Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, , 782 - 790, 01.08.2020
https://doi.org/10.16984/saufenbilder.733935

Öz

Kaynakça

  • [1] P. Danchev, “Trivial units in commutative group algebras,” Extr. Math., vol. 23, pp. 49-60, 2008.
  • [2] P. Danchev, “Trivial units in abelian group algebras,” Extr. Math., vol. 24, pp. 47-53, 2009.
  • [3] P. Danchev, “Idempotent units in commutative group rings,” Kochi J. Math, vol. 4, pp. 61-68, 2009.
  • [4] P. Danchev, “Idempotent units of commutative group rings,” Commun. Algebra, vol. 38, pp. 4649-4654, 2010.
  • [5] P. Danchev, “On some idempotent torsion decompositions of normed units in commutative group rings,” J. Calcutta Math. Soc., vol. 6, pp. 31-34, 2010.
  • [6] P. Danchev, “Idempotent-torsion normalized units in abelian group rings,” Bull Calcutta Math. Soc., to appear, 2011.
  • [7] G. Karpilovsky, “On units in commutative group rings,” Arch. Math. (Basel), vol. 38, pp. 420–422, 1982.
  • [8] G. Karpilovsky, “On finite generation of unit groups of commutative group rings,” Arch. Math. (Basel), vol. 40, pp. 503–508, 1983.
  • [9] G. Karpilovsky, “Unit groups of group rings,” Harlow: Longman Sci. and Techn., 1989.
  • [10] G. Karpilovsky, “Units of commutative group algebras,” Expo. Math., vol. 8, pp. 247-287, 1990.
  • [11] W. May, “Group algebras over finitely generated rings,” J. Algebra vol. 39 pp. 483–511, 1976.
  • [12] C. Polcino Milies and S. K. Sehgal, “An introduction to group rings,” Kluwer, North-Holland, Amsterdam, 2002.
  • [13] S. K. Sehgal, “Topics in group rings,” Marcel Dekker, New York, 1978.

On Idempotent Units in Commutative Group Rings

Yıl 2020, , 782 - 790, 01.08.2020
https://doi.org/10.16984/saufenbilder.733935

Öz

Special elements as units, which are defined utilizing idempotent elements, have a very crucial place in a commutative group ring. As a remark, we note that an element is said to be idempotent if r^2=r in a ring. For a group ring RG, idempotent units are defined as finite linear combinations of elements of G over the idempotent elements in R or formally, idempotent units can be stated as of the form id(RG)={∑_(r_g∈id(R))▒〖r_g g〗: ∑_(r_g∈id(R))▒r_g =1 and r_g r_h=0 when g≠h} where id(R) is the set of all idempotent elements [3], [4], [5], [6]. Danchev [3] introduced some necessary and sufficient conditions for all the normalized units are to be idempotent units for groups of orders 2 and 3. In this study, by considering some restrictions, we investigate necessary and sufficient conditions for equalities:
i.V(R(G×H))=id(R(G×H)),
ii.V(R(G×H))=G×id(RH),
iii.V(R(G×H))=id(RG)×H
where G×H is the direct product of groups G and H. Therefore, the study can be seen as a generalization of [3], [4]. Notations mostly follow [12], [13].

Kaynakça

  • [1] P. Danchev, “Trivial units in commutative group algebras,” Extr. Math., vol. 23, pp. 49-60, 2008.
  • [2] P. Danchev, “Trivial units in abelian group algebras,” Extr. Math., vol. 24, pp. 47-53, 2009.
  • [3] P. Danchev, “Idempotent units in commutative group rings,” Kochi J. Math, vol. 4, pp. 61-68, 2009.
  • [4] P. Danchev, “Idempotent units of commutative group rings,” Commun. Algebra, vol. 38, pp. 4649-4654, 2010.
  • [5] P. Danchev, “On some idempotent torsion decompositions of normed units in commutative group rings,” J. Calcutta Math. Soc., vol. 6, pp. 31-34, 2010.
  • [6] P. Danchev, “Idempotent-torsion normalized units in abelian group rings,” Bull Calcutta Math. Soc., to appear, 2011.
  • [7] G. Karpilovsky, “On units in commutative group rings,” Arch. Math. (Basel), vol. 38, pp. 420–422, 1982.
  • [8] G. Karpilovsky, “On finite generation of unit groups of commutative group rings,” Arch. Math. (Basel), vol. 40, pp. 503–508, 1983.
  • [9] G. Karpilovsky, “Unit groups of group rings,” Harlow: Longman Sci. and Techn., 1989.
  • [10] G. Karpilovsky, “Units of commutative group algebras,” Expo. Math., vol. 8, pp. 247-287, 1990.
  • [11] W. May, “Group algebras over finitely generated rings,” J. Algebra vol. 39 pp. 483–511, 1976.
  • [12] C. Polcino Milies and S. K. Sehgal, “An introduction to group rings,” Kluwer, North-Holland, Amsterdam, 2002.
  • [13] S. K. Sehgal, “Topics in group rings,” Marcel Dekker, New York, 1978.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Ömer Küsmüş 0000-0001-7397-0735

Yayımlanma Tarihi 1 Ağustos 2020
Gönderilme Tarihi 7 Mayıs 2020
Kabul Tarihi 10 Haziran 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Küsmüş, Ö. (2020). On Idempotent Units in Commutative Group Rings. Sakarya University Journal of Science, 24(4), 782-790. https://doi.org/10.16984/saufenbilder.733935
AMA Küsmüş Ö. On Idempotent Units in Commutative Group Rings. SAUJS. Ağustos 2020;24(4):782-790. doi:10.16984/saufenbilder.733935
Chicago Küsmüş, Ömer. “On Idempotent Units in Commutative Group Rings”. Sakarya University Journal of Science 24, sy. 4 (Ağustos 2020): 782-90. https://doi.org/10.16984/saufenbilder.733935.
EndNote Küsmüş Ö (01 Ağustos 2020) On Idempotent Units in Commutative Group Rings. Sakarya University Journal of Science 24 4 782–790.
IEEE Ö. Küsmüş, “On Idempotent Units in Commutative Group Rings”, SAUJS, c. 24, sy. 4, ss. 782–790, 2020, doi: 10.16984/saufenbilder.733935.
ISNAD Küsmüş, Ömer. “On Idempotent Units in Commutative Group Rings”. Sakarya University Journal of Science 24/4 (Ağustos 2020), 782-790. https://doi.org/10.16984/saufenbilder.733935.
JAMA Küsmüş Ö. On Idempotent Units in Commutative Group Rings. SAUJS. 2020;24:782–790.
MLA Küsmüş, Ömer. “On Idempotent Units in Commutative Group Rings”. Sakarya University Journal of Science, c. 24, sy. 4, 2020, ss. 782-90, doi:10.16984/saufenbilder.733935.
Vancouver Küsmüş Ö. On Idempotent Units in Commutative Group Rings. SAUJS. 2020;24(4):782-90.


INDEXING & ABSTRACTING & ARCHIVING

33418 33537  30939     30940 30943 30941  30942  33255  33252  33253  33254

30944  30945  30946   34239




30930Bu eser Creative Commons Atıf-Ticari Olmayan 4.0 Uluslararası Lisans   kapsamında lisanslanmıştır .