2025, doi: 10.18603/sanatvetasarim.1707655.
ISNAD Ünal, Betül - Koca, Duygu. “Biyoloji Temelli Tasarım Yaklaşımları: Canlı Organizmaların Tasarım Disiplinlerine Dahil Edilmesi”. Sanat ve Tasarım Dergisi 36 (Haziran 2025), 351-378. https://doi.org/10.18603/sanatvetasarim.1707655.
JAMA Ünal B, Koca D. Biyoloji Temelli Tasarım Yaklaşımları: Canlı Organizmaların Tasarım Disiplinlerine Dahil Edilmesi. Sanat ve Tasarım Dergisi. 2025;:351–378.
MLA Ünal, Betül ve Duygu Koca. “Biyoloji Temelli Tasarım Yaklaşımları: Canlı Organizmaların Tasarım Disiplinlerine Dahil Edilmesi”. Sanat Ve Tasarım Dergisi, sy. 36, 2025, ss. 351-78, doi:10.18603/sanatvetasarim.1707655.
Vancouver Ünal B, Koca D. Biyoloji Temelli Tasarım Yaklaşımları: Canlı Organizmaların Tasarım Disiplinlerine Dahil Edilmesi. Sanat ve Tasarım Dergisi. 2025(36):351-78.