Face recognition (FR) is a method that uses face feature analysis and comparison to identify or verify individuals. Siamese neural networks (SNNs) are an effective method for FR, providing high accuracy and versatility, especially in situations where data is restricted. Unlike standard neural networks, SNNs learn to distinguish between pairs of inputs rather than individual inputs. However, detecting and recognizing faces in unconstrained environments poses a significant challenge due to various factors such as head pose, illumination, and facial expression variations. The aim of this paper is to design and develop an efficient approach based on SNNs and Transfer Learning methods. For this purpose LFW dataset and transfer learning architectures like VGG-16, EfficientNet, RestNet50 and ConvNext have been utilised. Performance of the architectures were measured using 5-Fold cross validation. According to results, EfficientNet, RestNet50 and ConvNext produced 78% accuracy, 95% and 93 % accuracy respectively. SNN with VGG-16 exhibited a low loss and produced the best accuracy in face recognition with 96%.
Face recognition Siamese neural network VGG-16 ConvNext EfficientNet RestNet50
Birincil Dil | İngilizce |
---|---|
Konular | Bilgisayar Yazılımı |
Bölüm | Research Article |
Yazarlar | |
Erken Görünüm Tarihi | 23 Aralık 2024 |
Yayımlanma Tarihi | 31 Aralık 2024 |
Gönderilme Tarihi | 24 Haziran 2024 |
Kabul Tarihi | 4 Eylül 2024 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 7 Sayı: 3 |
The papers in this journal are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License